

End-of-Life Management of Cell Phones in the United States

Advisor: Assistant Professor Roland Geyer Authors: Vered Doctori, Leigh Favret, Mihoyo Fuji, Sarvy Mahdavi, Robert Miller, Joaquin Neira

Process Overview

End-of-Life Cell Phone Challenges Introduction

Waste and Toxicity

- Material and Energy Recovery Opportunities
- High Replacement Rate (130 million units retired/yr) Residual Economic Value
- Design Trends

Policy Options

- Mandatory Take-back
- Voluntary Programs

End-of-Life Management Options

- Reuse of Product
- Reuse of Components
- Recycling of Materials

Recommend optimal management for the end-of-life fate of cell phones in the

Objectives

- Combine design, policy and end-of-life considerations to optimize market outcome
- Maximize net economic outcome and minimize environmental impact
- Multi-source research: literature review, web search, interview with ess conducted by third party recycler.

Project Scope & Approach

industry stakeholders, phone collection campaign, and recycling proc-

 Multi-factor analysis: market, technology, environment, ethics, economics, and politics.

Use End Retailer OEM NGO NSP Collection Method One- day event Drop off Mail In Processing Agents Refurbisher Smelter Material / Energy Recovery Product Refurbish EoL Product

Shredding Collection & Recycling Process Smelting & Pouring

Collection & Sorting

Slag & Metal Bars

market is ~ 6 years. Average age of recycled phones in the

Project Recycling Results

 Recycling process yielded 0.35% of precious metals and ~7% of copper per cell phone. Composition depends

100% 80% 60% 40%

Precious Metals Recovery Per Phone

- the revenue. cell phone. Gold represented 80% of Precious metals rendered < \$1 per on sample age and design trends.
- Profit margin rendered < \$0.10 per
- cell phone emphasizing the importance of economy of scale in this business. 0.012
- Process profitability is highly sensitive to metal market volatility
- Recyclers cannot afford to bear collection cost

Findings

Policy & Design

- are various initiatives at the state level There is no national legislation regarding e-waste in the United States. However, there
- Previous legislation mechanisms focused on process (WEEE) and product (RoHS)
- Design trends show miniaturization, a decrease in precious metals, and a variation in

Current design trends will affect EoL operation in the upcoming years

End of Life Options

Economic performance

for 80% of entire EoL cost Collection and pre-processing account

- EoL fate and residual value accordingly ferent quality of phones affecting their Different collection methods yield dif-

- market, the rest from recycling able: 95% comes from second-hand Current market (65% reuse) is profit-

Environmental performance

- Assuming no displacement of new phone comes, the higher the energy consumption suming. The larger the market operation beproduction, all processes are energy con-
- in the reduction of ore mining There is an aggregate amount of waste displaced in the market when recycling results
- Material recovery increases with recycling

Sensitivity and Scenario Analysis

Economic Outcome

- Economic outcome
- Minimum reuse rate is required to sustain a positive economic outcome
- Collection rate enhances the economic outcome
- Second-hand phone value plays an important role in the market profitability

Environmental outcome

- High recycling rate is preferred as long as there High collection rate results in high amount of is zero displacement of new cell phone producavoided waste and material recovered; this also results in increased energy consumption
- If displacement is assumed, reuse is preferred tively with the economic outcome since the environmental performance aligns posi-

Conclusions & Recommendations

value of second-hand phones. Results highlight the importance of the reuse rate, the economy of scale, and the

- Set a minimum reuse target to all stakeholders involved in the processing stage.
- Foster high collection rates to create economy of scale and decrease associated waste, policy makers should set a minimum collection target for OEMs and NSPs and consider incentives for end-users (i.e., tax credits, deposit mechanisms) This will ensure a positive economic market outcome.
- Use existing infrastructure of retailers and network service providers to interact with end-users in order to minimize capital investment and shipping transactions
- Share reverse logistics efforts between supply chain agents in order to improve ef-
- Develop a sound displacement strategy Focus on capturing high-end cell phones to maximize profits
- Ban cell phones from landfills
- Promote design for disassembly and recyclability by providing guidelines and tax credits for advanced DfE R&D efforts
- Create flexible mechanisms to allow OEMs take-back their own products to incen-