Course Description

In *Natural Resource Economics and Policy* (ESM 242) we will study a wide range problems of natural resource use. The course introduces students to the principles, reasoning, and techniques required to set-up and solve inter-temporal allocation problems under different social objectives. Policy will serve as both an input and an implicated output of this approach. The economic tools developed are applied to renewable resources, exhaustible resources, water, pollution, marine resources, climate change, conservation planning, and other contemporary problems. The first third of the course is devoted to learning the basic principles and tools required to analyze natural resource management problems. The second third of the course consists of several case studies of contemporary renewable and non-renewable natural resource problems, along the lines of “mini” Bren School group projects. The final third of the course will be lead by students, who will present their term projects (see below).

Prerequisites & Workload

The course presumes a solid understanding of calculus, statistics, and micro-economics. If your understanding of math and statistics is shaky, but still want to take the course, you can familiarize yourself with the concepts by reading the relevant introductory material on these topics in a mathematics text (such as Chiang, *Fundamental Methods of Mathematical Economics*). An intermediate microeconomics course (such as ESM 204) is also a prerequisite. It is assumed that you have a good understanding of how to manipulate Excel spreadsheets, particularly using *Solver*. Alternatively, you can use R or Matlab (or suitable substitute) for modeling.

The workload will be about average for an elective course. There will be 3 assignments, an in-class midterm, a term paper, a class presentation, and a “research report.” Depending on your familiarity with economic principles and computer use, you can expect approximately 5-6 hours of work outside of class per week.

Grading

Grading consists of the following elements: (1) Homework Assignments (25%), (2) In Class Midterm (25%), (3) Term Paper (30%), (4) Term Paper Presentation (10%), (5) Research report (10%).¹

The term paper should focus on a topic of your choice in the general area of natural resource economics and policy. The term paper should have the following features:

- It must be relevant to natural resource economics and policy
- It must identify and answer a specific research question of manageable scope
- It must involve the collection and analysis of data. The database you create will be part of your submitted final project.

¹Note: The grading scheme is subject to change up to the end of the first week of class depending on class size, topical interest, etc.
• You must interview expert(s) in the area you are studying (e.g. if you are interested in water-use in agriculture, you could interview farmers, water managers, and/or city planners)

• Your project may be related to your group project, but it must address a different dimension than does your group project.

• You may work in groups of up to four students.

The term paper grade is composed of four elements: (1) A brief proposal summarizing the question you will address (10%), (2) A mid-quarter progress report (20%), and (3) A final written report (70%). The Midterm exam is an in-class exam. It will be held on Tuesday, May 20. **You are fully expected to attend all class lectures including all presentations by your peers.** If you have to miss a class, you must obtain permission from the professor ahead of time. **Plagiarism** will not be tolerated. Plagiarism is defined as “passing someone else’s work off as one’s own”, and is strictly forbidden, enforced, and punished at the University of California.

Readings

The primary (required) textbook is:

It is available on Amazon.com for about $30. We may also draw on:

Supplementary readings, such as journal articles, will be made available on Gaucho Space.

Course Topics

The course is broken into 3 sections: (1) Analytical techniques, modeling, and principles of natural resource economics and policy (2) Case studies and special topics, and (3) Term paper presentations. Subtopics within each section are listed below:

1. Modeling, definitions, and natural resource allocation (6 Lectures)
 • Fundamentals of renewable resources (2 lectures)
 • Fundamentals of non-renewable resources (2 lectures)
 • Phase plane analysis
 • Sensitivity and uncertainty

2. Case studies and special topics [Examples] (7 lectures)
 • Option value and the value of information
 • Reserve site selection
 • Water pricing and markets
 • Biological prospecting
 • Marine reserve design
 • Global fishery recovery (Guest Lecture)
 • Forestry and climate change

2The case studies will change from year to year - depending on current issues and on student interest.
3. Review for Midterm Exam (May 15, 2014)
4. Midterm Exam (May 20, 2014)
5. Student Presentations (5 lectures)
 - 10 minute presentation to rest of class

Some Examples of Paper Topics

1. Is water in Santa Barbara efficiently priced?
2. Should plastic bags be banned or taxed?
3. Does the CRP efficiently conserve biodiversity in a world with fluctuating food prices?
4. Should the optimal size of a carbon tax change over time?
5. Does climate change make water markets more (or less) compelling?
6. As climate change shifts species ranges, how should protected areas adapt?
7. What is the optimal size limit for lobster in Santa Barbara?

Research Report

Each project team will be assigned to write a “research report” on another team’s research project. For example, a team who studied whale policies might be asked to write their research report on a project relating to air pollution control or environmental justice. The research report contains the following features:

- Summary of the problem and research question
- Distillation of the idea into a single problem-set-style set of questions
- Data description and data file
- No longer than 2 pages

The basic idea is to write a problem set (which I may use in future years!), complete with data, that is based on your assigned team’s project.