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Abstract 
To meet its climate change and air quality targets, California is rapidly electrifying its transportation 
sector. For electric vehicles’ (EVs) climate benefits to be fully achieved, the electricity that charges 
their batteries must come from renewable resources. If EV charging is left unmanaged, charging 
will likely occur in peak periods, with less renewables providing electricity, and increased demand 
increasing strain on the electrical grid. With the ability of EVs to change when and where they 
charge, utilities are investigating managed charging strategies that induce drivers to charge using 
California’s excess solar energy supply that is often curtailed in the middle of the day. This project 
developed an economic model that uses pricing, technology, and communication interventions to 
simulate changes in EV charging for non-residential markets. Our study found these interventions 
successfully reduce charging demand during peak periods, but limitations exist on shifting charging 
to midday. Shifting a third of peak charging demand to midday can reduce emissions up to 30%, 
but a lack of charging infrastructure and communication informing drivers on price limits this 
shift. While more research is required on EV driver demand response, our project offers insights 
into strategies for managing charging in non-residential locations.  
 
Keywords: electric vehicles, electric vehicle charging, managed charging, climate change, 
electricity, electrical grid, curtailment, demand response 
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Executive Summary 
Introduction 
Transportation accounts for 40% of California’s greenhouse gas (GHG) emissions.1 To 
significantly reduce these emissions, the state is incentivizing the electrification of the 
transportation sector and setting aggressive targets to increase electric vehicle (EV) adoption. In 
2018, there were an estimated 570,000 zero-emission vehicles (ZEV) in California.2 The most 
recent ZEV target seeks to increase that number to 5 million by 2030.3 Yet, EVs’ full potential to 
reduce GHG emissions is most realized when the electricity that charges their batteries comes 
from renewable resources. If these new EVs charge in the middle of the day, they could take 
advantage of California’s solar energy and fully capitalize on their potential to reduce GHG 
emissions. They could also help balance supply and demand on the electric grid and ultimately 
keep ratepayer costs low. However, if they charge in the evenings, they will further contribute to 
a period of peak electricity demand that is met through carbon-intensive fossil fuel resources. If 
this type of unmanaged charging occurs, EVs will not achieve their full GHG reduction potential. 
 
Purpose and Goals 
Southern California Edison (SCE), the primary electricity provider for much of Southern 
California, is investigating ways to incentivize EV drivers to shift their charging to the middle of 
the day. To complement that work, we develop models to estimate the extent to which various 
interventions can encourage drivers to charge in the middle of the day at long-dwell locations 
(workplaces, destination centers, fleets, multi-unit dwellings [MUDs]). To help visualize our results 
and make them accessible to a range of stakeholders, we develop a web-based tool that allows 
users to interact with and run our model; this tool is freely available online: 
https://smartcharge.shinyapps.io/smartcharge/.  
 
Methods 
Our model considers how economic, technical, and communication interventions can shift EV 
charging to different periods of the day, and how this shift impacts human health, the 
environment, and the electric grid.  
 
Following economic theory, self-, cross-, and average elasticities represent how individuals’ 
electricity demand changes in response to price changes at any point in the day. Because few 
studies have tackled these challenges for EV charging, carefully-estimated self- and cross-price 
elasticities for all 24 hours of the day for non-residential EV charging locations do not yet exist in 
the literature. Until they are estimated empirically, elasticities from other segments provide a 
                                                
1 “California’s Greenhouse Gas Emission Inventory.” 
2 “Sales Dashboard.” 
Zero-emission vehicles (ZEV) consist of full battery electric, hydrogen fuel cell, and plug-in hybrid 
electric vehicles. Both plug-in hybrid and full battery electric vehicles comprise the plug-in electric vehicle 
(PEV) category. PEVs constitute the majority of ZEVs. 
3 “Zero-Emission Vehicles”; “Zero Emission Vehicle (ZEV) Program.” 
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reasonable proxy for estimating how changes in price over the course of the day impact demand. 
With these estimated elasticities we consider three potential price interventions, including a change 
in the entire rate schedule, a discount, and a rebate.  
  
Our model considers two other non-price interventions: throttling and communication. Throttling 
represents a 50% forced reduction in load, which occurs when the utility physically reduces power 
to the charger. A communication intervention involves notifying EV drivers about a price change 
or the impact of charging on air pollution. We assume that EV drivers have some sense of their 
pricing schedule and thus our price communication intervention is simply about providing an 
additional reminder. Studies on how these communication strategies impact residential electricity 
usage are used to inform this aspect of our model. 
 
Using this information, we can model the change in EV charging demand over the course of the 
day under any package of interventions. We then consider the impacts of these changes on climate, 
health, solar curtailment, and customer finances. We create hourly fuel mixes and emission factors 
for 2018 and 2030 to determine the GHG and air pollution impacts, and then translate those 
values into dollars using the social costs associated with carbon dioxide equivalents (CO2eq) and 
nitrogen oxide (NOx). Curtailment, or the removal of solar energy from the grid, occurs when 
there is too much energy supply, reducing the benefits we get from adding solar to the grid. This 
is a key reason EVs may be able to charge more economically midday. We consider how any 
change in EV charging behavior may impact curtailment by considering the relevant proportion 
of demand likely to be powered through solar energy during the curtailment window (8:00 a.m. - 
6:00 p.m.) and calculating the change in curtailed solar in kilowatt-hours (kWh). 
 
Lastly, our model incorporates contextual information, such as the number of chargers, baseline 
demand profile, and baseline price schedule, as provided by our client, SCE. 
 
Findings 
We run a variety of scenarios for each segment to determine what is most likely to induce a shift 
in consumption into the middle of the day. We find that interventions can reduce, increase, 
or shift demand. However, more load is reduced than shifted, most likely due to the 
methods we employ. As a result, the interventions considered here reduce GHG and air 
pollution emissions, but we need to go farther to induce the kind of behavior shift needed 
to ensure EVs full climate benefits are captured. 
 
We also find the following:  
 
Interventions 

• Raising or lowering the price can decrease or increase demand, respectively.  
• Discounts and rebates can induce drivers to shift charging from/to another period.  
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• The 2019 time-of-use rate schedule may reduce demand during the evening peak period 
and increase demand midday.  

• Additional communication about price and air pollution can amplify behavior response up 
to 12%.  

  
Impacts 

• Price, communication, and throttling can reduce demand in the evening peak period by 
up to 93%, and increase midday demand by up to 37%.  

• Under all considered interventions, GHG and air pollution emissions fall. Daily emissions 
decrease by no more than 34% (GHG) and 37% (NOx), while evening emissions may fall 
as much as 93% (GHG) and 99% (NOx). While this does not fully reduce emissions, 
reducing emissions by one-third is significant, particularly on a clean grid such as the one 
in California.  

• Reducing and shifting load as modelled has a negligible impact on NOx emissions released 
in California-designated disadvantaged communities (DACs). 

• Under current EV growth rates and projected charger adoption rates for long-dwell 
segments, limiting these charger’s availability to target windows would only allow them to 
meet 8-32% of daily EV charging demand. If charging during the target windows at long-
dwell locations is encouraged, additional chargers and/or extending demand response 
efforts into the residential sector may be required. 

• The interventions modelled here change only small amounts of load and therefore do not 
have a significant impact on curtailment, when we consider curtailment to be a potential 
problem from 8:00 a.m. to 6:00 p.m.  

• The magnitude of the impacts in 2018-19 may be minimal since the number of chargers is 
relatively low compared to the number of EVs on the road in California. As more chargers 
are installed, impacts will increase. 

• Communication to end users is a huge barrier. Unlike SCE’s pilot, our model assumes that 
all EV drivers have some knowledge of the original price schedule. Thus, our model likely 
overestimates demand response because drivers do not make decisions about charging 
based on the electricity rate schedule. We test this assumption when we compare our 
model results to SCE pilot results. 

 
Key Recommendations 
We offer the following key recommendations for SCE to consider:  

• Close the Communication Gap: Develop a communication and education outreach strategy to 
help site hosts communicate to their end users; consider requiring or incentivizing site 
hosts to pass costs or communication along to EV drivers. 

• Test Other Strategies: Craft segment-differentiated strategies and align prices and throttling 
periods more closely with behavior in each segment. Consider alternative strategies, such 
as subscription charging, graduated pricing, and limited morning throttling. 
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• Expand the Program: Include residential segments in demand response programs or install 
more chargers in long-dwell segments. 

• Research Driver Behavior: Consider tracking how and why drivers shift their charging from 
residential to non-residential segments. Conduct a robust economic study of how EV 
drivers respond to changes in price in non-residential segments and then derive the self 
and cross-price elasticities. Elasticities derived from an experiment in these segments may 
reveal that load shifting is more prevalent than appears in our modeled results. 
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Project Significance 
Transportation accounts for 40% of California’s greenhouse gas (GHG) emissions.4 To 
significantly reduce these emissions, the state is incentivizing the electrification of the 
transportation sector and setting aggressive targets to increase electric vehicle (EV) adoption. The 
most recent zero-emission vehicle target seeks to increase that number to 5 million by 2030.5 Yet, 
EVs’ full potential to reduce GHG emissions is most realized when the electricity that charges 
their batteries comes from renewable resources. California has a significant amount of 
underutilized midday solar energy that may be a resource which EV drivers can take advantage of. 
If EVs shift their charging into off-peak, solar-abundant hours they will use clean energy and fully 
capitalize on the potential for EVs to reduce GHG emissions. However, if they charge in evening, 
peak periods, they will further contribute to a period of peak demand that is reliant on fossil fuel 
peaker plants and will not achieve their full GHG reduction potential. 
 
When people charge their EVs in the middle of the day, they use clean solar energy that otherwise 
might be wasted or sold to other states and reduce their reliance on the fossil fuel-based power 
that would be used to charge their cars in the evening. Not only does this enable EVs to reduce 
GHG emissions, but it also helps balance the supply and demand of the electrical grid for 
California utilities and ultimately keeps ratepayer costs low.  
 
Southern California Edison (SCE), the primary electricity provider for Southern California, is 
currently investigating ways to incentivize EV drivers to shift their charging to the middle of the 
day. This project complements that work by designing models that estimate the extent to which 
various interventions encourage drivers to charge in the middle of the day at workplaces, 
destination centers, fleets and multi-unit dwellings (MUDs). Creating this model and analyzing the 
data from SCE’s Charge Ready Demand Response Pilot can help SCE determine the GHG 
emission and cost reductions associated with these demand response interventions and explore 
the scalability of these methods. This project’s analysis provides insight into other potential 
strategies that use California’s large quantity of midday solar energy to meet the growing demand 
for EVs. Overall, a greater understanding of EV consumer behavior and effective ways to 
communicate demand response information to customers is central to this project. Renewable 
energy production and EVs are both important solutions to climate change goals, and this project 
focuses on examining the strategies where the two complement each other.   

                                                
4 “California’s Greenhouse Gas Emission Inventory.” 
5 “Zero Emission Vehicle (ZEV) Program”; “Zero-Emission Vehicles.” 
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Project Objectives 
This project determines how various economic, technical, and communication interventions can 
shift EV charging to different periods of the day, and how this shift impacts human health, the 
environment, and the electrical grid. EV charging for this project is analyzed in 4 long-dwell 
market segments (workplaces, destination centers, fleets, MUDs) within SCE’s territory. This 
project produces a model that can simulate the impacts of any intervention and advise SCE on 
effectively implementing a managed charging strategy.  
 
Specifically, this project aims to accomplish the following: 

 
1. Model how EV charging load changes over the course of a day in response to price, 

throttling, and communication interventions.  
2. Analyze the consequences of EV load reduction and load shifting on public health, the 

environment, and grid stability for different EV adoption rates in 4 long-dwell market 
segments (fleets, destination centers, MUDs, workplaces).  

3. Review the performance of SCE’s Charge Ready Demand Response pilot program events 
by (a) quantifying the economic, human health, and environmental costs and benefits of 
the events; (b) evaluating the effectiveness of interventions on participation; and (c) 
evaluating methods to effectively communicate the information to EV owners and 
increase participation. 

 
 



 
 
 

 
 
 

7 

Chapter I. Background 
 
This chapter provides background on power generation in California, the two challenges 
associated with the growing EV demand in California, and the opportunities created to address 
these challenges with demand response and managing EV charging. General information about 
utility’s interest in EVs and the SCE pilot program is also provided.  

Power Generation Challenges in California: The Duck Curve 
To understand the impact EVs will have on power generation and GHG emissions, we must first 
understand how demand and supply are met over the course of the day via the electrical grid. 
Figure 1 offers an average demand curve for a summer day in California.6 As shown, demand 
varies over the course of the day. Demand is typically highest in the evening “peak” period, when 
people come home from work, and lower in the middle of the night and the day.7  
 

 
Figure 1. Hourly Electricity Demand in California on July 1, 2018 (CAISO) 

 
Variability in demand means that grid operators must manage the energy that power generators 
produce over the course of the day. Sometimes they have to respond to sudden peaks in demand 
by quickly ramping resources up and down. Some power resources are dangerous or expensive to 
ramp up or down, while others are only available during certain periods of the day. Resources that 
cannot be easily turned off or on, like nuclear, hydro, and most electricity imported from other 
states, are considered “baseload” power. These resources run nearly 100% of the time. “Load-
following” resources, can be turned on or off easily and cheaply, like natural gas and most 
renewables. Lastly, the grid uses “peaker” plants when demand rises quickly, as these plants are 
the easiest to turn on or off, but are very expensive to run. They are generally natural gas based 
and are the most inefficient and dirtiest resources in California.8  

                                                
6 “Renewables Watch_20180701.” 
7 Herman K. Trabish, “Inside California’s Rate Restructuring Plan and the Battle for Fixed Charges 
Looming over It.” 
8 Fero, “Achieving California’s 2030 Renewable Portfolio Standard and Electricity Sector Greenhouse Gas 
Emission Reduction Target”; “Turning Down the Gas in California”; John, “Dueling Charts of the Day.” 
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Matching supply and demand poses a larger challenge as we strive to create a clean energy grid 
and as electricity demand rises overall. California’s clean energy goals are primarily met through 
solar energy. Solar electricity production varies geographically and temporally with changes in solar 
irradiance and cloud cover (by hour, day, and season). Solar power plants reach peak generation 
in the middle of the day, when solar irradiance is highest, but when demand is low. Figure 2 begins 
to explore this mismatch between renewable energy availability and electricity demand.9 Similar to 
Figure 1, the top graph in Figure 2 shows the total load and “net load” (total load minus energy 
provided by renewables). The bottom graph in Figure 2 shows wind and solar generation. We see 
that wind and solar provide zero-carbon electricity in the middle of the day, but they are not 
directly available to meet demand during the primary peak period, 4:00 - 9:00 p.m. Instead, the 
grid relies on load-following natural gas plants and peaker plants during this time because of their 
ability to ramp up and down quickly.10  
 

 
Figure 2. Hourly Average Net Load in California on July 1, 2018 (CAISO) 

 
Solar’s midday availability reduces the demand for traditional fuel resources, like natural gas, in the 
middle of the day, but it also exacerbates this “ramping” in the evening. It creates a steeper demand 
curve as solar resources shut down and peaker plants turn on. The intermittency of solar coupled 
with this “ramping” of demand in the evenings is known as the “Duck” curve, as seen in Figure 
3.11 This graph shows current and projected net demand (total demand – renewables). In the 
middle of the day, solar can easily provide enough power and, in fact, sometimes provides too 
much power (overgeneration). As the sun sets and evening demand spikes, fossil fuel resources 
are required to ramp up. The steepness of that ramp is problematic for grid operators trying to 
maintain equal supply and demand. 
 
                                                
9 “Renewables Watch_20180701.” 
10 “Turning Down the Gas in California”; John, “Dueling Charts of the Day.” 
11 Denholm et al., “Overgeneration from Solar Energy in California. A Field Guide to the Duck Chart.” 
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Figure 3. March 31, 2013 CAISO Duck Curve (NREL) 

 
The duck curve is one of the underlying issues of concern when discussing load in California, 
including EVs, and generation, including renewable. Since we currently expect to see new EV 
drivers charging during the evening peak period,12 EVs could exacerbate the duck curve and make 
the grid unstable. By 2025, EV chargers could add up to 1 gigawatt (GW) of load onto the grid 
during peak periods.13 Figure 4 below details how EV charging demand on weekdays and 
weekends could align with and amplify the duck curve.14  
 

 
Figure 4. Projected EV Charging Load in 2025  

                                                
12 Zhang, Markel, and Jorgenson, “Value to the Grid from Managed Charging Based on California’s High 
Renewables Study”; Gavin Bade, “CEC.” 
13 Gavin Bade, “CEC.” 
14 Bedir et al., “California Plug-In Electric Vehicle Infrastructure Projections: 2017-2025.” 
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Greenhouse Gases and Peak Power Generation 
GHG emissions from electricity generation vary across the day due to the temporal variability of 
resources. Solar energy accounts for most of California’s renewable energy portfolio, particularly 
in the middle of the day. During the other periods of the day, California relies on other forms of 
energy, most notably natural gas. Figure 5 below shows the typical fuel mix over the course of the 
day for California.15 
 

 
Figure 5. Average Hourly Electricity Production by Resource in California on July 1, 2018 (CAISO) 

 
California’s generation is provided by thermal (natural gas, coal, oil), hydro, nuclear, renewables, 
and a collection of imports.16 As mentioned in the previous section, daylight, weather, and the 
ability of a resource to be turned on or off also determine when it is used. Wind and solar provide 
zero-carbon electricity in the middle of the day, but they cannot meet demand in the evenings. 
Instead, the grid relies on load-following natural gas and peaker plants because of their ability to 
ramp up and down quickly, but these resources are polluting.17 The GHG and air pollutant 
emissions associated with this evening peak period are significantly higher compared to the 
emissions in the middle of the day when solar energy is abundant.  

 
In other words, the time at which electricity is generated and simultaneously used determines the 
GHG emission impacts. If EVs are charged in the evenings when demand is already high, they 
consume electricity with a high emission factor. Since an EV is roughly equivalent to a full 
household’s demand in a neighborhood, adding an EV can significantly increase overall demand 

                                                
15 This graph reflects the hourly fuel mix used in our model as adapted from CAISO data.  
 “OASIS Database”; “Total System Electric Generation.” 
16 “Total System Electric Generation.” 
17 “Turning Down the Gas in California”; John, “Dueling Charts of the Day.” 
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and thus overall GHG emissions.18 However, if they are charged during periods of solar 
generation, they can limit the emissions associated with their use.19 In order to capture the entire 
environmental benefit of EV growth, charging times must be managed. The ideal charging 
scenario is outlined in Figure 6 below. 
 

 
Figure 6. Ideal Demand Shifting Behavior to Ensure EVs GHG Reduction Potential is Fully Realized  

  

                                                
18 Cook, Churchwell, and George, “Final Evaluation for San Diego Gas & Electric’s Plug-in Electric 
Vehicle TOU Pricing and Technology Study.” EVs consume 12.4kwh/day/EV on average (Zhang).  
19 Certain regions are required to source 25% of their power from natural gas at all times to meet local 
reliability standards (i.e., non-natural gas is far from these locations and sourcing natural gas ensures 
electricity demand is met), while CAISO recommends that 25% of all power at all times be sourced from 
natural gas and dispatchable hydro in order to ensure natural gas and hydro plants continue to be available 
during peak demand. To that end, no matter what time an EV goes on the grid, we assume that it will 
increase GHG load to some degree, at least for the next few years. 
Fero, “Achieving California’s 2030 Renewable Portfolio Standard and Electricity Sector Greenhouse Gas 
Emission Reduction Target”; Brinkman et al., “Low Carbon Grid Study.” 
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Curtailment 
The temporality of solar availability and California’s efforts to reduce GHG emissions from the 
electricity sector has led to a related problem: overgeneration of solar energy. As part of its efforts 
to reduce GHG emissions from the electricity sector, the state has exponentially increased 
renewable energy capacity through a series of ambitious Renewable Portfolio Standards (RPS). 
The most recent RPS requires 50% of California’s retail electricity sales to be sourced from eligible 
renewable energy technologies by 2030, and 100% by 2045.20 
 
Despite the many benefits of California’s high potential for generating solar electricity, California 
utilizes only 10% of existing utility-scale solar generation to meet its electricity demand.21 SCE 
does slightly better than the state as a whole by utilizing 13% of its solar generation.22  

A byproduct of this growth in renewable generation is overgeneration, which occurs when 
renewable energy supply exceeds electricity demand. As mentioned above, this occurs because 
most electricity demand occurs in the evening, while solar is available in the middle of the day. 
For safety reasons, demand must meet supply. Otherwise, the grid becomes unstable and 
unreliable.  
 
To maintain a stable grid, grid operators, primarily the California Independent System Operator 
(CAISO), tell generators to “curtail” their generation, or operate at a lower capacity, when 
overgeneration occurs. Curtailment can occur in two ways: 
 
● Economic curtailment: Another recipient takes the electricity at a low- or negative-price. 
● Self-schedule cuts and exceptional dispatch: CAISO orders generators to reduce output. 

These forms of curtailment are considered “market-based” because the CAISO’s market 
automatically adjusts supply with demand.23 For simplicity, “curtailment” is used within this 
project to refer to any curtailment type. 
 
The problem of curtailment has been steadily worsening, as shown in Figure 7.24 In 2016, 308,000 
megawatt-hours (MWh) of solar and wind energy were curtailed, an increase from 187,000 MWh 
in 2015.25 2017 saw another rise, with 401,500 MWh curtailed; and 461,000 MWh were curtailed 
in 2018.26 At certain times of the year, CAISO curtails between 20% and 30% of solar capacity; 

                                                
20 “RPS Program Overview.” 
21 “Total System Electric Generation”; “California ISO - Managing Oversupply.” 
22 “California ISO - Managing Oversupply”; “2017 Power Content Label.” 
23 “California ISO - Managing Oversupply”; “Impacts of Renewable Energy on Grid Operations.” 
24 “California ISO - Managing Oversupply.” 
25 “California ISO - Managing Oversupply”; “Impacts of Renewable Energy on Grid Operations”; Paulos, 
“Too Much of a Good Thing?” 
26 “California ISO - Managing Oversupply”; Temple, “California Is Throttling Back Record Levels of 
Solar—and That’s Bad News for Climate Goals.” 
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and as more renewables are added to California's grid, oversupply and curtailment will continue 
to increase.27 

 
Figure 7. Wind and Solar Curtailment, January 2016 - February 2019. 

 
This imbalance not only poses stability and reliability risks to the grid, but also represents a 
financial risk to potential developers. Since wind and solar projects have large capital costs but low 
marginal costs, their ability to recover capital expenses depends on maximizing energy output. 
When curtailment occurs, renewable developers lose money by selling less generated energy and 
foregoing the value of production tax credits. If curtailment increases beyond a cost-effective 
point, ~5% of California's renewable energy developers will face a significant risk of being unable 
to pay off loans for existing projects, or secure financing for future projects.28 This may ultimately 
discourage investors and limit the potential for California to source 100% of its electricity from 
carbon free sources by 2045. 
 
If electricity providers continue to increase their renewable energy generation without practical 
storage or demand response solutions, overgeneration and curtailment will continue to occur, 
limiting the amount of potential emissions reductions from the electricity sector.29 Moving EV 
demand to the middle of the day may be able to address this excess supply of renewable energy in 
midday hours. 
  

                                                
27 “Impacts of Renewable Energy on Grid Operations.” 
28 Golden and Paulos, “Curtailment of Renewable Energy in California and Beyond.” 
29 “Renewables Portfolio Standard (RPS).” 



 
 
 

 
 
 

14 

Demand Response 
There are numerous supply and demand interventions that can be used to address overgeneration. 
On the supply side, when demand is low, power can be exported to other states in an Energy 
Imbalance Market at negative prices or curtailed by generators, as discussed in the previous 
section. Both of those solutions tend to be expensive. Energy could also be stored in utility scale 
storage facilities. Battery storage infrastructure has fallen in price and is quickly rising in adoption, 
with most new solar facilities in California being built with storage. But, as of 2019, there are a 
limited number of storage facilities. Utilities could also simply increase supply when demand is 
high, another expensive option. And of course, California could reduce solar energy development, 
but that would also reduce the state’s ability to meet its overall climate goals. 
 
On the demand side, rate structures like Time-of-Use (TOU) and Critical Peak Pricing (CPP) use 
price signals to shape load over time. Additional interventions such as rebates and discounts on 
electricity usage in certain hours can further incentivize customers to change their consumption 
habits in order to meet the balancing requirements of the grid. This demand side management, or 
“demand response,” has traditionally been used as a strategy to reduce load at times of high 
demand, but more recently it has been considered a cost-effective way to shift demand to times 
of renewable overgeneration. The combination of reducing load in periods of high demand while 
simultaneously increasing load in periods of overgeneration is known as load shifting and has 
become an important topic in EV charging discussions.30  
 
Providing the right incentive can influence EV owners to charge their vehicles at times of the day 
in which renewable electricity generation is high. This load shifting helps to utilize a larger 
proportion of the renewable resources that are available, while also reducing the electricity demand 
during periods that experience the highest demand. This demand response management, which 
we call managing charging, is the focus of this project.  
  

                                                
30 “Impacts of Renewable Energy on Grid Operations.” 
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SCE Pilot 
Across California, utilities are looking at optimizing EV charging in order to capitalize on 
renewable energy overgeneration in the middle of the day and increase grid reliability. Since the 
California Public Utilities Commission (CPUC) lifted a 4-year ban on utilities investing in EV 
charging in 2015, numerous EV-charging investment plans have been proposed.31 Through these 
charging plans, rate-based funds are used to support large-scale charger installation.32  
 
In 2016, SCE launched their pilot program, Charge Ready. The program initially sought to 
incentivize the installation of 1,500 EV charge ports at four different long-dwell segments: 
workplaces, destination centers, fleet locations, and MUDs.33 As a requirement of the pilot, site 
hosts were required to choose Electric Vehicle Supply Equipment (EVSE) vendors who provide 
chargers (charge ports) with demand response capabilities. Under this program, SCE installs and 
maintains the electrical infrastructure, while site hosts own and operate the chargers and receive a 
rebate to cover charger installation costs.34 In 2018, SCE entered the second phase of their pilot 
and began calling “demand response events” at Charge Ready sites to explore how chargers may 
be used as a load shifting resource. These demand response events fall into two categories: load 
shift and load reduction, as outlined below. This project, Smart Charge, is designed to complement 
the pilot.35 
 
Load Shift Events 
Load shift events are intended to shift load into a targeted event window (11:00 a.m. - 3:00 p.m.) 
by providing a $0.05 per kWh discount on electricity rates during that time. Demand during these 
events is also excluded from demand charge calculations.36 Half of these events are accompanied 
by “throttling,” or a 50% cut in direct power to chargers in the hours before the event window. 
Load shift events are called during spring (March 1 – May 31) and winter (October 1 – December 

                                                
31 St. John, “California Utilities Seek $1B to Build Out Electric Vehicle Infrastructure.” 
32 St. John. 
“Rate-based funds” are funds collected from rate-payers through their utility bills that are then used to 
support broader programs.  
33 Long dwell-time segments are defined as locations where EVs are typically parked for at least four hours. 
This is adequate time for EV drivers to fully recharge their vehicles. The Charge Ready project also refers 
to these particular long-dwell segments as “non-residential.” While a multi-unit dwelling is technically a 
residential building type (condominiums, apartment buildings, etc.) it is bundled into the non-residential 
market segment as it is not a private, single-home residence. SCE refers to this segment as non-residential 
and we maintain that language. 
 “Charge Ready and Market Education Programs: Pilot Report.” 
34 “Charge Ready and Market Education Programs: Pilot Report.” 
35 “SCE Advice 3773-E, 3773-E-A.” 
36 “SCE Advice 3773-E, 3773-E-A.” 
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31), up to 10 times a year.37 Figure 8 below uses a different target window, but outlines the general 
goal of a load shift event.38  
 

 
Figure 8. Current and Projected Hourly EV Load and Targeted Shift (SCE Pilot) 

 
Load Reduction Events 
Load reduction events are intended to decrease load during the evening peak (4:00 - 9:00 p.m.) by 
providing a $0.10 rebate (bill credit) for each kWh of energy reduced during this event period 
compared to a driver's typical demand. Half of these events may involve 50% throttling during 
the event window to force a reduction in demand. Load reduction events are called in the summer 
(June 1 – September 31), up to 10 times per year.39  
 
Pilot Communication  
In the Charge Ready pilot, there is a disconnect between the EV driver and the SCE customer 
who actually pays for the electricity consumed. The SCE customer is actually the owner of the 
charging site, such as a mall or a workplace, while the EV driver is an individual EV owner. Very 
few site hosts use energy-based fees to charge their drivers, and a large majority of site hosts offer 
EV charging as a perk and do not charge the driver any fee.40 Therefore, the EV driver is insulated 
from price incentives, suggesting that price-based interventions may be less effective than if the 
EV customer was responsible for the entire electricity bill. This gap is further explored in our 
model.   

                                                
37 “SCE Advice 3773-E, 3773-E-A.” 
38 Southern California Edison (SCE), “Charge Ready DR Pilot Overview.” 
39 “SCE Advice 3773-E, 3773-E-A.” 
40 Southern California Edison (SCE), “Charge Ready DR Pilot Overview.” 
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EV Market Segments 
EV charging can be broadly categorized as occurring in two places – at home, or away-from-home. 
The Charge Ready pilot program tries to promote midday charging and increase access to charging 
infrastructure in those market segments that are away from private residences. As such, EV 
charging markets can be broken into two categories – residential and non-residential. Charge 
Ready is focused on the non-residential, long-dwell market segments of workplaces, destination 
centers, fleets, and MUDs. Note that SCE is solely focused on weekday behavior as weekend 
demand tends to be more variable.  

Load Profiles 
Current load profiles are provided for the segments of concern for this project in Figure 9. A 
summary of traditional charging behavior in key segments is also provided below.  
 
Residential: This segment is unique in that it consists of private, single-family homes. The charging 
profile for residential is typically exemplified by a large evening peak on weekdays.41 
 
Destination Centers: This can include a variety of buildings with long dwell-time parking (at least 
four hours) such as hotels, hospitals, sports venues, academic campuses, as well as city and county 
facilities. The charging profile for a destination center has a morning peak and slowly tapers 
throughout the day with minimal evening charging. 

 
Workplaces: This segment includes buildings employees commute. The charging profile for 
workplaces displays a very high morning peak (when employees arrive at work and plug-in their 
vehicles), which plateaus before tapering off after the work day ends. There is also a slight 
afternoon peak, most likely representing employees returning from lunch and plugging in once 
again. 
 
Multi-Unit Dwellings (MUDs): This segment consists of non-single home residences such as 
condominiums, townhomes, or apartment building complexes. The charging profile for a MUD 
is exemplified by a gradual rise from 11:00 a.m. to 6:00 p.m., then peaks around 8:00 p.m. and 
11:00 p.m. before dropping off again. 
 

                                                
41 Bedir et al., “California Plug-In Electric Vehicle Infrastructure Projections: 2017-2025.” 
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Figure 9. EV Charging Profiles - November 2018 
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Customer Charges 
One of the most challenging aspects of incentivizing load shift in non-residential spaces is the lack 
of uniformity around pricing. While the utility may implement a fee schedule, how those fees get 
passed along to drivers varies drastically. Fee schemes take a variety of forms, but they typically 
include one or more of the following:42 

• No fee 
• Fee based on energy used ($/kWh) 
• Fee based on time ($/minute) 
• Fee based on parking 

 
Workplaces, in particular, tend to allow users to charge for free as they consider charging to be an 
employment benefit. In 2017, more than half of sites in the Charge Ready pilot across all segments, 
allowed drivers to charge for free.43 Of those that charged a fee, pricing systems included a fee 
based on time used, a fee based on energy used, some combination thereof, or an unknown fee 
structure.44 

                                                
42 Winn, “Electric Vehicle Charging at Work: Understanding Workplace PEV Charging Behavior to Inform 
Pricing Policy and Investment Decisions.” 
43 Southern California Edison (SCE), “Charge Ready DR Pilot Overview.” 
44 Southern California Edison (SCE). 
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Chapter II. Model Methodology 

General Approach  
The goal of this project is to determine how various interventions affect EV charging behavior. 
To do so, we build an economic model that allows users to enter different inputs (contextual and 
direct interventions) and receive outputs in the form of a new demand profile, as well as details 
on the relevant impacts of that demand on human health, climate change, and the electrical grid. 
Below is an outline of the approach we take to building this model and achieving the project 
objectives: 
  
1) Evaluate 

First, we evaluate what makes EV drivers change their charging behavior (i.e., charge at 
other times of the day) via a thorough literature review. This allows us to fully understand 
the problem, the solutions that exist, and the context for both.  
  

2) Build 
To determine the impacts of a change or shift in charging behavior, we build an economic 
model and implement it in a user-friendly web-based app. Users can input information on 
interventions and context and receive an output in the shape of a new demand profile. 
This new demand profile, when scaled up, can then provide insight into what effect inputs 
have on the electrical grid, climate change, and human health. 

  
3) Compare 

Our model relies primarily on values found in literature, but is also refined using SCE’s 
Charge Ready pilot events. By analyzing the data from these demand response events, and 
more accurately understanding charging behavior within the target market segments, we 
enhance our model. 

  
4) Create 

Our completed model is available as a web-based application. In addition to providing 
SCE with the raw code and data, the app is a user-friendly tool enabling users to choose a 
variety of inputs and see the outcome. It can be run on any computer with an internet 
connection. 
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Model Framework 
The core of this project is an economic model that determines the impacts of a change or shift in 
charging behavior.  

 
Our model uses the elasticity of demand with respect to price in order to predict the demand for 
EV charging at each hour of the day given contextual information and interventions. The output 
generated from the model is a new demand profile that simulates what would happen to electrical 
load given the chosen inputs. This output is then analyzed to determine the implications of the 
intervention, including any changes in GHG emissions or curtailment. 
 
The model relies primarily on values found in literature, but has also been refined using SCE’s 
recent pilot events. The model is designed to allow for a variety of interventions to be tested 
together. It is cumulative, meaning that each intervention is layered on top of one another. 
Interventions can include a discounted price to incentivize more use at a certain time of day, a 
rebate to encourage less use during specific hours, throttling of charger output (direct load 
control), and communications strategies. Figure 10 outlines the simple framework of the model. 
The rest of this chapter provides details on the model inputs and outputs and the application that 
allows users to engage with the model. 

 
Figure 10. Model Framework 
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Model Inputs  
Model inputs are broken into two categories: contextual, or basic background information about 
the context for the scenario or how EV drivers respond to various interventions, and 
interventions, or the inputs tested in the scenario. Table 1 summarizes these inputs and their 
sources. The following two sections detail each input.  
 

 Table 1. Model Inputs 
Input Values Source45 
Contextual   

Market Segment Workplaces, Destination Centers, Fleets, 
MUDs 

SCE 

Baseline Load Profiles Hourly Demand (varies by scenario) Users 
Baseline Price Profiles TOU-EV-4 2018 (Winter, Summer) Users 
Season Summer (June – September), Winter 

(October – May)  
Users 

Technology Level 2 Chargers (6.6 kW) SCE 
Price Elasticities: 
Average 

-0.04 to -0.80 Faruqui et al. 46 

Price Elasticities: Self 12 sets (Table 3) SDG&E Pilot 
Study47 

Communication 
Modifiers: Air Pollution 

8.2% Delmas et al.48 

Communication 
Modifier: Price 

3.5% Jessoe and 
Raspson 49 

Throttling Amount 50%  SCE 
Baseline Number of 
Chargers 

Set by Segment and Season Users 

Theoretical Max Calculated based on # Chargers  Users 
Curtailed Energy Varies by month CAISO 
   

Intervention   
Price  Discount, Rebate, TOU Rate, and Time User 
Throttling Time Time User 
Communication None, Air Pollution, Price User 

  

                                                
45 “User” here denotes inputs that vary based on the scenario run and are thus selected by the model 
operator. 
46 Faruqui et al., “Will Smart Prices Induce Smart Charging of Electric Vehicles?” 
47 Cook, Churchwell, and George, “Final Evaluation for San Diego Gas & Electric’s Plug-in Electric 
Vehicle TOU Pricing and Technology Study.” 
48 Asensio and Delmas, “Nonprice Incentives and Energy Conservation.” 
49 Jessoe and Rapson, “Knowledge Is (Less) Power.” 
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Contextual 
There are a variety of baseline and “contextual” inputs that feed into the model. Each of these 
inputs may be changed for each run of the model.  
 
a) Market Segment and Baseline Load Profiles 
Demand, or load, profiles represent the amount of electricity consumed for EV charging at each 
hour, aggregated as averages per hour per month. The four long-dwell market segments analyzed 
in our model have varying demand profiles that we have extrapolated from SCE’s baseline usage 
data for the sites they have installed chargers at under their initial pilot. The demand profile of 
each market segment is what is manipulated in each model run. It is the starting point, or base 
data, to which we apply interventions.  
 
b) Baseline Price Profile 
The initial rate structure associated with most baseline load profiles in the SCE Charge Ready Pilot 
is TOU-EV-4. This rate is designed for separately metered, EV charging at non-residential facilities 
where monthly load is between 20 and 500 kilowatts (kW).50 The details of the rate structure are 
included in Appendix II. TOU-EV-4 also varies by season (summer, winter). In our model we 
assume all baseline demand had a TOU-EV-4 price schedule.  
 
c) Month 
Our model aggregates data by month. Average month hour data is considered, or the average load 
in any hour in each month. By selecting by month, our model normalizes for the number of 
chargers installed in that month and for variation in charging behavior on any day or week in any 
month. Since most of the behavior change is between seasons and not months, any winter month 
also represents a typical winter month, and similarly for summer. Per SCE’s breakdown, June 
through September are considered summer; and October through May are winter.51 
 
d) Technology 
Our model assumes only Level 2 chargers are in use, and that these chargers have a 6.6 kW power 
rating. Unlike Level 1 Chargers, which operate with standard 120-volt household outlets, Level 2 
Chargers use 240-volt outlets, like the ones used for clothes washers and dryers. Level 2 chargers 
deliver 15-25 miles of range per hour of charging. 
 
e) Price Elasticities 
Our model fundamentally relies on price elasticities to predict the demand for EV charging at each 
hour of the day. Price elasticities reflect the responsiveness of customers to a change in price and 

                                                
50 “SCE Advice Letter 3648-E: Schedule TOU-EV-4.” 
51 January - February are not classified for the pilot, as events are not called during that period. We choose 
to include them as winter.   
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indicate the percentage change in demand that would result from a 1% change in price.52 Negative 
values indicate that as price increases, demand decreases, while positive values indicate that as 
price increases, demand increases. For example, an elasticity of -0.5 means that a 1% increase in 
price would result in a 0.5% decrease in demand. 

 
Elasticity values are affected by the availability of substitutes, the necessity of the good or service, 
as well as the duration of the price change.53 Elasticities can also be short- or long-term. Short-
term elasticities refer to how demand responds to price in the short-term (1-5 years), while long-
term elasticities account for demand responsiveness over longer periods of time (>5 years).54 In 
the energy realm, these values are typically different due to technology adoption. Demand will be 
more elastic in the long-term because individuals have more time to determine how to successfully 
adapt their behavior and to purchase technologies that support a change in demand.55 This model 
relies only on short-term elasticities and does not consider the adoption of new technology. 
 
For EVs, elasticity values are rather uncertain since the market is growing and human response to 
EV charging pricing is not fully understood. EV-focused economists agree that EVs are likely to 
be more elastic, or more responsive to price changes, than other electricity markets.56 How much 
more is still unknown. 
 
This model considers three types of elasticity: average, self, and cross, as examined below. To 
account for a range of possible elasticity values, we use 12 sets of self-elasticities from a residential 
EV charging study, make assumptions about load shifting since we do not have robust cross-price 
elasticities, and use a range of average elasticities estimated for EVs. Until self- and cross- price 
elasticities for all 24 hours of the day for EV long-dwell markets can be estimated empirically, 
these elasticities provide a reasonable proxy for estimating how changes in price over the course 
of the day impact demand. 
 
Due to the uncertainty associated with these numbers, this model uses three different methods to 
incorporate these elasticity values and averages across them. More on this is provided in the Model 
Outputs section below. 
  

                                                
52 Cook, Churchwell, and George, “Final Evaluation for San Diego Gas & Electric’s Plug-in Electric 
Vehicle TOU Pricing and Technology Study.” 
53 Neenan and Eom, “Price Elasticity of Demand for Electricity: A Primer and Synthesis.” 
54 Neenan and Eom. 
55 Neenan and Eom. 
56 Typically, electricity demand is relatively inelastic. In other words, people continue to demand the same 
amount of energy regardless of price. Yet, EVs are a more flexible load and thus, drivers are more likely to 
respond to price.  
Faruqui et al., “Will Smart Prices Induce Smart Charging of Electric Vehicles?” 
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Average Elasticity 
The “average” elasticity refers to how customers respond to a change in the average daily price of 
electricity. Literature suggests that some customers respond to the change in average daily price 
that results from rate changes in any specific hour.57 To that end, this model considers the average 
price elasticity associated with demand for EV charging.  
 
Despite the growing interest in EVs, there is limited information available on average EV 
elasticities. Our model considers a range of average elasticities, from near inelastic (-0.04) to near 
elastic (-0.80).58 These values are drawn from a 2011 study. Faruqui et al. analyzed average 
elasticities associated with non-EV dynamic pricing and TOU rates in over 100 studies and derived 
an elasticity of -0.04. Based on those studies and their understanding of EVs, they estimated a 
wide range of elasticities that could apply to EVs, which we use here. 
 
Self and Cross-Price Elasticities 
Since this model examines EV charging over the course of the day, it must also consider how 
people respond to a price change at any point in the day. In other words, EV drivers choose when 
to charge based on the cost at every hour of the day and the convenience of charging at specific 
hours. For example, a driver might choose to charge at 11:00 a.m. for a price of $0.10/kWh if the 
price at 12:00 is $0.40/kWh, but might choose to wait if the price at 12:00 is $0.05/kWh. “Self-” 
and “cross-” price elasticities account for this relationship.59 Self-elasticities represent the change 
in demand within the hour when there is a price change. Cross-elasticities, or substitution 
elasticities, indicate how demand changes in other hours relative to the change in price at the hour 
of intervention.  
 
These self- and cross- price elasticity values should capture the true flexibility of EV drivers and 
their willingness to substitute EV charging at one time of day for another time of day. 

 
Self-elasticities for this model are taken from San Diego Gas & Electric Company’s (SDG&E) 2-
year Pricing and Technology Study, which investigated how residential EV drivers respond to 
price changes from 2012 to 2013.60 In their 2014 final evaluation of the project, Cook, Churchwell, 
and George calculated price elasticities for residential EV drivers participating in the pilot project. 
 
SDG&E randomly assigned 430 pilot participants to one of three EV TOU rate schedules, each 
with different price ratios between the most expensive (“on-peak”), middle (“off-peak”), and least 

                                                
57 Ito, “Do Consumers Respond to Marginal or Average Price?” 
58  Faruqui et al., “Will Smart Prices Induce Smart Charging of Electric Vehicles?” 
59 Cook, Churchwell, and George, “Final Evaluation for San Diego Gas & Electric’s Plug-in Electric 
Vehicle TOU Pricing and Technology Study”; Neenan and Eom, “Price Elasticity of Demand for 
Electricity: A Primer and Synthesis.” 
60 Cook, Churchwell, and George, “Final Evaluation for San Diego Gas & Electric’s Plug-in Electric 
Vehicle TOU Pricing and Technology Study.” 
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expensive (“super off-peak") rates.61 These three rate schedules also varied seasonally, with 
different summer and winter seasons and associated ratios. Non-residential charging behavior for 
these drivers was not considered. Within this study, the on-peak period ran from 1:00 to 8:00 p.m., 
the off-peak from 9:00 p.m. to midnight, and 6:00 a.m. to noon, and the super off-peak from 1:00 
to 5:00 a.m. These price schedules are in Table 2 below.  
 

Table 2. SDG&E Rate Schedules 

Period SDG&E Study Rates ($/kWh) 
EPEV-L EPEV-M EPEV-H 

Summer Peak $0.25 $0.28 $0.36 
Off-peak $0.16 $0.17 $0.14 
Super Off-peak $0.13 $0.07 $0.06 

Winter Peak $0.17 $0.23 $0.32 
Off-peak $0.16 $0.16 $0.13 
Super Off-peak $0.13 $0.08 $0.07 

 
Drivers’ response to these prices were tracked, which facilitated a calculation of price elasticities, 
as listed in Table 3 below.62 From the SDG&E study, 12 sets of elasticities were reported, since 
there are 6 price schedules and 2 time periods (weekdays and weekends). 
 

Table 3. Self-Elasticities from SDG&E 
Day 
Type Elasticity Summer Winter 

EPEV-L EPEV-M EPEV-H EPEV-L EPEV-M EPEV-H 
Weekday Peak -0.41 -0.37 -0.35 -0.43 -0.38 -0.36 

Off-peak -0.44 -0.41 -0.40 -0.45 -0.42 -0.41 
Super 

Off-peak 
-0.23 -0.27 -0.29 -0.22 -0.26 -0.28 

Weekend Peak -0.47 -0.46 -0.45 -0.48 -0.46 -0.46 
Off-peak -0.46 -0.44 -0.43 -0.46 -0.45 -0.44 

Super 
Off-peak 

-0.26 -0.31 -0.32 -0.25 -0.29 -0.31 

 
While SDG&E reported both self- (or own) and cross-price elasticities, we did not use their cross-
price elasticities. As detailed in the methods outputs below, the values used in this study for cross-
price elasticities do not clearly apply to our non-residential scenario. Instead, our model sets the 
cross-price elasticities to zero and uses the average elasticities and other mathematical tools to 
determine how demand changes in all hours in response to a price change in any one hour.  
 

                                                
61 These ratios are important as they can determine how responsive drivers are to a change in price. When 
this ratio is larger (i.e., there is a larger gap between the peak and off-peak price), demand response is often 
greater. As our model uses all elasticities, we do not directly consider the importance of this ratio. (Hansen, 
Braithwait, and Armstrong, “Statewide Time-of-Use Scenario Modeling for 2015 California Energy 
Commission Integrated Energy Policy Report.”) 
62 Cook, Churchwell, and George, “Final Evaluation for San Diego Gas & Electric’s Plug-in Electric 
Vehicle TOU Pricing and Technology Study.” 
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Since our model considers behavior on a 24-hour scale, we interpolated self-elasticities from these 
three block periods for all hours of the day.  
 
As the idea of managed EV charging behavior is new, very few field studies have analyzed EV 
charging load shifting. There is a full body of literature on how consumers respond to incentives 
attempting to reduce electricity consumption (by turning off appliances or lights). However, EV 
load shifting is interested in shifting, not strictly reducing demand, and we believe EVs are not 
comparable to other home appliances. For that reason, we chose a study with the same goal we 
had, even though our project locations do not align. While only residential charging was studied in 
SDG&E’s program and we are concerned with predominantly commercial usage, interpolating 
elasticities based on the time periods instead of specific hours adjusts for this issue. Moreover, all 
EV drivers owned a residential Level 2 home charger. All drivers owned or leased an electric 
Nissan Leaf, which was equipped to set charging times, as are most electric vehicles.63 SDG&E’s 
study also assume drivers are fully aware of price. This communication scenario is accounted for 
in our communication input, as discussed below. Lastly, SDG&E’s study predominantly involved 
early EV adopters, whose behavior may not fully reflect that of the average EV driver in the future. 
In short, until additional studies can be conducted and elasticities then calculated empirically, the 
SDG&E elasticities offer a viable proxy for self-elasticities.  
 
f) Communication Modifiers 
Communication is an intervention that can have a significant effect on EV driver behavior.64 
Communication signals can notify the end user, the EV driver, as to the status of a dynamic rate 
schedule or a real-time price change. If that driver’s utility offers demand response event 
incentives, such as discounts or rebates to shift EV load, then a communication signal to that 
driver can affect that driver’s price responsiveness, or elasticity. 
  
While we intended to model three communication areas - communications on GHG impacts, 
charging price, and health impacts - to see which one could have the largest impact on EV drivers, 
the literature only yielded reliable data on the impact of price and air pollution communications. 
These values come from studies on residential electricity consumption, as the EV field is too new 
to have robustly studied this effect. 
 
For the impact of price communications, our best proxy comes from a 2014 study of home energy 
use, in which one of the key findings is that informing consumers who are provided with real time 
data on their energy use increases their elasticity of demand.65 This study found that when 
informed about price only (through text, phone and/or email), consumers typically respond 0-7% 
more (average of 3.5%). This price communication modifier is intended to represent the impact 

                                                
63 Tuttle, “Data on Communications of Managed Charging.” 
64 Fischer, “Feedback on Household Electricity Consumption: A Tool for Saving Energy?” 
65 Jessoe and Rapson, “Knowledge Is (Less) Power.” 



 
 
 

 
 
 

28 

of an additional notification about price, i.e., it assumes that drivers already know their baseline 
price schedule. 
 
For the impact of communication on air pollution, our proxy comes from a different 2014 study 
of home energy consumption in a neighborhood in Los Angeles.66 The target population was 
young and technology minded. In a controlled study, messaging about the health and air pollution 
impacts of energy use reduced users' consumption by 8.2% relative to their baseline. Given the 
location and mindset of the study participants we use this value as a proxy for the impact of air 
pollution communication on EV drivers.  
 
g) Throttling Elasticities 
To encourage EV owners to charge during the off-peak period (11:00 a.m. - 3:00 p.m.), a 50% 
reduction in power to the chargers may be implemented during other periods of the day (6:00 - 
11:00 a.m., 4:00 - 9:00 p.m.). This throttling is directly applied as a 50% cut in demand during the 
selected period.  
 
h) Baseline: Number of EVs and EV Chargers 
Each baseline load profile varies based on the number of chargers installed at the time. Including 
the number of chargers in our model allows us to model future load profiles, when there will be 
additional EVs on the road and chargers installed. The model does this first by scaling the baseline 
load profile to a per charger demand profile and then multiplying it by the total number of chargers 
input into the model, resulting in a total load profile.  
 
While users of the model can manipulate this value on their own, we run scenarios based on 
current adoption projections. California has a goal of installing 250,000 chargers by 2025, in order 
to meet the state goal of 5 million ZEVs on the road by 2030.67 As part of this, SCE intends to 
support the development of at least 50,000 chargers by 2025.68  
 
i) Boundary: Theoretical Max  
It is essential to know the exact amount of electricity that could be shifted, and the effects that has 
for the electrical grid, if all chargers were utilized from 11:00 a.m. to 3:00 p.m. as a result of 
effective demand response. We refer to this number as our “Theoretical Maximum.” This 
maximum represents every charger being used during the midday load shift window of 1:00 a.m. 
to 3:00 p.m. and is the absolute upper boundary of demand shift that could be achieved. 
 

                                                
66 Asensio and Delmas, “Nonprice Incentives and Energy Conservation.” 
67 Gavin Bade, “CEC”; “Zero-Emission Vehicles”; “Zero Emission Vehicle (ZEV) Program”; Bedir et al., 
“California Plug-In Electric Vehicle Infrastructure Projections: 2017-2025.” 
68 Griffo, “Edison Shares Vision for Clean Energy Future at Global Summit.” 
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To calculate this, we need the number of chargers, the average power rating for every charger 
(kW), and the amount of time in our window (4 hours). Each model run calculates this per hour 
theoretical maximum using the following formula: 
 

 # Chargers ∗ kW power rating * 1 hour = Theoretical Max (kWh) per Hour 
 

Each model run calculates the theoretical maximum for the entire period as follows: 
 

# Chargers ∗ kW power rating * 4 hours = Theoretical Max (kWh)  
 

Initial calculations considering the current number of chargers installed under the SCE pilot are 
as follows: As of November 2018, the Charge Ready Pilot had a total of 948 Level 2 Chargers 
installed across all four market segments. Table 4 table displays the maximum amount of electricity 
that could be drawn for each hour for each market segment as well as the total across all segments. 
 

Table 4. Theoretical Maximum Electricity Used if all Chargers in the SCE 
Charge Ready Pilot were Used for an Entire Hour 

Market 
Segment 

Installed 
Chargers 

Power 
Rating (kW) 

Theoretical Max 
per hour (kWh) 

Workplace 596 6.6 3,934  
Destination 
Center 234 6.6 1,544  

Fleet 83 6.6 548  
MUD 35 6.6 231  
Total 948 6.6 6,257 

 
In order to find the theoretical max for a 4-hour window, such as the load shift target window, we 
multiply the number of hours by the final Theoretical Max column to see how much electricity 
could be drawn during that timeframe: 
 

SCE Pilot Theoretical Max = 948 Chargers ∗ 6.6 kW power rating ∗ 4 hours = 25,027.2 kWh 
 
Within the model, this theoretical max is used as to bound the amount of energy that could be 
shifted.  
 
j) Curtailed Electricity 
To determine the relevant impacts of managed charging on curtailment, the amount of curtailed 
energy during each seasonal-hour is input into the model. Since specific values for SCE 
overgeneration are confidential, specifically the pricing of curtailed renewable electricity, we use 
CAISO’s 2018 Production and Curtailment data as a proxy. To focus our scope to SCE’s territory, 
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a ratio of SCE’s electricity load (30%) was incorporated into the analysis.69 While there are minor 
differences between California’s aggregated data and SCE’s, they are relatively similar.  
 
For 2018, we use California’s raw production data and curtailment for June 2017 to July 2018. For 
2030, we pull projected curtailment data from literature, specifically from the National Resource 
Energy Laboratory.70 
 
  

                                                
69 This 30% was calculated based on the percent of powerplants serving SCE's territory compared to those 
in California overall.  
US EPA, “Emissions & Generation Resource Integrated Database (EGRID).” 
70 Brinkman et al., “Low Carbon Grid Study”; “Investigating a Higher Renewables Portfolio Standard in 
California”; Zhang, Markel, and Jorgenson, “Value to the Grid from Managed Charging Based on 
California’s High Renewables Study.” 
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Interventions 
The interventions are the specific inputs which are applied in an attempt to manage charging. This 
includes the following: 
● Price: Discount, Rebate, TOU Rate 
● Non-price: Throttling, Communication 

 
a) Price 
Prices are the market signals that induce demand response. The most basic form of time variant 
pricing is a TOU rate, in which rates vary based on the time of day, the type of day (weekday or 
weekend), and even the season. This model considers TOU schedules because of their ability to 
influence EV drivers,71 and because SCE is in the process of rolling out new TOU rates specifically 
for EV drivers.72 
 
The other pricing interventions modelled are discounts and rebates, which are the basis of the 
SCE Charge Ready pilot demand response events and common tools in programs designed to 
change electricity usage. The ability to model these results can prove beneficial when comparing 
them to the demand response event data that we received from SCE. Additionally, we want to 
model a range of price changes in order to view the effect of a smaller or larger discount or rebate. 
Details on the specific values for each of these price interventions are below.  
 
Discount 
The discount encourages customers to use electricity during the target window to capitalize on 
surplus solar energy generated midday. This intervention tries to induce load shift. Under the current 
SCE pilot, it is a $0.05 discount during the load shift window from 11:00 a.m. - 3:00 p.m. For 
example, if this discount is applied to the 2018 TOU EV-4 price structure, the price falls from 
$0.12 to $0.07 per kWh for 11:00 a.m. - 12:00 p.m. and $0.29 to $0.25 for the rest of the hours in 
this window (12:00 - 3:00 p.m.).73 
 
Rebate 
The rebate is a pricing incentive that is intended to induce load reduction during target periods. 
Under the current pilot, SCE provides customers a $0.10 rebate on their electric bill in exchange 
for a reduction in demand between the hours of 4:00 - 9:00 p.m., the load reduction window, 
otherwise known as the time of peak demand.  
  

                                                
71 Cook, Churchwell, and George, “Final Evaluation for San Diego Gas & Electric’s Plug-in Electric 
Vehicle TOU Pricing and Technology Study.” 
72 “SCE Advice 3853-E.” 
73 Sisto, “Existing EV Rate Structures.” 
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TOU Rate 
The majority of Charge Ready participants are on TOU-EV-4, but some are on TOU-EV-3.74 The 
periods associated with these rates “generally confine the lowest-cost charging periods to late-
night hours,” making it difficult for commercial and industrial customers who charge during the 
daytime periods to take advantage of these low evening rates.75 New commercial TOU-EV rates 
will be rolled out in 2019 within SCE’s service territory, which fundamentally change the on-peak, 
off-peak and super off-peak periods to reflect the needs of these customers as well as the grid.76 
The 2019 rate most applicable to Charge Ready sites is TOU-EV-8. The model can explore the 
impact of the difference in TOU rates for 2018 and 2019. All TOU rates are listed in Appendix 
II. 
 
b) Non-price 
Throttling 
Throttling is a technological intervention that directly limits drivers’ ability to charge. Throttling 
reduces the power sent to the EV charger by 50% with the intention of discouraging charging 
during throttling hours and encouraging charging in other periods. This intervention is modelled 
because it is being used as part of the SCE Charge Ready pilot and allows us to analyze the value 
of direct load control. For our model scenarios, we are incorporating throttling in two periods: 
6:00 - 11:00 a.m. and 4:00 - 9:00 p.m. 
 
Communication 
Communication is another critical input that in integrated into our model. A large portion of 
demand response signals are not fully communicated to the end user, the EV driver. The Charge 
Ready pilot, for instance, is limited in its capacity to reach the end user since it can only 
communicate to the site hosts during demand response events. There is no guarantee that the 
hosts are informing EV drivers (whether they are customers, employees, or tenants) of a demand 
response event, or even charging any fee for the charge sessions. SCE does have a Demand 
Response Mobile App,77 but that does not guarantee that every EV driver that might encounter a 
Charge Ready pilot charger is using the app. This model allows us to see what would happen if 
communication was directed to the end user. 
 
The communication notifications options considered are as follows: 

1) None 
2) Communication about Price 
3) Communication about Air Pollution   

                                                
74 “Electric Vehicle Rates, Rebates and Incentives.” 
75 “SCE Advice 3853-E.” 
76 “SCE Advice 3853-E.” 
77 “Demand Response Mobile App.” 
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Model Outputs 
This project seeks to quantify the amount of electricity conserved or shifted as a result of various 
interventions on EV charging behavior. The model also considers the impacts of shifting EV 
charging behavior in terms of GHG emissions, environmental justice, and economic impacts.  

Change in Demand  
To model the change in demand over the course of a day, we first consider the impact of 
communication, then that of price, and finally that of throttling. The final output from this part 
of the model is an average expected change in demand. Figure 11 below outlines this order and 
output. 
 

 
Figure 11. Model Flowchart for Change in Demand 

 
Communication Intervention 
We assume that the effect of communication about a price reaching an EV driver is similar to a 
change in the price. The following formula outlines this modification: 
 

Original Price + (Change in Price * Communication Effect) = Communication Modified Price 
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For example, if there is a $0.05 discount applied between 11:00 a.m. and 3:00 p.m. and we then 
assume all of that discount is being conveyed to the end user (100% communication), then the 
discounted price would be as follows: 
 

$0.29 + (-$0.05 * 1) = $0.24 
 
But, when we incorporate a 20% communication effect (meaning 80% of that price signal does 
not reach the end user), then it is as if only 20% of that discount is conveyed and the resulting 
price is higher: 
 

$0.29 + (-$0.05 * 0.2) = $0.28 
 
Even though a $0.05 discount is being applied to both scenarios above, altering the price with the 
communication effect essentially indicates less of a discount occurs with less communication.  
 
Any communication intervention that occurs in our model is relative to the SDG&E study since 
this is the source of our self-elasticity values. We assume that all the EV drivers in the SDG&E 
study are fully informed because they receive communications and thus have a communication 
modifier value of 1 (or 100%). We also assume that SCE’s communication gap is 96.5%.78 That 
means about 3.5% of the price signal is not being received by the EV driver. 
 
Since communication acts as a price modifier, its impact is incorporated first into our model.  
  

                                                
78 We make this assumption because no price notification is reaching the EV end users. The general 
communication barrier between EV drivers and SCE is not directly quantified in our model, as discussed 
in the assumption and limitations section. 
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Price Intervention & Price Elasticities 
Determining how demand changes in response to price typically only involves the self- and cross-
price elasticities. For EVs, this would require data on the self- and cross-price elasticities at each 
hour of the day, to form a 24- by 24-hour matrix.79 Unfortunately, that information has not been 
estimated in the literature. However, we included this method in the tool we built so if a 24- by 
24-hour matrix becomes available, this method can be run. 
 
Given this data gap, our model takes a different approach to determining how demand changes 
in response to price. Our model focuses on using self-elasticities to determine the change in 
demand in the hours when a price intervention occurs. We then use a variety of methods to 
determine how demand changes in the non-intervention hours. Given the uncertainty around EV 
price elasticities, this model considers three approaches to determining the impact of a price 
change. Through these three methods, we vary the self- and cross-price elasticities, along with the 
average elasticity, to model how demand changes in response to price. By running three methods, 
and then averaging across their results, we represent the range of possible outcomes arising from 
the uncertainty in these elasticity values.  
 
Method 1 assumes that users only respond to a price change in the hour that the price changes 
(intervention hours) and do not change their behavior in the other hours (non-intervention hours). 
In other words, there is no load shifting, and cross-price elasticities are zero. Method 2 assumes 
that users only shift their load based on a price signal, and thus there is no net increase in load. 
Here, there is only load shifting. And, lastly, Method 3 assumes that users change their behavior 
in response to price changes in the intervention hours and how that changes the average price 
over the day. A summary of these methods is provided in Table 5 below.  
  

                                                
79 When developing that matrix, elasticities must be found for each hour. Extrapolating individual hour 
elasticities from other time categories (such as taking the periods of the day and extrapolating to a 24-hour 
scale) may overestimate the relationship between price changes during periods of low demand, like the 
middle of the night, and periods of high demand. 
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Table 5. Price Intervention Methods.  
Method Steps 

Find load change 
in… 

Step Details Potential 
Load Outputs 

Assumptions 

1 1. Intervention Hours Self-elasticities Change: Yes  
Shift: No 

When price changes at 
any hour of the day, 
demand only changes 
in that hour 

2. Non-Intervention 
Hours 

Assume zero 

3. The Entire Day Sum of Change in 
intervention and non-
intervention hours  

2 1. Intervention Hours 
 

Self-elasticities 
 

Change: No 
Shift: Yes 

A change in price at 
only one or some hours 
of the day leads to a 
shifting of demand so 
that net demand is zero 

2. The Entire Day Assume zero 
3. Non-Intervention 
Hours 

Equal to the value 
needed to maintain 
zero net change in 
load, given the self-
elasticities 

3 1. Intervention Hours Self-elasticities Change: Yes 
Shift: Yes 

When price changes at 
any of the day, demand 
in that hour responds 
to that price change; 
demand in all other 
hours responds in a 
way to ensure that the 
average elasticity 
remains true 

2. The Entire Day Average elasticity 
3. Non-Intervention 
Hours 

Equal to the value 
needed to maintain 
the net load set by the 
average elasticity 
given the self-
elasticities 

 
The following explains each of these methods and how they are incorporated into one output. 
One example (Workplaces, November 2018 Baseline Load and Chargers, 2018 TOU-EV-4, 
Weekdays Only, $0.05/kwh Discount from 11:00 a.m. - 3:00 p.m., No Throttling, No Air 
Pollution or Price Communication) is provided for each method to highlight how they vary. These 
examples are listed after each method description. 
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Method 1 
This method assumes that a change in price in an hour only impacts demand at that hour and has 
no spillover effect into other hours. Here, we use the self-elasticities to determine the change in 
demand during the hours when price changes, and assume the cross-price elasticities are zero. 
Since cross-price elasticities are not considered and all self-elasticities are negative, this method 
will always lead to a net increase in load. 
 
In our model, this method draws from the 12 elasticities reported in the SDG&E study (Table 3). 
This method weights those sets of elasticities equally. Thus, this method yields 12 potential new 
demand curves. 
 
Step 1. Find Change in Demand in Individual Intervention Hours 
We first find the percent change in demand at each hour due to the percent change in price at that 
hour using the self-elasticities: 
 

%∆$% = 	 (%,% ∗ %∆*%	 
+ℎ-.-	 

%∆$% = /-.0-12	0ℎ314-	51	6-7316	51	ℎ89.	5 
	%∆*% = /-.0-12	0ℎ314-	51	/.50-	51	ℎ89.	5 

(%,% = -:3;25052<	8=	6-7316	51	ℎ89.	5	+52ℎ	.-;/-02	28	3	/.50-	0ℎ314-	51	ℎ89.	5	(;-:= − -:3;25052<) 
 
We then find the actual change in demand by multiplying that percentage change by the initial 
demand, as follows:  
 

∆$% = %∆$% ∗ $A,%	
 

+ℎ-.- 
∆$% = 0ℎ314-	51	6-7316	51	ℎ89.	5 

%∆$% = /-.0-12	0ℎ314-	51	6-7316	51	ℎ89.	5 
$A,% = 515253:	6-7316	51	ℎ89.	5 

 
Step 2. Assume Change in Load in All Non-intervention Hours is Zero 
Since we assume the cross-price elasticity is zero, there is no change in demand in non-intervention 
hours. 
 
Thus, the total change in daily demand is the sum of the change in demand in our intervention 
hours. 
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Method 1 Example 
Step 1. Find Change in Demand in Individual Intervention Hours 
When lowering the price from 11:00 a.m. - 3 p.m. by $0.05 and use the self-elasticities from Table 3, the 
following changes in demand will be seen in these hours: 
 

%∆$%B,CD = 	−0.42 ∗ −55.6% = 23% 
%∆$%B,CL = 	−0.38 ∗ −45% = 	17% 
%∆$%B,CP = 	−0.38 ∗ −45% = 17% 
%∆$%B,CQ = 	−0.38 ∗ −45% = 17% 

 
Assuming all hours started with the initial demands listed below, the magnitude of demand will change as 
follows: 
 

∆$CD = 	0.23 ∗ 407 = 94	STℎ 
∆$CL = 	0. 17 ∗ 459 = 78	STℎ 
∆$CP = 	0. 17 ∗ 563 = 96	STℎ 
∆$CQ = 	0. 17 ∗ 290 = 49	STℎ 

 
Step 2. Assume Change in Demand in All Non-intervention Hours is Zero 
Since the price does not change at hours 3:00 p.m. - 11:00 a.m., there is no percent change in demand in 
these 20 non-intervention hours. 
 
Thus, our total change in demand is only contingent on the intervention hours and would be as follows:  
 

∆$CDUCQ = 	94 + 78 + 96 + 49	 = 317	STℎ 
 
The blue line in Figure 12 below demonstrates this change.  
 

 
Figure 12. Method 1 Example Result 
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Method 2 
Method 2 again uses the self-elasticities from the literature and assumes all cross-elasticities are 
zero, but it goes one step further than Method 1 and assumes that all load is shifted. In other 
words, this method builds in the assumption that there is zero change in daily load. This is done 
by using the self-elasticities to determine the change in load in the target window and then 
distributing that change across the other hours of the day based on the initial load profile. Thus, 
we treat the intervention hours (when a price change occurs) differently from the non-intervention 
hours (when a price change does not occur). The following details the steps in this method. 
 
In our actual model, this method is also run with 12 sets of self-elasticities and thus yields 12 
potential new demand curves.  
 
Step 1. Find Change in Demand in Individual Intervention Hours 
As in Method 1, we use the self-elasticities as follows to find the percent change in demand:  
 

%∆$%B,% = 	 (%,% ∗ %∆*%	 
 

+ℎ-.- 
%∆$%B,% = /-.0-12	0ℎ314-	51	6-7316	51	512-.W-12581	ℎ89.	5 

	%∆*% = /-.0-12	0ℎ314-	51	/.50-	51	512-.W-12581	ℎ89.	5 
(%,% = -:3;25052<	8=	6-7316	51	ℎ89.	5	+52ℎ	.-;/-02	28	3	/.50-	0ℎ314-	51	ℎ89.	5	(;-:= − -:3;25052<) 

 
We find the actual change in demand by multiplying that percentage change by the initial demand: 
 

∆$%B,% = %∆$%B,% ∗ $A,%B,%	
 

+ℎ-.- 
∆$%B,% = 0ℎ314-	51	6-7316	51	512-.W-12581	ℎ89.	5 

%∆$%B,% = /-.0-12	0ℎ314-	51	6-7316	51	512-.W-12581	ℎ89.	5 
$A,%B,% = 515253:	6-7316	51	512-.W-12581	ℎ89.	5 

 
Step 2. Find Change in Demand in All Intervention Hours  
We then sum those results to find the total change of demand in all intervention hours:  
 

∆$%B,X = 	Y∆$%B,% 
+ℎ-.-	 

∆$%B,X = 2823:	0ℎ314-	51	6-7316	51	512-.W-12581	ℎ89.; 
∆$%B,% = 0ℎ314-	51	6-7316	51	512-.W-12581	ℎ89.	5 

 
Step 3. Assume Net Change in Demand is Zero. 
 
Step 4. Determine Change in Demand in All Non-intervention Hours 
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Since we assume that the net change in load is zero, any change in demand in the intervention 
hours must have a corresponding change in demand in non-intervention hours. For example, if 
demand increased in the intervention hours as a result of a price decrease in the intervention hours, 
then demand must decrease by a corresponding amount across the non-intervention hours. Thus, 
the change in all non-intervention hours is as follows:  
 

∆$%B,X + ∆$ZB,X = 0 
∆$ZB,X = 0 −	∆$%B,X 

+ℎ-.-	 
∆$%B,X = 2823:	0ℎ314-	51	6-7316	51	512-.W-12581	ℎ89.; 

∆$ZB,X = 2823:	0ℎ314-	51	6-7316	51	181	512-.W-12581	ℎ89.; 
 
Step 5. Determine Change in Demand in Individual Non-intervention Hours 
From the total change in load in non-intervention hours, we find the change in demand in 
individual non-intervention hours. We assign a portion of total change in load to each hour based 
on how much load that hour represents across the non-intervention hours in the baseline scenario. 
In other words, we maintain the general load curve in non-intervention hours. The following 
formula outlines this for one non-intervention hour: 
 

∆$ZB,% = ∆$ZB,X ∗
$A,ZB,%
$A,ZB,X

	 

+ℎ-.-	 
∆$ZB,% = 0ℎ314-	51	6-7316	51	181	512-.W-12581	ℎ89.	5 

∆$ZB,X = 2823:	0ℎ314-	51	6-7316	51	181	512-.W-12581	ℎ89.; 
$A,ZB,% = 515253:	6-7316	51	181	512-.W-12581	ℎ89.	5 

$A,ZB,X = 2823:	515253:	6-7316	51	181	512-.W-12581	ℎ89.; 
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Method 2 Example 
Step 1. Find Change in Demand in Individual Intervention Hours 
As this is the same methodology as that used in Method 1, we would see the same results in our example. 
When lowering the price in hours 11:00 a.m. to 3:00 p.m. by $0.05, demand changes by 23% from 11:00 
a.m. to 12:00 p.m. and 17% in each hour between 12:00 and 3:00 p.m. 
 
Step 2. Find Change in Demand in All Intervention Hours  
As in Method 1, our total change in demand in the intervention hours is 317 kWh.  

 
Step 3. Assume Net Change in Demand is Zero. 

 
Step 4. Determine Change in Demand in All Non-intervention Hours 
As the change in intervention hours is +317 kWh, the change in our non-intervention hours is -317 kWh. 
 
Step 5. Determine Change in Demand in Individual Non-intervention Hours 
In our example, we can determine the percentage of load at each hour and then determine the change in 
load at each of these hours. Examples of how this can be done for three non-intervention hours are 
listed:  
 

∆$ZB,C = −317 ∗ 0.004 = 	−1.27	STℎ 
∆$ZB,[ = −317 ∗ 0.11 = 	−35.50	STℎ 
∆$ZB,CC = −317 ∗ 0.225 = 	−71.33	STℎ 

 
These changes can be seen in Figure 13 below. 
 

 
Figure 13. Method 2 Example Result 
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Method 3  
Like Methods 1 and 2, Method 3 considers the self-elasticities from the literature and considers the 
cross-elasticities to be zero. However, it also uses the average elasticity to determine the net change in 
load. Self-elasticities determine the load increase in the intervention window, while the average 
determines the net change over the day. Together these values allow us to find the change in the non-
intervention window.  
 
In our actual model, this method is run with 12 sets of self-elasticities and average elasticities ranging 
from -0.04 to -0.85 in increments of -0.01.  
 
Step 1. Find Change in Demand in Individual Intervention Hours 
We use the same self-elasticity method as Methods 1 and 2 to find the change in demand (percentage 
and magnitude) in the intervention hours: 
 

%∆$%B,% = 	 (%,% ∗ %∆*%	 
+ℎ-.- 

%∆$%B,% = /-.0-12	0ℎ314-	51	6-7316	51	512-.W-12581	ℎ89.	5 
	%∆*% = /-.0-12	0ℎ314-	51	/.50-	51	512-.W-12581	ℎ89.	5 

(%,% = -:3;25052<	8=	6-7316	51	ℎ89.	5	+52ℎ	.-;/-02	28	3	/.50-	0ℎ314-	51	ℎ89.	5	(;-:= − -:3;25052<) 
 

∆$%B,% = %∆$%B,% ∗ $A,%B,% 
+ℎ-.- 

∆$%B,% = 0ℎ314-	51	6-7316	51	512-.W-12581	ℎ89.	5 
%∆$%B,% = /-.0-12	0ℎ314-	51	6-7316	51	512-.W-12581	ℎ89.	5 

$A,%B,% = 515253:	6-7316	51	512-.W-12581	ℎ89.	5 
 
Step 2. Find Change in Demand in All Intervention Hours  
We then sum those results to find the total change of demand in all intervention hours:  
 

∆$%B,X = 	Y∆$%B,% 
+ℎ-.-	 

∆$%B,X = 2823:	0ℎ314-	51	6-7316	51	512-.W-12581	ℎ89.; 
∆$%B,% = 0ℎ314-	51	6-7316	51	512-.W-12581	ℎ89.	5 

 
Step 3. Determine Total Daily Change in Demand 
Unlike in Method 2, we do not assume the change in demand over the course of the day is zero. 
Instead, we assume that the average elasticity associated with EV charging determines the total change 
in demand over the course of the day.  
 

%∆$X = 	(\ ∗ %∆*\ 
+ℎ-.- 
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%∆$X = /-.0-12	0ℎ314-	51	6-7316	8W-.	2ℎ-	-125.-	63< 
%∆*\ = /-.0-12	0ℎ314-	51	635:<	3W-.34-	/.50- 

(\ = 3W-.34-	-:3;25052<	8=	6-7316	8W-.	2ℎ-	-125.-	63< 
 

To determine that percent change in demand, we need the percent change in average price as a result 
of the intervention. This is found by determining the average price paid for each kW of electricity 
consumed under the initial price and load schedule, as detailed below:  
 

%∆*\ =
*C − *A
*A

 

*C =
]15253:	*.50-	32	^30ℎ	_89. ∗ ]15253:	`-7316	^30ℎ	_89.

a823:	`35:<	`-7316 =
∑ ($A,% ∗ *C,%)DP
%cC

∑ $A,%DP
%cC

 

*A = 	
d-+	*.50-	32	^30ℎ	_89. ∗ ]15253:	`-7316	^30ℎ	_89.

a823:	`35:<	`-7316 =
∑ ($A,% ∗ *A,%)DP
%cC

∑ $A,%DP
%cC

	 

	+ℎ-.- 
%	∆*\ = 0ℎ314-	51	635:<	3W-.34-	/.50- 
*C = 3W-.34-	/.50-	+52ℎ	512-.W-12581	 

*A = 3W-.34-	515253:	/.50- 
$A,% = 515253:	6-7316	32	ℎ89.	5	51	STℎ 
*A,% = 515253:	/.50-	32	ℎ89.	5	51	$/STℎ 

*C,% = 512-.W-12581	/.50-	32	ℎ89.	5	51	$/STℎ 
 
From the percent change in price, we can find the percent change in demand using our standard 
elasticity equation, as listed above.  
 
From our percent change in demand, we calculate the magnitude of the daily change in demand:  
 

∆$X = %∆$X ∗ $A,X 
+ℎ-.- 

∆$X = 0ℎ314-	51	6-7316	8W-.	2ℎ-	-125.-	63< 
%∆$X = /-.0-12	0ℎ314-	51	6-7316	8W-.	2ℎ-	-125.-	63< 

$A,X = 515253:	6-7316	8W-.	2ℎ-	-125.-	63< 
 
Step 4. Determine Change in Demand in All Non-intervention Hours 
From the daily change in demand due to the average elasticity and the total change in demand in the 
intervention hours, we can determine how much load must change in the non-intervention hours, 
using the same method as that in Method 2. Thus, the change in all non-intervention hours is as 
follows: 
 

∆$%B,X + ∆$ZB,X = ∆$X 
∆$ZB,X = ∆$X −	∆$%B,X 
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+ℎ-.-	 
∆$%B,X = 2823:	0ℎ314-	51	6-7316	51	512-.W-12581	ℎ89.; 

∆$ZB,X = 2823:	0ℎ314-	51	6-7316	51	181	512-.W-12581	ℎ89.;	 
∆$X = 2823:	0ℎ314-	51	6-7316	8W-.	2ℎ-	-125.-	63< 

 
Step 5. Determine Change in Demand in Individual Non-intervention Hours 
We can use the same process as in Method 2 to find the change in individual non-intervention hours. 
We want to know how much of the total change in load in non-intervention hours can be assigned to 
each non-intervention hour. We assign this load to each hour based on how much load that hour 
represents across the non-intervention hours before the intervention. Thus, we maintain the general 
load curve in non-intervention hours. The following formula outlines this for one non-intervention 
hour.  
 

∆$ZB,% = ∆$ZB,X ∗
$A,ZB,%
$A,ZB,X

	 

+ℎ-.-	 
∆$ZB,% = 0ℎ314-	51	6-7316	51	181	512-.W-12581	ℎ89.	5 

∆$ZB,X = 2823:	0ℎ314-	51	6-7316	51	181	512-.W-12581	ℎ89.; 
$A,ZB,% = 515253:	6-7316	51	181	512-.W-12581	ℎ89.	5 

$A,ZB,X = 2823:	515253:	6-7316	51	181	512-.W-12581	ℎ89.; 
 
 



 
 
 

 
 
 

45 

Method 3 Example 
Step 1. Find Change in Demand in Individual Intervention Hours 
As this is the same methodology as that used in Methods 1 and 2, we see the same results in our example. 
When lowering the price in hours 11:00 a.m. to 3:00 p.m. by $0.05, demand changes by 23% from 11:00 
a.m. to 12:00 p.m. and 17% in each hour between 12:00 and 3:00 p.m. 
 
Step 2. Find Change in Demand in All Intervention Hours  
As in Method 1 and 2, our total change in demand in the intervention hours is 317 kWh.  
 
Step 3. Determine Total Daily Change in Demand 
In our example, our average elasticity is –0.4 and our average percent change in price is –15.9%. Thus, we 
can determine the percent change in demand over the entire day as follows:  
 

	%∆$X = −0.4 ∗ 	−.159 = 6% 
 
That percent change in demand can be translated into a magnitude of change in daily demand:  
 

∆$X = 0.06 ∗ 5830 = 350	STℎ 
 
Step 4. Determine Change in Demand in All Non-intervention Hours 
The change in non-intervention hours is the difference between the daily and intervention hour totals: 
 

∆$ZB,X = 350 − 317 = 43	STℎ 
 
Step 5. Determine Change in Demand in Individual Non-intervention Hours 
We can then determine the change in load at each non-intervention hour based on the percentage of load 
each hour is responsible for. A few hours are listed below to elucidate this relationship: 
 

∆$ZB,C = 43 ∗ 0.004 = 	0.17	STℎ 
∆$ZB,[ = 43 ∗ 0.11 = 	4.86	STℎ 
∆$ZB,CC = 43 ∗ 0.225 = 9.68	STℎ 

 

 
Figure 14. Method 3 Example Result 
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Final Average 
Our model weights each of these methods equally, regardless of the number of underlying 
elasticities they may consider. Through a Monte Carlo simulation, we run each method 33.3% of 
the time. For each full model run, we run our simulation 1000 times. We then average the results 
from the three methods. Our final results present the averaged output from the three methods. 
Through our application, discussed below, users can further look into the trends associated with 
each method.  
 
Figure 15 below shows the change in demand for this scenario and all methods for our featured 
example. 
 

 
Figure 15. Methods 1-3 Example Result 
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Throttling Intervention 
Throttling is layered onto the demand profile produced by a price modification. Throttling is a 
direct cut to the power available during a set hour. To that end, 50% throttling directly cuts the 
kWh demanded during the throttling window, as outlined in the following equation: 
 

Baseline Demand (kWh) * 0.50 = Demand with Throttling  
 
We considered applying throttling to the elasticities, but found an attempt to incorporate throttling 
into the model severely overestimated its value, as compared to SCE’s pilot. See discussion under 
model refinement below. Throttling is also applied to each method before it is averaged with the 
other three methods, so our model produces a final averaged output, not an averaged output that 
we then modify.  
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Curtailment Impact 
To determine the relevant impacts of managed charging on curtailment, the change in energy 
demanded is compared to the theoretical maximum curtailment reduction. Curtailment can occur 
from 8:00 a.m. to 6:00 p.m., so we must look at it over this period. First, we determine what 
percentage of the change in load could come from solar energy. To be conservative, we assume 
that the percentage of marginal solar energy will be the same as that in the total fuel mix. For 
example, if solar energy accounts for 30% of the baseline load at 10:00 a.m., then solar will also 
account for 30% of any change in demand. These solar percentages were drawn from the fuel mix 
discussed in the subsequent section.  
 
In one place we varied our methodology. In 2018, we assume that 75% of any change in demand 
during the 11:00 a.m. to 3:00 p.m. window comes from solar energy.80 We made this assumption 
since we know that curtailment values during this period are large and additional load will 
predominantly come from solar. In 2030, we did not need to make this assumption as solar is 
already forecast to provide at least 70% of energy. 
 
To determine the modelled change in curtailment, we multiply the change during our target 
window by the percent of solar as follows: 
 

% Solar * Change in Load (kWh) = Modelled Change in Curtailment at Each Hour 
 
If this number is positive, then curtailment is reduced; if negative, curtailment is exacerbated. We 
then compare this number to the theoretical maximum change in curtailment calculated as part of 
our inputs. The theoretical maximum represents the total curtailed energy that could theoretically be 
avoided. In other words, it is the upper bound of any change in curtailment that our modelled 
scenario can cause. If the modelled change in curtailment is less than the theoretical, then the 
modelled change represents the change in curtailment. If the modelled change is more than the 
theoretical maximum, than the theoretical maximum is substituted in and represents the change 
in curtailment. The equations below outline this relationship: 
 

If Modelled Change in Curtailment < Theoretical Maximum Change in Curtailment:  
Change in Curtailment = Modelled Change in Curtailment  

 
If Modelled Change in Curtailment > Theoretical Maximum Change in Curtailment:  

Change in Curtailment = Theoretical Maximum Change in Curtailment  
 

                                                
80 More on this numerical breakdown can be found in the GHG emission section below. In general, this 
number is based on the assumption that any change in energy from 11:00 a.m. to 3:00 p.m. will 
predominantly involve turning on or off solar, but since natural gas is also a load-following resource, it will 
likely be manipulated to meet this load as well.  
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Our model reports the impact on curtailment as a percent, not a magnitude (i.e., the percentage 
reduction in curtailment). 
 
Our model also seeks to make a rough estimate of the financial benefit associated with reducing 
curtailment. The cost of curtailing energy, for the utility, varies based on the reason for curtailment 
and the market. When curtailment requires paying electricity generators not to produce electricity, 
CAISO allows costs to go as high as $150/MWh, or $0.15/kWh.81 In other words, generators 
agree to curtail their electricity based on a bid up to that value. This value was set at such a high 
point as an attempt to ensure that wind generators who receive tax credits for generating power 
are also incentivized to curtail energy when required.82 This value does not fully capture the cost 
of curtailment. In some instances, it may overestimate the cost and in others it may underestimate 
the cost. However, it is our best proxy value. We can use that number as follows to estimate the 
savings from reducing curtailment or costs from exacerbating it:  
 

Curtailment Cost * Change in Curtailment (kWh) = Impact ($)   

                                                
81 Wells, “Self-Schedules Bid Cost Recovery Allocation and Bid Floor Addendum to Draft Final Proposal”; 
“Self-Schedules Bid Cost Recovery Allocation and Lower Bid Floor Draft Final Proposal: Comments from 
DMM.” 
82 Bird, Cochran, and Wang, “Wind and Solar Energy Curtailment.” 



 
 
 

 
 
 

50 

Customer Cost 
Our model also considers the impact of shifting demand on customer costs. To do so, we 
determine how much site hosts paid for charging under the baseline scenario and then how much 
they would pay under the modelled scenario. We apply the following formula at each hour and 
then sum the values across all hours:  
 

Demand (kWh) * Price at That Hour ($) = Customer Cost at That Hour ($)  
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Greenhouse Gases and Air Pollution 
Currently, most of the electricity generated in the middle of the day in California comes from solar 
resources, while a mix of natural gas, hydro, nuclear, imports, and other renewables supply power 
during the rest of the day.83 Since energy resources vary over the course of the day, this means that 
GHG and air pollution emissions associated with that generation also varies at different times of 
the day.  
 
Given the variability in fuel supply over the day, we are interested in understanding the emissions 
associated with generating a unit of electricity (kWh) for customers within SCE’s territory at each 
hour of the day. In other words, we want to know the annual average hourly “emission factor.” 
The GHG electricity emission factor is defined as the amount of GHG emissions per unit of 
generation measured in metric tons carbon dioxide equivalent per megawatt hour of electricity 
generation (MT CO2eq/MWh).84 The air pollution emission factor is defined as the amount of 
NOx released per unit of generation measured in metric tons of NOx per megawatt hour of 
electricity generation (MT NOx/MWh). With these hourly emissions factors we can complete the 
following key elements in our research: 
 

• Estimate baseline emission levels associated with EV charging behavior in SCE’s territory.  
• Quantify the change in emissions after applying different interventions. 
• Quantify the financial impact of a change in emissions. 

 
We are specifically interested in GHG emissions because one of the goals of EVs is a reduction 
in GHG emissions. We are also interested in NOx emissions because we want to understand the 
impact of changing EV driving behavior on air pollution. NOx contributes to the creation of smog 
and acid rain. Inhalation of these smog particles can worsen lung function, exacerbate asthma and 
respiratory diseases, and even lead to premature death.85 NOx is the primary air pollutant 
associated with the combustion of natural gas, and the main fossil fuel currently used in California. 
For that reason, this model uses NOx as its primary indicator of air pollution impacts.  

 
The following sections outline how we find hourly emissions factor and how they are used to 
provide emissions outputs.  
 
Finding an Hourly Emission Factor 
Many factors affect electricity’s emissions factors, including the quantity and fuel source of the 
electricity. The electricity emissions factor for the SCE service territory depends on the percentage 
of electricity from each source and emissions factor of each source in a given year.  

                                                
83 “2017 Annual Report on Market Issues and Performance.” 
84 Anders, Silva-Send, and Gu, “Estimating Annual Average Greenhouse Gas Emission Factors for the 
Electric Sector: A Method for Inventories.” 
85 “Levelized Cost of Energy 2017.” 
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We need to determine the fraction of electricity supplied by each fuel source (natural gas, solar, 
etc.) at each hour, and then generate a total emissions factor for each hour by weighting each fuel 
source’s emissions factor based on its fraction of the supply. The equation below outlines this 
formula for an example hour:  
 
_89.:<	^75;;581	g3028. = 	h9//:<	g.302581C ∗ ^gC + ⋯+ h9//:<	g.302581j ∗ ^gj		 

 
To find our 24 hourly emission factors, we had to determine the hourly fuel mix and the emission 
factors for each resource. The following two sections detail these calculations. Since our model is 
intended to calculate impacts for both 2018 and 2030 and we expect grid resources to change over 
this period, we determine a fuel mix and emission factors for both years. Appendix III lists the 
hourly supply fractions. 
 
SCE 2018 Fuel Mix: Supply Fractions 
Since SCE’s current hourly fuel mix is not publicly available, we adapt publicly available data on 
the entire state’s fuel mix. CAISO reports the amount of each fuel used at each hour of the day 
across the entire state.86 From that data, we calculate the percentage of each fuel used at each hour. 
We assume that SCE, whose territory accounts for roughly one-third of all electricity demand in 
the state, has a similar hourly fuel mix.  
 
The CAISO numbers, however, lack sufficient detail for us to determine all resources. As of 2017, 
29% of California’s power is imported from the north- and south-west.87 CAISO lists power 
imported as “imports,” without providing details on what fuel resources provide this imported 
power. We use the California Energy Commission’s 2017 breakdown of imported fuel resources 
to determine the fraction of imports coming from each fuel resource.88 Together the CAISO and 
CEC data provide a good estimation of the hourly fuel mix.  
 
Yet, a significant portion of the overall electricity supply still cannot be traced to its original fuel 
sources and is categorized as “unspecified source of power.”89 This poses a challenge for 
determining relevant emission factors, as discussed below.  
 
SCE 2030 Fuel Mix: Supply Fractions 
Since an SCE specific 2030 projected fuel mix is not readily available, we adapt the National 
Renewable Energy Lab’s (NREL) projections for California’s 2030 fuel mix.90 We consider two 
projections: diverse and conservative. While both scenarios are projected to meet California’s RPS 

                                                
86 “OASIS Database.” 
87 “Total System Electric Generation.” 
88 “Total System Electric Generation.” 
89 California Public Utilities Code Section 398.2(a), (c), & (d). 
90 Brinkman et al., “Low Carbon Grid Study.” 
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goals, the diverse scenario assumes even more renewables will be integrated and accompanied by 
battery storage.  
 
The following summarizes the two scenarios:  
 

• Due to the expected decommissioning of Diablo Canyon Power Plant in 2026, in-state 
nuclear generation disappears; however, California is expected to continue to import 
nuclear energy. 

• Energy from oil and coal are excluded in 2030 in both projected fuel mix. As California 
shifts to a zero-carbon fuel mix, this most polluting technologies will be displaced first.  

• Both scenarios include natural gas, and project that natural gas generation will be needed 
through at least 2030 to aid grid stability and flexibility.91 Our conservative scenario still 
assumes a minimum of 25% local natural gas generation in each hour to address flexibility 
and local capacity requirement concerns in California.92 The diverse scenario does not have 
this assumption built in, but still sees natural gas percentages ranging from 18-25% in most 
hours. However, natural gas is not used from 9:00 a.m. to 4:00 p.m. in our diverse scenario. 
High renewable penetration with imports in the diverse scenario will satisfy electricity 
demand during these daylight hours.  

• A minimum of 1.5 GW of battery storage is required in both scenarios to meet California 
Public Utility Commission’s requirements.93 Based on the literature, we expanded the 
diverse fuel mix to 3.5 GW to increase dispatch flexibility during high demand periods. 

 
The differences across scenarios can be seen in Figures 16 and 17 below.  

                                                
91 “Turning Down the Gas in California.” 
92 Local capacity requirements are very important for ensuring grid reliability and currently met through 
natural gas. The literature projects that utility scale batteries can address grid flexibility issues (ramping up 
and down) and substantially reduce gas plant usage.   
“Turning Down the Gas in California.” 
93 “Decision 13-10-040: Decision Adopting Energy Storage Procurement Framework and Design 
Program.” 



 
 
 

 
 
 

54 

 
Figure 16. 2030 Hourly Fuel Mix Projection for 12:00 - 1:00 p.m. 

 

 
Figure 17. 2030 Hourly Fuel Mix Projection for 6:00 - 7:00 p.m., a peak demand hour 

 
For our model, we use the conservative fuel mix to account for our baseline GHG and air quality 
hourly emissions. We use the diverse fuel mix to account for our marginal GHG and air pollution 
emissions. In short, we assume that our marginal power is more renewable than our baseload, an 
idea we also use for our 2018 calculations. 
 
As NREL’s projected fuel mix uses slightly different categories than those set by CAISO and thus 
used for our 2018 calculations, we had to modify the fuel mixes from NREL. We re-categorized 
wind, solar PV, and solar thermal as renewables, and combustion turbine, combined cycle, and 
combined heat and power as natural gas. 
 
2018 and 2030 Supply Emission Factors 
As this model is concerned with electricity generated to serve SCE’s customers, we need emissions 
factors for the electricity actually generated within SCE’s territory. For example, we want to know 
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the emissions associated with natural gas generated in SCE’s territory, not any generic natural gas 
plant. Yet, we are unable to obtain precise, internal emission factors. Instead, we use reliable data 
sources to generate a proxy. These proxies provide a more location specific number than a generic 
emission factor associated with each fuel resource, but caution should be used when taking them 
out of this context.  
 
To determine the emissions factor from each fuel, we use data on the emissions and net generation 
at each plant serving SCE territory. Our basic methodology involves dividing the total emissions 
reported from plants in each fuel source by the total electricity generated by that fuel source. The 
equation below outlines this process for the GHG emission factor:  
 

^75;;581	g3028.	 k
lmD	-n	oa
oTℎ

p =
^75;;581;	[lmD-noa]
d-2	s-1-.32581	[oTℎ]

 

 
An example of the GHG emission factor calculation is given below:  

 

^75;;581	g3028. =
428,515.20[lmD-noa]
769,748.02[oTℎ]

×
1000S4
oa

×
oTℎ

1000STℎ
= 0.556

lmD-nS4
STℎ

 

 
Electricity generated by solar, wind, and hydro is assumed to have zero emissions and thus a zero-
value for the emission factor since we are only considering the power generation phase and not 
the entire life cycle.94  
 
We calculated emission factors for all natural gas plants and their sub-categories of “load-
following” and “peaker” as we are interested in the specific contributions of these plants when we 
apply an intervention.95  
 
All resources, besides unspecified resources are calculated with the equation above. Since it is 
impossible to determine the origin of unspecified resources, we use the default emission factor 
used by the Mandatory Reporting of GHG emissions from California Air Resource Board 
(CARB).96  
  

                                                
94 Anders, Silva-Send, and Gu, “Estimating Annual Average Greenhouse Gas Emission Factors for the 
Electric Sector: A Method for Inventories.” 
95 Within SCE’s territory there are 10 operating Peaker Plants. 
“2015 General Rate Case, Exhibit SCE-02 Vol. 09”; “California Power Map — Beta.” 
96 Regulation for the Mandatory Reporting of Greenhouse Gas Emissions. 
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Table 6. Emission Factors by Fuel Source 

Resource CO2 eq 
(kg/kWh) 

NOx 
(kg/kWh) 

Natural Gas - Load Following and Peaker  0.431 0.0014 
Natural Gas - Load Following 0.119 0.003 
Natural Gas - Peaker Plants  0.580 0.0002 
Coal (Refined) 0.528 0.001 
Geothermal 0.398 0 
Biomass 0.092 0.004 
Biogas 0.548 0.144 
Imports97 0.475 0.029 
Unspecified Resources 0.428 0.0035 

 
The same emission factors, as listed in Table 6, are used for both 2018 and 2030, for simplicity 
and comparison across model runs. By 2030, some power plants in SCE’s territory may shut down 
or upgrade their pollution control mechanisms. Our model does not account for any of those 
potential changes.  
 
The primary data source for conversion and emission factors is the Emission and Generation 
Resource Integrated Database (eGRID) 2016 data.98 Issued by the U.S Environmental Protection 
Agency, eGRID reports annual net generation (MWh), CO2 emissions (tons), N2O emissions (lbs), 
and CH4 emissions (lbs) for all power plants. Based on the Utility Service Territory, Plant Operator 
Name, and Balancing Authority, we located the power plants serving SCE’s territory. To allow 
comparison of the global warming impacts of different gases, we use the global warming potential 
over a standard time horizon of a 100 years (GWP100). eGRID reports CO2, CH4, N2O together 
as CO2 equivalency and calculates them using GWP100 from the IPCC Fourth Assessment 
Report.99 This assessment method characterizes emission based on the power mix for Southern 
California Edison. NOx emissions data are also taken from eGRID, which uses the EPA’s Air 
Market Program Data to source air pollutant information.  
 
Total Emissions 
These hourly emission factors are put into the model to determine the emissions associated with 
a demand profile.  
 
Baseline Demand 
To find the emissions associated with the baseline demand, the average emissions generated by 
SCE are used for each hour as follows:  

                                                
97  The emission factor for imports is an average for all fuel resources that are imported. The emission 
factors for imports currently uses the same resource-specific emission factors used for SCE.  
98 The latest version of eGRID was published in February 2018, but provides data for the year 2016. 
US EPA, “Emissions & Generation Resource Integrated Database (EGRID).” 
99 “Global Warming Potential Values.” 
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S (Baseline Hourly Load * Hourly Emission Factor) = Baseline Kg Pollutant Released  
 
Marginal Demand 
The change in emissions associated with the intervention are calculated differently. When the 
amount of electricity demanded is reduced or increased, the most expensive, and often the dirtiest, 
electricity generators (peakers) are turned off first. Thus, we are looking for the hourly marginal 
emission factor, not the hourly average emission factor.  
 
For 2018, this model assumes there are three key periods of the day that can be grouped: 11:00 
a.m. - 3:00 p.m., the target window when we assume solar is likely to be turned on or off; 4:00 - 
9:00 p.m., the evening peak period when peakers are going to be turned on or off to accommodate 
demand; and all other hours when there is not a clear marginal resource and we can use the average 
emission factor. Note that 25% of generation is recommended to come from natural gas at all 
times, and traditionally we see 25-30% of natural gas consistently on the grid. So, to be 
conservative, even during the middle of the day the marginal emission factor relies on 25% natural 
gas.100 Table 7 outlines these groups and emission factors: 
 

Table 7. 2018 Marginal Emission Factors 
Time CO2 eq (kg/kWh) NOx (kg/kWh) Fuel Mix 

11 am - 3 pm  0.108 0.0004 25% Natural Gas, 75% Solar 
4 - 9 pm 0.442 0.001 30% Natural Gas, 70% Peakers 
Other  Varies by Hour Varies by Hour Average Hourly Mix 

 
For 2030, we use the diverse fuel mix to calculate our marginal emission factors with a slight 
modification. We assume that from 10:00 a.m. to 4:00 p.m. no natural gas is being used. Instead, 
solar and other renewables and imports account for this load. Table 8 summarizes this:  
 

Table 8. 2030 Marginal Emission Factors 
Time CO2 eq (kg/kWh) NOx (kg/kWh) Fuel Mix 

10 am - 4 pm  Averages 0.050 
(Varies by Hour) 

Averages 0.0002 
(Varies by Hour) 

0% In-State Natural Gas, 71% 
Solar, 29% Other Renewables, 

Imported Natural Gas and 
Imported Nuclear 

Other  Varies by Hour Varies by Hour Average Hourly Mix 
 

                                                
100 Certain regions are required to source 25% of their power from natural gas at all times to meet local 
reliability standards (i.e., non-natural gas is far from these locations and sourcing natural gas ensures 
electricity demand is met), while CAISO recommends that 25% of all power at all times be sourced from 
natural gas and dispatchable hydro in order to ensure natural gas and hydro plants continue to be available 
during peak demand. To that end, no matter what time an EV goes on the grid, it will increase GHG load 
to some degree. 
Fero, “Achieving California’s 2030 Renewable Portfolio Standard and Electricity Sector Greenhouse Gas 
Emission Reduction Target”; Brinkman et al., “Low Carbon Grid Study.” 
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From these marginal emission factors, we can find the change in GHG and air pollution emissions 
associated with the intervention as follows:  
 

S (Change in Hourly Load x Hourly Emission Factor) = Change in Kg Pollutant Released 
 

Final Demand 
With the marginal change calculated above, we find the total emissions released under the new 
demand profile:  
 

Baseline Emission + Change in Emission = New Kg Pollutant Released 
 
Impact of Emission Change 
The change in emissions value can then be used to calculate a few final indicators.  
 
For both GHG and air pollution, we can determine the financial cost associated with emissions. 
For CO2-eq, we use the US Social Cost of Carbon at a 3% inflation rate in 2020, translated to 2018 
dollars.101 This translates to $0.05/kWh.  
 
In Los Angeles County, NOx emissions from natural gas plants are expected to have external 
impacts of $21,927.48 per metric ton in 2018 dollars.102 This number reflects the monetary value 
of the impact of NOx emissions on human health, timber and crop harvest, recreation and 
visibility, and decay of buildings and materials.103 Mortality and morbidity account for the majority 
of this impact.104 This number is based on a $6 million value of statistical life.105 

  

                                                
101 “Social Cost of Carbon.” 
102 “LCOE with Environmental Costs.” 
103 Holland et al., “Environmental Benefits from Driving Electric Vehicles?” 
104 Rhodes et al., “New U.S. Power Costs: By County, with Environmental Externalities.” 
105 Rhodes et al. 
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Environmental Justice 
As with most energy and environmental projects, managed charging has the potential to have 
distributional effects. Much literature has focused on the affordability and accessibility of EVs and 
EV charging. SCE’s initial Charge Ready pilot focused on installing EV chargers in various 
communities, with a large percentage focused on “disadvantaged communities” (DACs), as 
defined by California law.106 This project is focused strictly on EV charging behavior and assumes 
EV adoption and charger installation will continue along current trends. Thus, its direct 
distributional impacts follow another vein.  
 
As discussed in the previous section, this project has the potential to change air pollution within 
SCE’s territory. By shifting demand into the middle of the day when solar is generated, managing 
charging should reduce demand in the evenings, when fossil-fuel based power plants provide the 
majority of the power. While air pollution travels, turning on or off specific plants could have an 
impact on specific communities. In SCE’s territory, 70% percent of peaker plants are in DACs.107 
But, from 2015 to 2017, those 7 plants only accounted for 25% of all peaker capacity. The other 
75% of peaker capacity was met by the 3 plants in non-DACs and the majority by a single plant. 
If we maintain that split while assuming that 70% of peak load is provided by peakers in 2018, as 
mentioned above, then the following outlines how much of emissions from each scenario during 
the peak window can be assigned to DACs: 
 

Peaker Emissions in DACs = 0.25 * 0.70 * Emissions During Peak Windows 
 

Beyond the direct NOx emissions, we must also consider how frequently peaker plants exacerbate 
poor air quality days. Peaker plants in DACs operate 3.29 times as much on high PM days and 
2.08 times as often on high ozone days than plants not in DACs.108 Thus, even small changes in 
NOx emissions in DACs may actually have large impacts. These impacts are out of the scope of 
this project and something to consider in future analyses.  
  

                                                
106 “Charge Ready and Market Education Programs: Pilot Report”; Monserrat, “SB 535 Disadvantaged 
Communities.” 
107 “California Power Map — Beta.” 
108 “California Power Map — Beta.” 
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Shiny Application 
Visualization and accessibility of our model is a key part of our project. To that end, we have built 
a “Shiny application.” Shiny is a package in the R coding language that makes it easy to create 
interactive web applications. The application gives the user an easy way to interact with the model. 
Through this app, they can change contextual and intervention inputs and view the resulting load 
profile of each segment on a graph. The load profile graphs have one line representing the baseline 
load profile and a second line representing the change in demand resulting from a chosen 
intervention. The application also automatically calculates and displays the reduction or increase 
in emissions due to the shift in demand.  
 
The application consists of four tabs: Overview, Simulation Graphs, Modeling Methods, and 
Instructions. The “Overview” tab provides background on the project and why the app was 
developed, while the “Instructions” tab provides a walkthrough of the sidebar widgets and 
contextual information on the inputs that can be selected. The primary tab for modeling non-
residential EV charging demand is the “Simulation Graphs” tab (Figure 18). The sidebar on the 
left allows users to choose which inputs they want to enter in the model. Changing inputs creates 
reactive outputs within the main panel on the right, meaning as users increase or decrease a number 
or percentage, or switch between segments, number of simulations, or dates, the graphs and table 
change in real time.  
 
To access the app, visit https://smartcharge.shinyapps.io/smartcharge/.  
 

 
Figure 18. Shiny Application Simulation Tab  
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Chapter III. Model Results 

Segment Scenarios 
Our model allows users to examine the likely consequences of one or more interventions on EV 
charging behavior. There can be multiple combinations of interventions; any combination of 
interventions is known as a scenario. While we can run hundreds of different scenarios, we 
critically examine several that are the most relevant. We consider scenarios under the present 2018-
2019 conditions and under projected 2030 charger adoption rates.109 All of these scenarios are run 
for one single day and thus the results indicate how demand might change if interventions are 
called on one single day. 
 
We considered more than the scenarios reported below. These are simply those that we think 
show the most promise for inducing behavior change that reduces climate, health, and grid 
challenges. 
 

 
  

                                                
109 Each scenario follows a similar naming convention. W denotes Workplaces, D denotes Destination 
Centers, F denotes Fleets, while M denotes Multi-Unit Dwellings. The number denotes the scenario 
number.  For example, W2 is the second scenario run on Workplaces. If an F follows this number, that 
indicates a future scenario. For instance, the scenario W5-F increases the number of chargers to 31,435 
(the number projected to be installed in 2030) and uses a new TOU rate (2019), compared to a present day 
scenario like W2 that would only model 596 chargers. 
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Workplaces 
Workplaces are targeted for load shifting (discounts), given their high morning peak and the simple 
fact that most people’s vehicles sit for up to eight hours during the workday. To that end, we 
considered five scenarios that couple a midday discount with a new TOU rate, communication, 
and throttling. Below and in Tables 9-10 is a summary of these scenarios. The following pages 
provide numerical details on the impacts of each scenario. 
 
Across the board, a discount successfully increases demand in the midday target window, and 
decreases demand in the peak period.  
  
A new 2019 TOU rate can have a substantial impact. The TOU 2019 price scenario (W2) induces 
more charging in the target midday window than the TOU 2018 scenario (W1) (32% compared 
to 19%), while dropping more load in the evening window (75% compared to 2%). The new TOU 
rate also leads to the largest reduction in costs to consumers (55%) since energy demand falls 
most in hours of high demand and high price.  
  
Communication is shown to have a minor effect. Scenario W1 which includes a price notification 
results in a slightly higher increase in demand in the intervention period (1%) than Scenario W4 
which eliminates the price notification. Demand in the peak period is similar across both scenarios, 
but demand in all other hours falls more when communication is applied. Together, this leads to 
a larger decrease in daily GHG and air pollution emissions. 
  
Morning throttling (6:00 - 11:00 a.m.), as applied in Scenario W2, results in decrease in demand 
in the peak period (75%). Without this throttling, demand over the entire day can actually increase, 
the midday demand change may be minimal, and GHG and air pollution emission reductions may 
not be seen.  
  
Additional chargers, as applied in our future scenario (W5-F), lead to a similar proportional 
impact while magnifying the magnitude of the impact to the point of significance.  
  
Under a discount, curtailment and its associated costs increase in all scenarios except the one that 
does not include throttling (W3), since demand over the entire day falls in these scenarios. Since 
solar energy is being produced in the morning hours (8:00 - 11:00 a.m.), there is often curtailment 
in these hours. By reducing any usage during those hours, curtailment can increase. SCE seeks to 
smooth the load curve, but they should be wary of throttling in hours where there is the potential 
for curtailment. Instead, throttling may be better suited to evening hours when solar energy is low 
and it is critical to reduce demand. 
  
GHG and air pollution emissions fall across all scenarios. Under a new TOU, discount, and 
communication, emissions can fall up to 99% in the peak period and 33% across the entire day. 
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Despite these proportional impacts, the magnitudes of emission changes are typically small and 
the impact on DACs is negligible.  
  
In sum, a discount, communication, throttling, and new TOU (Scenario W2 for 2018 and W5-F 
for 2030), create a load curve most like what SCE hopes to achieve. Demand increases in the 
midday period and falls in the peak, while costs fall overall. 
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Table 9. Workplace Scenarios’ Demand and Cost 

 
Table 10. Workplace Scenarios’ Emissions 

 

Interventions Emission Impacts 

Discount (5¢) 
(11 am - 3 pm) 

Price 
Comm. 

Air 
Pollution 
Comm. 

Throttling 
(6 - 11 am) TOU Chargers 

GHG NOx  
Intervention 

(11 am - 3 pm) 
Peak 

(4 - 9 pm) 
Daily Intervention 

(11 am - 3 pm) 
Peak 

(4 - 9 pm) 
Daily 

W1 X X  X 2018 596 12% -4% -23% 11% -3% -24% 

W2 X X  X 2019 596 20% -93% -32% 19% -95% -33% 

W3 X X   2019 596 12% -4% 1% 11% -3% 1% 

W4 X   X 2018 596 11% -3% -42% 11% -2% -42% 

W5-F X X X X 2019 31,435 21% -93% -32% 20% -99% -33% 

 

 

Interventions Load and Cost Impacts 

Discount (5¢) 
(11 am - 3 pm) 

Price 
Comm. 

Air 
Pollution 
Comm. 

Throttling 
(6 - 11 am) TOU Chargers 

Demand 
Customer 

Cost Curtailment Intervention 
(11 am - 3 pm) 

Peak 
(4 - 9 pm) 

Daily 

W1 X X  X 2018 596 19% -2% -21% -36% 0.08% 
W2 X X  X 2019 596 32% -75% -24% -53% 0.05% 
W3 X X   2019 596 19% -2% 4% -14% -0.06% 
W4 X   X 2018 596 18% -2% -21% -36% 0.09% 

W5-F X X X X 2019 31,435 34% -80% -24% -55% 0.79% 
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Scenario W1: November, $0.05 Discount, Price Communication, 50% Throttling, 2018 TOU 
Rate, 596 Chargers 

 
Figure 19. W1 Demand Graph 

 
Table 11. W1 Demand Impacts 

Time Demand 
Initial (kWh) New (kWh) Change 

Intervention (11 am - 3 pm) 1,718 2,042 19% 
Peak (4 - 9 pm) 629 615 -2% 
Other 3,483 1,972 -43% 
Total 5,830 4,628 -21% 

 
Table 12. W1 Emissions and Environmental Justice Impacts 

Time GHGs NOx 
Initial 

(kg) 
New 
(kg) 

Change Initial 
(kg) 

New 
(kg) 

Change 
(all) 

Change 
(DACs) (kg) 

Intervention 
(11 am - 3 pm) 299.80 334.67 12% 1.07 1.19 11% N/A 

Peak  
(4 - 9 pm) 136.37 130.58 -4% 0.49 0.48 -3% 0 

Other 675.79 388.24 -57% 2.47 1.42 -43% N/A 
Total 1,111.96 853.50 -23% 4.03 3.08 -24% 0 

 
Scenario Highlights 

• Midday demand rises due to the discount, while morning demand falls due to throttling. 
• Demand falls over the entire day, mainly due to the morning decline.  
• The decline in daily demand mildly exacerbates curtailment (0.08%), costing $47.81. 
• GHG and air pollution emissions fall moderately, leading to a $12.92 and $20.79 social 

benefit, respectively.  
• The impact on air pollution in DACs is negligible.  
• Consumer costs decrease by 36%, from $540.91 to $344.51.  
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Scenario W2: November, $0.05 Discount, Price Communication, 50% Throttling, 2019 TOU 
Rate, 596 Chargers 

 
Figure 20. W2 Demand Graph 

 
Table 13. W2 Demand Impacts 

Time Demand 
Initial (kWh) New (kWh) Change 

Intervention (11 am - 3 pm) 1,718 2,264 32% 
Peak (4 - 9 pm) 629 155 -75% 
Other 3,483 2,001 -43% 
Total 5,830 4,419 -24% 

 
Table 14. W2 Emissions and Environmental Justice Impacts 

Time GHGs NOx 
Initial 

(kg) 
New 
(kg) 

Change Initial 
(kg) 

New 
(kg) 

Change 
(all) 

Change 
(DACs) (kg) 

Intervention  
(11 am - 3 pm) 299.80 358.59 20% 1.07 1.27 19% N/A 

Peak  
(4 - 9 pm) 136.37 9.14 -93% 0.49 0.02 -95% -0.08 

Other 675.79 385.26 -43% 2.47 1.38 -87% N/A 
Total 1,111.96 752.99 -32% 4.03 2.70 -33% -0.08 

 
Scenario Highlights 

• Midday demand rises due to the discount, while peak demand falls significantly due to the 
new TOU and morning demand falls due to throttling. 

• Demand falls over the entire day, increasing curtailment by 0.05% and costing $27.37. 
• GHG and air pollution emissions fall almost to zero in the peak period, resulting in a 

$17.95 and $29.25 reduction in costs respectively. 
• Air pollution impacts in DACs are small, but the initial NOx emissions are also minimal. 
• Consumer costs decrease by 53%, from $540.91 to $253.99. 
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Scenario W3: November, $0.05 Discount, Price Communication, 2018 TOU Rate, 596 Chargers 

 
Figure 21. W3 Demand Graph 

 
Table 15. W3 Demand Impacts 

Time Demand 
Initial (kWh) New (kWh) Change 

Intervention (11 am - 3 pm) 1,718 2,042 19% 
Peak (4 - 9 pm) 629 615 -2% 
Other 3,483 3,409 -2% 
Total 5,830 6,066 4% 

 
Table 16. W3 Emissions and Environmental Justice Impacts 

Time GHGs NOx 
Initial 

(kg) 
New 
(kg) 

Change Initial 
(kg) 

New 
(kg) 

Change 
(all) 

Change 
(DACs) (kg) 

Intervention  
(11 am - 3 pm) 299.80 334.69 12% 1.07 1.19 11% N/A 

Peak  
(4 - 9 pm) 136.67 131.81 -4% 0.49 0.48 -3% 0 

Other 675.79 661.40 -2% 2.47 2.42 -2% N/A 
Total 1,111.96 1,126.90 1% 4.03 4.08 1% 0 

 
Scenario Highlights 

• As the only price intervention applied is a discount, midday demand, and thus total 
demand increases, reducing curtailment 0.06% and yielding a financial benefit of $32.10. 

• GHG and air pollution impacts are negligible,110 as are the impacts in DACs.  
• Consumer costs decrease by 14%, from $540.91 to $464.84. 

 

                                                
110 Social and health benefits of $5 or less are considered negligible.  
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Scenario W4: November, $0.05 Discount, Price Communication, 50% Throttling, 2018 TOU 
Rate, 596 Chargers 

 
Figure 22. W4 Demand Graph 

 
Table 17. W4 Demand Impacts 

Time Demand 
Initial (kWh) New (kWh) Change 

Intervention (11 am - 3 pm) 1718 2031 18% 
Peak (4 - 9 pm) 629 618 -2% 
Other 3483 1983 -43% 
Total 5830 4633 -21% 

 
Table 18. W4 Emissions and Environmental Justice Impacts 

Time GHGs NOx 
Initial 

(kg) 
New 
(kg) 

Change Initial 
(kg) 

New 
(kg) 

Change 
(all) 

Change 
(DACs) (kg) 

Intervention  
(11 am - 3 pm) 299.80 333.52 11% 1.07 1.18 11% N/A 

Peak  
(4 - 9 pm) 136.37 132.05 -3% 0.49 0.48 -2% 0 

Other 675.79 390.48 -42% 2.47 1.43 -42% N/A 
Total 1,111.96 856.05 -23% 4.03 3.09 -23% 0 

 
Scenario Highlights 

• Midday demand rises due to the discount, while morning demand falls due to throating.  
• The decline in daily demand, mainly due to the morning decline, increases curtailment by 

0.09%, with an associated cost of $48.92. 
• GHG and air pollution emissions fall moderately, with a $12.80 and $20.62 reduction in 

social costs, respectively.  
• The impact on air pollution in DACs is negligible. 
• Consumer costs decrease by 36%, from $540.91 to $345.26. 
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Scenario W5-F: November, $0.05 Discount, Price and Air Pollution Communication, 50% 
Throttling, 2019 TOU Rate, 31,435 Chargers 

 
Figure 23. W5-F Demand Graph 

 
Table 19. W5-F Demand Impacts 

Time Demand 
Initial (kWh) New (kWh) Change 

Intervention (11 am - 3 pm) 90,630 121,653 34% 
Peak (4 - 9 pm) 33,155 6,527 -80% 
Other 183,697 105,408 -42% 
Total 307,482 233,589 -24% 

 
Table 20. W5-F Emissions and Environmental Justice Impacts 

Time GHGs NOx 
Initial 

(kg) 
New 
(kg) 

Change Initial 
(kg) 

New 
(kg) 

Change 
(all) 

Change 
(DACs) (kg) 

Intervention  
(11 am - 3 pm) 15,812.56 19,157.65 21% 56.52 67.75 20% N/A 

Peak (4 - 9 pm) 7,192.67 478.28 -93% 25.82 0.29 -99% -4.47 
Other 35,643.20 20,252.53 -43% 130.18 73.73 -43% N/A 
Total 58,648.43 39,888.46 -32% 212.52 141.77 -33% -4.47 

 
Scenario Highlights 

• Demand increases in the target window due to the discount, but falls by a larger proportion 
in the evening peak period due to the new TOU.  

• The magnitude of the increase in overall daily demand, due predominantly to the number 
of chargers, increases curtailment by 0.79%, with a cost of $1,633.55. 

• GHG and air pollution emissions fall significantly in the peak period, and moderately 
through the entire day, resulting in a $938.00 and $1,551.58 cost reduction respectively.  

• Air pollution in DACs falls. 
• Consumer costs decrease by 55%, from $28,529.54 to $12,914.52.   
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Destination Centers 
Destination Centers are characterized by a high morning charging peak with small peaks across 
the day that taper off during the evening. These variable peaks are due to the variety of buildings 
that compose the segment, which include theme parks, sports arenas, hotels, university campuses, 
hospitals, city/county facilities, and similar locations where vehicle dwell times are at least four 
hours. Because of this variety and the unique characteristics of each type, this segment is more 
dynamic and difficult to predict. We considered 3 scenarios to determine how communication, 
throttling, and discounts might shift the morning peak and increase usage in the target window of 
11:00 a.m. - 3:00 p.m. Below and in Tables 21-22 is a summary of these scenarios. The following 
pages provide numerical details on the impacts of each scenario.  
  
In general, we see that a discount increases demand in the midday target window, regardless of 
the additional interventions applied. It also reduces customer costs and has a negligible impact on 
curtailment. However, the total change in GHG emissions and the reduction in demand in the 
peak window is heavily contingent on other interventions, most notably the TOU rate. 
  
D3-F looks forward to vary the number of chargers, but it also changes the TOU rate. TOU 2019 
reduces demand in the peak window substantially more than TOU 2018. This leads to a significant 
fall in GHG (89%) and in air pollution (98%) emissions in the peak window, with an overall fall 
over the course of the day of 34% and 37% respectively. 
  
Communication has a minor impact in the target window and overall, but it does vary demand 
outside the target windows, as seen when comparing Scenarios D1 and D2. Without 
communication, demand in the target window increases only 20% (D2), compared to 22% under 
a full communication scenario (D1). 
  
Throttling is applied in all scenarios and successfully drops demand in the morning period, but 
does not necessarily lead to significant load shifting. In all scenarios, the curtailment impacts are 
minimal, since the magnitude of demand changes minimally.  
  
GHG and air pollution emissions fall across all scenarios run. Under a new TOU, discount, and 
communication, emissions can fall up to 98% in the peak period and 37% across the entire day. 
Despite these proportional impacts, the magnitudes of emission changes are typically small and 
the impact on DACs is negligible. 
  
In short, destination centers respond reasonably well to a discount and throttling, but respond 
best when these interventions are coupled with new TOU rates, as seen in D3-F. Communication 
has a small but nearly negligible effect on shifting demand. While none of the scenarios create any 
notable impacts on environmental justice impacts, they are effective in creating a load shift to the 
middle of the day. 
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Table 21. Destination Center Scenarios’ Demand and Cost 

 
Table 22. Destination Center Scenarios’ Emissions 

 Interventions Emission Impacts 

 Discount (5¢) 
(11 am - 3 pm) 

Price 
Comm. 

Air 
Pollution 
Comm. 

Throttling 
(6 - 11 am) TOU Chargers 

GHG NOx  
Intervention 

(11 am - 3 pm) 
Peak 

(4 - 9 pm) 
Daily Intervention 

(11 am - 3 pm) 
Peak 

(4 - 9 pm) 
Daily 

D1 X X X X 2018 234 14% -4% -14% 13% -3% -14% 
D2 X   X 2018 234 12% -3% -14% 11% -2% -14% 

D3-F X X X X 2019 4,378 23% -89% -34% 22% -98% -37% 
 

 

Interventions Load and Cost Impacts 

Discount (5¢) 
(11 am - 3 pm) 

Price 
Comm. 

Air 
Pollution 
Comm. 

Throttling 
(6 - 11 am) TOU Chargers 

Demand 
Customer 

Cost Curtailment Intervention 
(11 am - 3 pm) 

Peak 
(4 - 9 pm) 

Daily 

D1 X X X X 2018 234 22% -2% -11% -26% 0% 
D2 X   X 2018 234 20% -2% -12% -26% 0% 

D3-F X X X X 2019 4,378 37% -81% -26% -43% 0.04% 
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Scenario D1: November, $0.05 Discount, Price and Air Pollution Communication, 50% 
Throttling, 2018 TOU Rate, 234 Chargers 

 
Figure 24. D1 Demand Graph 

 
Table 23. D1 Demand Impacts 

Time Demand 
Initial (kWh) New (kWh) Change 

Intervention (11 am - 3 pm) 333 406 22% 
Peak (4 - 9 pm) 309 302 -2% 
Other 678 462 -32% 
Total 1,319 1,169 -11% 

 
Table 24. D1 Emissions and Environmental Justice Impacts 

Time GHGs NOx 
Initial 

(kg) 
New 
(kg) 

Change Initial 
(kg) 

New 
(kg) 

Change 
(all) 

Change 
(DACs) (kg) 

Intervention  
(11 am - 3 pm) 58.10 65.98 14% 0.21 0.23 13% N/A 

Peak  
(4 - 9 pm) 69.62 66.91 -4% 0.25 0.24 -3% 0 

Other 140.43 98.69 -30% 0.51 0.36 -30% N/A 
Total 268.15 231.58 -14% 0.97 0.84 -14% 0 

 
Scenario Highlights 

• Midday load increases slightly, while morning load falls due to throttling.  
• The minimal reduction the magnitude of daily demand has a minimal impact on 

curtailment.  
• GHG and air pollution emission fall mildly overall, but the social monetary benefit is 

negligible.  
• The change in air pollution in DACs is negligible. 
• Consumer costs decrease by 26%, from $121.70 to $90.55 
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Scenario D2: November, $0.05 Discount, 50% Throttling, 2018 TOU Rate, 234 Chargers 

 
Figure 25. D2 Demand Graph 

 
Table 25. D2 Demand Impacts 

Time Demand 
Initial (kWh) New (kWh) Change 

Intervention (11 am - 3 pm) 333 398 20% 
Peak (4 - 9 pm) 308 303 -2% 
Other 678 464 -32% 
Total 1,319 1,166 -12% 

 
Table 26. D2 Emissions and Environmental Justice Impacts 

Time GHGs NOx 
Initial 

(kg) 
New 
(kg) 

Change Initial 
(kg) 

New 
(kg) 

Change 
(all) 

Change 
(DACs) (kg) 

Intervention  
(11 am - 3 pm) 58.10 65.14 12% 0.21 0.23 11% N/A 

Peak  
(4 - 9 pm) 69.62 67.51 -3% 0.25 0.25 -2% 0 

Other 140.43 99.18 -29% 0.51 0.36 -29% N/A 
Total 268.15 231.83 -14% 0.97 0.84 -14% 0 

 
Scenario Highlights 

• Midday demand increases due to the discount, while morning demand falls due to 
throttling.  

• Daily demand decreases, with a magnitude too small to have an impact on curtailment. 
• GHG and air pollution emissions fall slightly, with negligible social monetary benefits. 
• The impact on DACs is negligible.  
• Consumer costs decrease by 26%, from $121.70 to $90.47.  
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Scenario D3-F: November, $0.05 Discount, Price and Air Pollution Communication, 50% 
Throttling, 2019 TOU Rate, 4,378 Chargers 

 
Figure 26. D3-F Demand Graph 

 
Table 27. D3-F Demand Impacts 

Time Demand 
Initial (kWh) New (kWh) Change 

Intervention (11 am - 3 pm) 6,229 8,548 37% 
Peak (4 - 9 pm) 5,772 1,078 -81% 
Other 12,682 8,694 -31% 
Total 24,683 18,320 -26% 

 
Table 28. D3-F Emissions and Environmental Justice Impacts 

Time GHGs NOx 
Initial 

(kg) 
New 
(kg) 

Change Initial 
(kg) 

New 
(kg) 

Change 
(all) 

Change 
(DACs) (kg) 

Intervention  
(11 am - 3 pm) 1,087.00 1,337.05 23% 3.89 4.72 22% N/A 

Peak  
(4 - 9 pm) 1,302.57 142.62 -89% 4.69 0.07 -98% -0.81 

Other 2,627.35 1,802.32 -31% 9.63 6.59 -22% N/A 
Total 5,016.93 3,281.00 -34% 18.20 11.38 -37% -0.81 

 
Scenario Highlights 

• Midday demand increased slightly due to the discount, while morning demand falls due to 
throttling, and evening demand falls due to the new TOU.  

• The overall decline in daily demand increases curtailment by 0.04%, with an $89.34 cost. 
• GHG and air pollution emissions fall significantly, with an $86.74 and $149.52 social 

benefit respectively.  
• Air pollution in DACs falls. 
• Consumer costs decrease by 43%, from $2,276.99 to $1,303.30.   



 
 
 

 
 
 

75 

Fleets 
Fleets have static and predictable demographics and characteristics, with vehicles typically 
deployed throughout the work day and charging in the evenings. Since we want to reduce evening 
peak demand, a rebate is the intervention we chose to examine most closely. As listed in Tables 
29-30, we consider 3 scenarios for fleets to compare the impact of new TOU rates and increase 
in the number of chargers.  
  
Rebates and price communication, under all TOUs, reduce demand and emissions in the peak. 
When we layer a new TOU rate on top of this (Scenario F2), load in the peak window falls 39% 
more than under a scenario without the new TOU rate. A new TOU rate also causes customer 
costs to fall instead of rise.  
  
When more chargers are installed, as predicted for 2030 and modelled in Scenario F3-F, the same 
pattern emerges. Two-thirds of the GHG and NOx emissions in the target window are eliminated, 
resulting in a $36 social carbon benefit and $66 reduction in NOx costs. Customer costs once 
again fall, and we begin to see a mild curtailment impact.  
  
All scenarios led to a reduction in GHG and air pollution emissions, both in the peak period 
and overall.  
  
In sum, a rebate paired with a TOU rate reduces GHG and air pollution emissions; however, all 
scenarios yield negligible impacts on grid curtailment despite the mild load shift that takes place 
as a result of the TOU rate. 
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Table 29. Fleets Scenarios’ Demand and Cost 
 

 
Table 30. Fleets Scenarios’ Emissions 

 Intervention Emission Impacts 

 Rebate (10¢) 
(4 - 9 pm) 

Price 
Comm. TOU Chargers 

GHG NOx 
Intervention / 
Peak (4 - 9 pm) 

Daily Intervention /  
Peak (4 - 9 pm) 

Daily 

F1 X X 2018 83 -42% -17% -30% -11% 

F2 X X 2019 83 -77% -27% -72% -24% 

F3-F X X 2019 4,378 -67% -24% -67% -24% 

 

 

Intervention Load and Cost Impacts 

Rebate (10¢)  
(4 - 9 pm) 

Price 
Comm. TOU Chargers 

Demand 
Customer 

Cost Curtailment Intervention / 
Peak (4 - 9 pm) 

Daily 

F1 X X 2018 83 -23% -7% -13% 0% 

F2 X X 2019 83 -62% -12% -8% 0% 

F3-F X X 2019 4,378 -63% -11% -9% -0.45% 
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Scenario F1: July, $0.10 Rebate, Price Communication, 2018 TOU, 83 Chargers 

 
Figure 27. F1 Demand Graph 

 
Table 31. F1 Demand Impacts 

Time Demand 
Initial (kWh) New (kWh) Change 

Intervention / Peak (4 - 9 pm) 212 163 -23% 
Other 232 251 8% 
Total 444 414 -7% 

 
Table 32. F1 Emissions and Environmental Justice Impacts 

Time GHGs NOx 
Initial 

(kg) 
New 
(kg) 

Change Initial 
(kg) 

New 
(kg) 

Change 
(all) 

Change 
(DACs) (kg) 

Intervention / 
Peak (4 - 9 pm) 46.64 27.04 -42% 0.17 0.12 -30% -0.01 

Other 46.43 49.77 7% 0.17 0.18 7% N/A 
Total 93.08 76.81 -17% 0.34 0.30 -11% -0.01 

 
Scenario Highlights 

• Demand in the evening period falls as a result of the rebate.  
• As demand in the middle of the day changed little, the impact on curtailment is negligible.  
• While GHGs and air pollution emissions fall, the impacts are financially negligible. 
• Air pollution in DACs falls slightly. 
• Consumer costs decrease by 13%, from $101.01 to $89.60. 
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Scenario F2: July, $0.10 Rebate, Price Communication, 2019 TOU Rate, 83 Chargers 

 
Figure 28. F2 Demand Graph 

 
Table 33. F2 Demand Impacts 

Time Demand 
Initial (kWh) New (kWh) Change 

Intervention / Peak (4 - 9 pm) 212 81 -62% 
Other 232 309 33% 
Total 444 390 -12% 

 
Table 34. F2 Emissions and Environmental Justice Impacts 

Time GHGs NOx 
Initial 

(kg) 
New 
(kg) 

Change Initial 
(kg) 

New 
(kg) 

Change 
(all) 

Change 
(DACs) (kg) 

Intervention / 
Peak (4 - 9 pm) 93.08 68.41 -77% 0.17 0.05 -72% -0.02 

Other 46.43 57.71 24% 0.17 0.21 23% N/A 
Total 93.08 68.41 -27% 0.34 0.25 -24% -0.02 

 
Scenario Highlights 

• Peak demand falls by almost two-thirds, with some of that demand shifted earlier in the 
day, due to the new TOU price.  

• The magnitude of the overall change in daily demand has no impact on curtailment.  
• GHG and air pollution emissions fall, but the small magnitude of the change leads to 

negligible social monetary benefits. 
• Air pollution emissions in DACs fall slightly. 
• Consumer costs decrease by 8%, from $89.60 to $82.41. 
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Scenario F3-F: July, $0.10 Rebate, Price Communication, 2019 TOU Rate, 4,378 Chargers 

 
Figure 29. F3-F Demand Graph 

 
Table 35. F3 Demand Impacts 

Time Demand 
Initial (kWh) New (kWh) Change 

Intervention / Peak (4 - 9 pm) 9,342 3,412 -63% 
Other 10,804 14,679 35% 
Total 20,146 17,992 -11% 

 
Table 36. F3 Emissions and Environmental Justice Impacts 

Time GHGs NOx 
Initial 

(kg) 
New 
(kg) 

Change Initial 
(kg) 

New 
(kg) 

Change 
(all) 

Change 
(DACs) (kg) 

Intervention / 
Peak (4 - 9 pm) 1,377.77 460.01 -67% 5.82 1.90 -67% -0.69 

Other 1,609.82 1,799.30 12% 6.87 7.79 13% N/A 
Total 2,987.60 2,260.21 -24% 12.70 9.69 -24% -0.69 

 
Scenario Highlights 

• Load in the peak period falls due to the rebate and new TOU.  
• With the increase in chargers projected for 2030 under this scenario, the total decrease in 

demand leads to a small decline in curtailment (0.45%), and thus a benefit of $163.05. 
• GHG and air pollution emissions fall, with a $36.37 and $65.82 cost reduction respectively. 
• Air pollution emissions in DACs fall.  
• Consumer costs decrease by 9%, from $4,024.54 to $3,670.16. 
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Multi-Unit Dwellings (MUDs) 
Since most residents of MUDs are assumed to be away from their residence in the middle of the 
day, we only consider interventions that are intended to change behavior in the evening hours. We 
consider and compare three scenarios for MUDs that allow us to examine the impact of a rebate, 
along with communication since we imagine this audience might be easier to communicate with 
than other segments. Throttling is not considered as it is not typically applied to MUDs since 
people have less flexibility. These three scenarios are summarized in Tables 37-38 and below. The 
following pages provide numerical details on the impacts of each scenario.  
  
As with fleets, a rebate and communication about price successfully reduce demand in the peak 
evening period. While demand does not completely disappear, the majority of demand for fossil-
fuel based power does. This intervention does not fully shift demand into the middle of the day 
and thus does not directly address grid curtailment, but it can be useful at peak shaving. 
  
The new 2019 TOU rate further drops demand in the peak period, both with the current number 
of chargers (Scenario F2) and predicted number in 2030 (Scenario F3-F). 
  
In all scenarios, GHG and air pollution emissions fall. Curtailment varies minimally even in 
the scenario with additional charges due to the minimal change in the magnitude of demand.  
  
In short, the new TOU rates are the strongest indicator of a decrease in demand in the evening 
periods for MUDs. This fall can have significant impacts on GHGs and air pollution. 
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Table 37. MUDs Scenarios’ Demand and Cost 
 

 
Table 38. MUDs Scenarios’ Emissions 

 Intervention Emission Impacts 

 Rebate (10¢) 
(4 - 9 pm) 

Price 
Comm. TOU Chargers 

GHG NOx 
Intervention / 
Peak (4 - 9 pm) 

Daily Intervention /  
Peak (4 - 9 pm) 

Daily 

M1 X X 2018 83 -45% -16% -34% -11% 

M2 X X 2019 83 -77% -23% -86% -27% 

M3-F X X 2019 4,378 -80% -17% -83% -23% 

 

 

Intervention Load and Cost Impacts 

Rebate (10¢) 
(4 - 9 pm) 

Price 
Comm. TOU Chargers 

Demand 
Customer 

Cost Curtailment Intervention / 
Peak (4 - 9 pm) 

Daily 

M1 X X 2018 35 -29% -8% 12% 0% 

M2 X X 2019 35 -79% -20% -7% 0% 

M3-F X X 2019 4,378 -80% -17% -4% 0% 
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Scenario M1: July, $0.10 Rebate, Price Communication, 2018 TOU Rate, 83 Chargers 

 
Figure 30. M1 Demand Graph 

 
Table 39. M1 Demand Impacts 

Time Demand 
Initial (kWh) New (kWh) Change 

Intervention / Peak (4 - 9 pm) 55 40 -29% 
Other 77 82 7% 
Total 132 122 -8% 

 
Table 40. M1 Emissions and Environmental Justice Impacts 

Time GHGs NOx 
Initial 

(kg) 
New 
(kg) 

Change Initial 
(kg) 

New 
(kg) 

Change 
(all) 

Change 
(DACs) (kg) 

Intervention / 
Peak (4 - 9 pm) 12.98 7.16 -45% 0.05 0.03 -34% 0 

Other 17.09 18.25 7% 0.06 0.07 7% N/A 
Total 30.07 25.40 -16% 0.11 0.10 -11% 0 

 
Scenario Highlights 

• Demand in the peak period decreases, with minor shifting into other hours in the day.  
• Daily demand falls, with a negligible impact on curtailment.  
• GHG and air pollution emissions fall slightly, with a negligible reduction in costs. 
• Air pollution in DACs does not change.  
• Consumer costs increase 12%, from $19.65 total to $22.07. 
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Scenario M2: July, $0.10 Rebate, Price Communication, 2019 TOU Rate, 83 Chargers 

 
Figure 31. M2 Demand Graph 

 
Table 41. M2 Demand Impacts 

Time Demand 
Initial (kWh) New (kWh) Change 

Intervention / Peak (4 - 9 pm) 55 11 -79% 
Other 77 95 24% 
Total 132 106 -20% 

 
Table 42. M2 Emissions and Environmental Justice Impacts 

Time GHGs NOx 
Initial 

(kg) 
New 
(kg) 

Change Initial 
(kg) 

New 
(kg) 

Change 
(all) 

Change 
(DACs) (kg) 

Intervention / 
Peak (4 - 9 pm) 12.98 2.92 -77% 0.05 0.01 -86% -0.01 

Other 17.09 20.18 18% 0.06 0.07 18% N/A 
Total 30.07 23.11 -23% 0.11 0.08 -27% -0.01 

 
Scenario Highlights 

• Demand in the peak period decreases significantly, with some load shifting.  
• Demand over the entire day falls, with a negligible impact on curtailment. 
• GHG and air pollution emissions fall significantly in the target window, but the magnitude 

change is small and thus the monetary benefits are negligible. 
• Air pollution in DACs falls slightly. 
• Consumer costs decrease by 7%, from $19.65 to $18.29. 
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Scenario M3-F: July, $0.10 Rebate, Price Communication, 2019 TOU Rate, 1,846 Chargers 

 
Figure 32. M3-F Demand Graph 

 
Table 43. M3-F Demand Impacts 

Time Demand 
Initial (kWh) New (kWh) Change 

Intervention / Peak (4 - 9 pm) 2,926 584 -80% 
Other 4,042 5,208 30% 
Total 6,968 5,791 -17% 

 
Table 44. M3-F Emissions and Environmental Justice Impacts 

Time GHGs NOx 
Initial 

(kg) 
New 
(kg) 

Change Initial 
(kg) 

New 
(kg) 

Change 
(all) 

Change 
(DACs) (kg) 

Intervention / 
Peak (4 - 9 pm) 1,075.10 820.20 -80% 4.73 3.66 -83% -0.28 

Other 633.22 741.19 29% 2.82 3.34 18% N/A 
Total 1,075.10 820.20 -17% 4.73 3.66 -23% -0.28 

 
Scenario Highlights 

• Demand in the evening peak falls significantly, while some load shifting occurs.  
• The decline in demand over the entire day has a negligible impact on curtailment. 
• GHG and air pollution emissions fall significantly in the evening peak, with a $12.75 

reduction in social carbon costs and $23.40 in NOx costs.  
• Air pollution emissions in DACs fall.  
• Consumer costs increase 5%, from $537.65 to $677.02. 
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Assumptions and Limitations 
Below are the general caveats associated with using this model. Assumptions and limitations 
associated with specific model inputs and data sources are listed in those sections above. 

Assumptions 
Our model assumes that self-elasticity values from the literature regarding residential EV charging 
can be applied to our EV market segments. Generally, these elasticity values are likely negative, 
but may vary from the literature values if empirically studied. Empirical values different from the 
literature values may result in our model containing a bias estimation of the change in electricity 
demand during the intervention period.  
 
Additionally, our model relies on three methods that use three different assumptions about 
behavior change outside the intervention window. Method 1 assumes that there is no change in 
demand outside of the intervention period. This assumption results in cross-elasticity values of 
zero in the calculation of demand. Method 2 assumes that all of the change that occurs within the 
intervention period is offset by the opposite change in hours outside the intervention period. This 
method assumes that the net daily demand for electricity for vehicle charging is unchanged by a 
price intervention at one point of the day. This method also assumes that the change that occurs 
within the intervention period is distributed among the hours outside the intervention window 
according to the proportion of demand in each hour outside of the intervention window. In other 
words, hours that have higher overall demand will be shifted more by a price intervention. Method 
3 assumes that the overall demand for EV charging changes based on the overall change in average 
electricity price throughout the day. The same assumptions hold for demand change within the 
intervention window. But to model how demand changes outside of the intervention window, we 
use the average elasticity to determine how changing the price in the intervention windows affects 
the daily change in demand and then use that change proportionately as in Method 2. 
 
Our communication interventions reflect the impact of a notification about price or air pollution. 
Thus, our model assumes that the end user has some baseline knowledge of their price schedule. 
For much of the baseline data that our results are based on, it is likely that the end user is unaware 
of the price of electricity that the site host is paying. This unawareness exists in two ways. First, 
many site hosts do not charge drivers to park their EVs in parking spots based on electricity usage. 
Additionally, when a price intervention occurs, many end users are likely unaware of the event, 
because information about the event is only sent to the site hosts. Therefore, many of the 
interventions tested result in a price change that occurs without the knowledge of the end user. It 
is reasonable to assume that if the intervention is occurring, but the end user is completely 
unaware, we would see no significant change in usage behavior due to the intervention. Since our 
model has this underlying assumption that all EV drivers have some knowledge of the original 
price schedule, it likely overestimates behavior response. However, this communication barrier 
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may be smaller in fleets, since fleets are typically owned by a company that itself receives the 
electricity bill.  
 
We use month-hour averages for our baseline usage and assume this is representative of the 
segment as a whole. This may not be true as some days may have external events that determine 
charging behavior (conferences, weather, holidays, etc.) and we do not normalize for any 
difference in these events across months. 
 
All chargers in the program are on TOU electricity rates; however, there are multiple TOU options 
that customers can choose from (mainly TOU-EV-3 and TOU-EV-4). TOU-EV-3 and TOU-
EV-4 have the same time windows for peak and off-peak hours, but TOU-EV-3 is designed to 
support customers that use less than 20 kW of demand at any point in each month. The majority 
of chargers in the Charge Ready Program are on TOU-EV-4, but some minority are on TOU-
EV-3. It is not possible with the data available to identify what portion of the chargers are on 
which TOU rate or what portion of the demand comes from each rate. Due to this uncertainty, 
and for modelling simplicity, we assume that all chargers are on TOU-EV-4. This implies that 
baseline data is a result of chargers facing this TOU rate structure and that any price interventions 
in model scenarios are applied to the TOU-EV-4 rate structure. 

Limitations 
Since this is a growing field, none of our model inputs perfectly reflect the reality in each of our 
segments. Instead, they were pulled from literature on either residential EV charging or residential 
electricity use. We would expect that because of the different load profiles among market 
segments, elasticity values would differ across segments for hours that have differing demand 
across segments Thus, our model may not fully capture the flexibility or price responsiveness of 
EV drivers in long-dwell segments.  
 
Given data and time constraints, this model does not consider how load may be switched across 
non-residential segments or between non-residential and residential segments. Yet, we expect that 
drivers may substitute across these segments. We found no existing research that provided a 
method of estimating the substitution of charging in residential and non-residential segments. 
Additional research and experimental data would be required to find the cross-price elasticity 
between residential and non-residential in order to quantify how the two charging methods may 
act as substitutes for one another. 
 
The preferred method to predict demand for each hour of the day would be to do so using a cross-
price elasticity for each hour of the day, resulting in a 24- by 24-hour elasticity matrix with which 
to estimate the effect of a price change in one hour on the demand of every other hour of the day. 
Empirical estimates of such a 24 by 24-hour matrix do not currently exist. Additional research 
should be completed using a randomized controlled trial of price interventions to measure the 
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effect of a price change on each hour of the day’s demand and develop a 24- by 24-hour matrix 
that could be used to robustly predict the effect on demand of any given price intervention. 
 
Lastly, this model does not consider how drivers may respond differently to a change in price for 
a one-off event than a daily change in the pricing schedule. In short, we do not consider the impact 
of learning behavior.  
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Pilot Event and Model Refinement 
Before crafting our model, we analyze the interventions used in SCE’s Charge Ready Pilot events. 
Specifically, we look at the impact of throttling in these events. While throttling is a direct cut to 
load of 50%, it could feasibly reduce load by a larger proportion since users may dislike the idea 
of throttling. However, the initial pilot results show that throttling acts as a direct 50% cut in load. 
Thus, our model does the same.  
 
To then test and refine our model, we compare its outputs to those from SCE’s Charge Ready 
Pilot. As of February 2019, SCE ran 8 pilot events – 4 of them as load reduction (rebates) and 4 
as load shifting (discounts). 
 
After running model scenarios with baseline data that corresponds to the month in which a pilot 
event occurs, we compare the results to the event data to see if our model accurately predicts the 
response seen in pilot events.  
 
Because most EV drivers participating in the pilot events do not pay for charging, our model 
overpredicts driver’s response to price-based interventions. As basic knowledge about price is 
required for any pricing model, we do not adjust our model based on this difference.  
 
Although there were 8 pilot events in each segment, we compare only on event per segment to 
specified model scenarios, for a total of 4 comparisons. Below is a summary of these 4 
comparisons.  
 
Full analysis of all pilot events is provided in Appendix IV.  
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Workplaces 
November 14, 2018 Event vs. W1 
The November 14th Workplace Load Shift event can be compared to Scenario W1. Both apply 
throttling in the morning hours and a discount in the target window. Scenario W1 has price 
communication incorporated, as discussed below. Table 45 summarizes the differences between 
these scenarios.  
 

Table 45. Modelled Workplace Scenario vs. Event Comparison 
Time November 14th Event W1 

Demand 
Change 

GHG 
Change 

NOx 
Change 

Demand 
Change 

GHG 
Change 

NOx 
Change 

Intervention  
(11 am - 3 pm) 2% 1% 1% 19% 12% 11% 

Peak  
(4 - 9 pm) -4% -48% -29% -2% -4% -3% 

Other -5% -2% -8% -43% -57% -43% 
Total -5% -7% -4% -21% -23% -24% 

 
We would expect the pilot event to yield similar results to W1, especially with regards to the 
throttling period, but the pilot results do not correspond to our expectations. Scenario W1 predicts 
a larger reduction in demand in the peak hours and a larger increase in the midday target window. 
As a result of these differences in demand change, Scenario W1 also predicts larger declines in 
GHG and NOx emissions than seen in the pilot event.  
 
While we expected to see mild differences between the two outputs due to the communication 
intervention applied in Scenario W1, these differences exceed anything that may be attributable to 
that intervention. First this suggests that our model does not fully account for the communication 
barrier between EV drivers and SCE. In addition, the larger demand in the W1 “other hours,” 
which includes throttling hours, compared to the pilot suggests throttling does not have the 
intended 50% reduction effect in the pilot. However, the pilot event and the modelled scenario 
are compared to the average baseline demand. It is possible that the demand on the specific event 
day was much higher than the average and we cannot see what the load would have been without 
throttling on that day. 
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Figure 33. November 14, 2018 Workplace Load Shift Event Demand Graph 

 

 
Figure 34. Model Scenario W1 Demand Graph 
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Destination Centers 
November 14, 2018 Event vs. Model Scenario D2 
The November 14th Destination Center Load Shift event can be compared to our modeled D2 
scenario. Both scenarios use a $0.05 discount in the target window (11:00 a.m. - 3:00 p.m.) and 
throttling between 6:00 - 11:00 a.m. A summary of these two events is provided in Table 46.  
 

Table 46. Modelled Destination Scenario vs. Event Comparison 
Time November 14th Event D2 

Demand 
Change 

GHG 
Change 

NOx 
Change 

Demand 
Change 

GHG 
Change 

NOx 
Change 

Intervention  
(11 am - 3 pm) -11% -7% -6% 20% -45% -34% 

Peak  
(4 - 9 pm) 38% 55% 47% -2% 7% 7% 

Other -21% -17% -17% -32% -16% -11% 
Total 5% 3% 1% -12% -14% -14% 

 
Scenario D2 affects demand differently in the target and intervention window than the pilot event. 
Despite the same interventions being applied, Scenario D2 predicts an increase in demand in the 
target window and a decline in demand in the peak window, while the November 14th event saw 
the exact opposite result. However, load reduction in the time periods outside the event and peak 
windows (“other hours”) is in the same order of magnitude in the same direction, which suggests 
throttling in the pilot and in our scenarios had a similar effect. 
  
As expected with these changes in demand, GHG and air pollution impacts also varied in direction 
and magnitude between the pilot event and the scenario. The November 14th pilot event saw an 
increase in emissions, while Scenario D2 predicted a decrease.  
 
This large disparity between the pilot events and our modelled event is likely due to the difficulty 
associated with predicting destination centers’ load. While we have average monthly load profiles, 
destination centers demand changes drastically day to day. Thus, our modelled results are 
inevitably going to be different from the pilot event.  
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Figure 35. November 14, 2018 Destination Center Load Shift Event Demand Graph 

 

 
Figure 36. Model Scenario D2 Demand Graph 
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Fleets 
July 31, 2018 Event vs. F1 Model Scenario 
The July 31st event can be most easily compared to our modeled F1 scenario, despite their 
differences. Both scenarios use a $0.05 discount in the target window (11:00 a.m. - 3:00 p.m.), but 
the pilot event employed 50% throttling from 4:00 – 9:00 p.m. and Scenario F1 did not. Scenario 
F1 also included full price communication as an intervention during the target window. Table 47 
below compares the outputs of these two scenarios.  
 

Table 47. Modelled Fleet Scenario vs. Event Comparison 
Time July 31st Event F1 Model Scenario 

Demand 
Change 

GHG 
Change 

NOx 
Change 

Demand 
Change 

GHG 
Change 

NOx 
Change 

Intervention / 
Peak (4 - 9 pm) 25% 33% 32% -23% -42% -30% 

Other 75% 64% 63% 8% 7% 7% 
Total 51% 49% 48% -7% -17% -11% 

 
Given the difference in throttling applications between these two scenarios, we would expect the 
event demand to fall below the baseline in the intervention window because of the direct impact 
of throttling, and for the F1 scenario intervention demand to be slightly below the baseline in the 
intervention window due to the effect of a $0.10 rebate, but not as significantly as the reduction 
due to throttling. However, we see the opposite. 
 
The pilot event resulted in an increase in demand in the throttling and rebate period, while the F1 
scenario rebate resulted in a demand decrease in the intervention window. This is likely due to 
some inflexibility on the day of the event or limited communication about the event.  
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Figure 37. July 31, 2018 Fleets Load Reduction Event Demand Graph 

 
 

 
Figure 38. Model Scenario F1 Demand Graph 
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Multi-Unit Dwellings (MUDs) 
July 31, 2018 Event vs. M1 
The July 31st event can be compared to our modeled M1 scenario. Both scenarios use a $0.10 
rebate in the target window (4:00 – 9:00 p.m.) but the pilot event uses throttling while the model 
scenario does not. Table 48 below outlines the differences in these two scenarios.  
 

Table 48. Modelled MUDs vs. Event Comparison 
Time July 31st Event M1 

Demand 
Change 

GHG 
Change 

NOx 
Change 

Demand 
Change 

GHG 
Change 

NOx 
Change 

Intervention / 
Peak (4 - 9 pm) 65% 98% 77% -29% -45% -34% 

Other -7% -14% -15% 7% 7% 7% 
Total 18% 26% 18% -8% -16% -11% 

 
The pilot event increased demand in the evening period, despite the throttling and rebate, while 
our modelled rebate scenario reduced demand. As such, the pilot event increased GHG emissions 
by 26% and NOx emissions by 18%. This tells us that pilot customers are very price inelastic and 
have no choice but to charge their cars in that period or they are simply unaware of the rebate. As 
we imagine that the latter is true, a communication strategy directed at this segment could make 
MUDs ideal to induce load shift from the evening to late-night hours. 
 
The load profile for this month does also support potential reduction in curtailment. There is a 
spike in the midday hours between 11:00 a.m. - 3:00 p.m., likely due to drivers coming home for 
lunch and plugging in their cars. It may not be realistic to shift all charging into these hours, but 
drivers should be financially encouraged to charge in these times when they can. 
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Figure 39. July 31, 2018 MUDs Load Reduction Event Demand Graph 

 
 
 

 
Figure 40. Model Scenario M1 Demand Graph 
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Chapter IV. Hypotheticals 
In addition to the specific scenario outputs listed above, we calculate the theoretical impact of 
shifting charging under specific situations. Given the limitations in our model, these theoretical 
impacts provide some sense of the scope of the potential impact of load shifting. In other words, 
we build out the theoretical maximum discussion already in the model. These hypotheticals are 
for 2030, the year when California intends to have 5 million zero-emission vehicles on the road.111 
To support that goal, SCE intends to support the installation at least 50,000 long-dwell public 
chargers by 2025.112 We use those chargers as a proxy for the number of non-residential chargers 
that will be available in 2030. We do not model any future dates since by 2045, all electricity in 
California is slated to be sourced by zero-carbon resources and thus shifting will be less relevant 
to climate goals.113 
 
Two general categories of hypotheticals are examined: 

1. Target Charging Only. Shifting all charging into the target midday window (11:00 a.m. - 3:00 
p.m.) 

2. No Charging Before 11. Shifting 50% of charging into the target midday window (11:00 a.m. 
- 3:00 p.m.) and 50% into the off-peak evening window (11:00 p.m. - 3:00 a.m.).  

 
To determine how much load these chargers can absorb in 2030, we first need to understand what 
load will look like in 2030. SCE currently projects that daily average EV load in their territory will 
be 10,330 MWh and yearly it will be 3,770,876 MWh.114 Figure 41 below outlines this projected 
daily load profile. This includes all EVs charging at all locations (home level 1 and level 2, work 
level 2, public level 2, fast charging). 
 

                                                
111 Gavin Bade, “CEC”; “Zero-Emission Vehicles”; “Zero Emission Vehicle (ZEV) Program”; Bedir et al., 
“California Plug-In Electric Vehicle Infrastructure Projections: 2017-2025.” 
112 Griffo, “Edison Shares Vision for Clean Energy Future at Global Summit.” 
113 De Leon, SB-100. California Renewables Portfolio Standard Program: emissions of greenhouse gases., 
100. 
114 “SCE TAC Hourly Results 2027-2030.” 



 
 
 

 
 
 

98 

 
Figure 41. Projected SCE 2030 Hourly EV Demand 

 
We then determine the maximum amount of load that could be absorbed by the long-dwell 
chargers in California in 2030 under our hypothetical charging behaviors. This is done by 
calculating the “theoretical maximum” as we did in our model above, defined as the amount of 
load the chargers could absorb if they were at full capacity during the target window:  
 

6.6 kW charger power * # hours * # chargers = Theoretical Max (kWh) 
 
Table 49 summarizes the potential impacts of each of these hypothetical scenarios. Given the 
forecasted daily EV demand of 10,331 MWh, this number of long-dwell chargers could meet 8-
26% of demand under the potential load shifting requirements.  
 

Table 49. Potential Load Impacts of “Target Charging Only” and “No Charging Before 11” 
of Long-dwell Chargers in 11:00 a.m. - 3:00 p.m. and 11:00 p.m. - 3:00 a.m. in 2030. 

Load Shift 
Window 

Segment Chargers Load Availability 
(MWh) 

% Daily Demand 
Could Meet 

11 am - 3 pm Workplaces 31,435 830  8% 
11 am - 3 pm All 50,000 1,650  13% 
11 am - 3 pm and 
11 pm - 3 am Workplaces 31,435 1,660  16% 

11 am - 3 pm and 
11 pm - 3 am 

All 50,000 3,300  26% 

 
Table 50 summarizes the GHG and NOx emission impacts of these hypothetical scenarios. 
Assuming a conservative estimate that 25% of energy in the target window is provided by natural 
gas and using an average 2030 emissions factor for the grid for the entire day (0.16 kg CO2eq/kwh 
and 0.0007 kg NOx/kWh), shifting demand reduces daily GHG emissions associated with EV 
charging by 2-8% and NOx emissions by 4-12%. If we instead assume that 100% solar is displaced, 
daily emissions would fall 8-26% for GHGs and NOx. 
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Table 50. Potential Emission Impacts of “Target Charging Only” and “No Charging Before 

11” of Long-dwell Chargers in 11:00 – 15:00 and 23:00 – 03:00 in 2030. 

Load Shift 
Window Segment 

GHG Change NOx Change 
 All 
Day 

Load Shift 
Window 

All Day Load Shift 
Window 

11 am - 3 pm Workplaces -2% -30% -4% -47% 
11 am - 3 pm All -4% -30% -6% -47% 
11 am - 3 pm and 
11 pm - 3 am Workplaces -5% -30% -8% -47% 

11 am - 3 pm and 
11 pm - 3 am 

All -8% -30% -12% -47% 

 
To shift all load and eliminate all GHG and air pollution emissions associated with EV charging, 
additional long-dwell chargers would be needed and/or additional segments would need to be 
included in the shift. 
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Chapter V. Discussion and Recommendations 

Results Discussion 
EV adoption in California has the potential to offer significant climate and health benefits. But 
charging behavior must be managed to ensure that grid strain during peak demand conditions is 
not exacerbated and to ensure that EVs fully capture their GHG reduction potential.  
 
This project responds to Southern California Edison’s growing interest in managing EV charging 
behavior. We seek to determine how various economic, technical, and communication 
interventions shift EV charging to different periods of the day, and how this shift impacts human 
health, the environment, and the electrical grid. To do so, we develop models that can simulate 
the impact of any combination of selected interventions. We run a variety of scenarios on our four 
target, long-dwell market segments (workplaces, destination centers, fleets, multi-unit dwellings 
[MUDs]]) and also develop a web-based interface for users to run the model for alternative 
scenarios.  
 
When we look across all scenarios considered in our model, we can see the impact of various 
interventions, as summarized below:  

• Lowering the price of electricity through a discount increases demand in that window and 
over the course of the day. Raising the price in peak periods through a rebate reduces 
demand in that target period and over the whole day.  

• Discounts and a rebates can induce load shifting. This conclusion is based on our model’s 
elasticity values; segment-specific cross-price elasticities may show that load shifting is 
larger under a rebate or discount. 

• The new TOU 2019 rate schedule may have a significant impact on reducing load during 
the evening peak period and increasing load in the midday. 

• Throttling, as a command and control activity, drops load considerably when applied.  
• According to our model, additional communication about price and air pollution can 

amplify behavior response up to 12%. It is unlikely that this benefit will be achieved in 
SCE’s pilot given the communication gap between EV drivers and SCE. Under the pilot, 
EV drivers often do not know the actual price of electricity, let alone receive the types of 
notifications in our model about price changes. This communication barrier makes it 
challenging to induce EV drivers to respond as desired. However, if communication is 
improved, more than a 12% improvement may be possible.  

• Scaling up the number of chargers scales up the response.  
 
From our scenarios and hypotheticals, we can draw some general conclusions about the value of 
these interventions in achieving grid stability, reducing curtailment, and reducing the impact of 
electricity consumption on climate change and air pollution.  
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Our modelled interventions can successfully reduce demand in the evening period by up to 93%. 
Our interventions are less effective at load shifting and increase midday demand by up to 37%. 
These changes in load are based on the elasticities used in our model, which do not consider cross-
price elasticities. Thus, the magnitude of load shifting is less than that of load reduction. These 
elasticities are also pulled from residential segments and do not consider the availability of different 
segments’ drivers at different times and thus do not consider the flexibility, or inflexibility, of 
drivers. To that end, these results are likely overestimates. But this projected emphasis on load 
reduction and not shifting contributes to the impacts we see on cost, emissions, and curtailment, 
as detailed below. 
 
This change in demand typically reduces daily GHG emissions and air pollution emissions 
associated with EV charging by up to 34% and 37% respectively. Emissions in the peak evening 
period can fall by up to 93% for GHGs and 99% for NOx. While we do not eliminate all emissions 
in our modeled scenarios, reducing emissions by one-third is substantial, particularly on a clean 
grid such as the one in California. Our modeled emissions values are also limited by the 
assumptions we make about marginal electricity resources: Our model is conservative and assumes 
that any change in load comes partially from non-zero carbon resources, even in the middle of the 
day. The minimal magnitude of change in emissions means that the financial benefits of these 
changes are also minimal. 
 
In general, changing load behavior as predicted also has a negligible impact on NOx emissions in 
California-designated disadvantaged communities. This is because we only consider the 
marginal impact on DACs and the initial NOx emissions associated with the current low number 
of chargers. However, even a minor change in load in DACs may be significant since that load is 
more likely to occur on days when air quality is already low. Thus, these reductions may be 
significant. Additional analysis is needed.  
 
Our model predicts negligible changes in curtailment, but this does not imply that shifting EV 
charging may not impact curtailment or grid stability. Our model predicts negligible changes 
because 1) we predominantly considered the impact of changing behavior associated with less than 
1,000 chargers. The magnitude of this potential change is low (maximum 1,400 kWh), especially 
when considered to the high amount of curtailment happening (up to 482,000 kwh). Even under 
our 2030 scenarios, the highest change in curtailment we would see is 4,000 kWh. If we consider 
load shifting beyond these segments and thus include more chargers and more of the load that the 
grid may be forced to absorb by 2030, curtailment impacts may rise. 2) We assume curtailment is 
happening from 8:00 a.m. to 6:00 p.m. Thus, any change in behavior during that window can affect 
curtailment. If we only considered curtailment to be of concern from 11:00 a.m. to 3:00 p.m., we 
would expect to see larger decreases in curtailment.  
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Our model periodically predicts an increase in curtailment. This is because our model typically 
predicts changes in demand more than it predicts load shifting and thus predicts a net decline in 
demand. Again, since we assume curtailment can happen over most of the daylight hours, a 
reduction in daily demand exacerbates curtailment.  
 
Relatedly, our interventions generally cause customer costs to fall anywhere from 8 to 55%.  
 
Lastly, it is important to note that all of models only consider the change in demand from a one-
day event. Thus, the magnitude of the impacts is naturally limited.  
 
It is also interesting to compare the output from our modeled interventions to that of our 
hypothetical. Under current charger projected adoption rates for long-dwell segments and overall 
EV adoption rates in Southern California, limiting charger use to target windows would only allow 
us to meet 8-32% of load in 2030. If we shift this percentage of load, we could reduce daily GHG 
emissions by up to 8% and NOx emissions by 12%.115 In other words, if we want to shift everyone 
to charging in our target windows and at these long-dwell segments, we would need to install more 
chargers.116 Alternatively, we could also consider the importance of residential charging.  
 
A summary of specific impacts by segment are listed below. 
 

• Workplaces respond as SCE desires most to a discount, communication, throttling, and 
2019 TOU.  

• Destination centers respond to a discount, throttling, and communication. 2019 TOU 
rates have the potential to further change charging demand as intended. 

• Fleets and MUDs exhibit similar initial behavior and thus response, as both segments 
are typically away from their chargers during the day and plug-in in the evening. A rebate, 
paired with the 2019 TOU rates, is the most effective intervention in these segments.  

  

                                                
115 This is based on conservative 25% natural gas assumptions. If we assume that 100% solar was displaced 
instead, daily emissions would fall 8-26% for GHG and NOx. 
116 This conclusion builds on recent studies suggesting that California has not installed enough EV chargers 
to date. (Nicholas, Hall, and Lutsey, “Quantifying the Electric Vehicle Charging Infrastructure Gap across 
U.S. Markets.”) 
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Recommendations 
We offer the following recommendations for SCE to consider:  
 
Close the Communication Gap 

• Develop a communication and education outreach strategy to help site hosts communicate 
to their end users; consider requiring or offering incentives to site hosts to pass costs or 
communication along to end users. 

• Reconsider messaging: If California is aiming to have a zero-carbon grid by 2045, changing 
charging behavior may become less about GHG emissions and more about grid stability 
and thus messaging about demand response should reflect these infrastructure concerns. 

Test Other Strategies 
• Work with site hosts to eliminate free charging and to instead offer graduated pricing, free 

charging only during specific windows, or some other mechanism that allows price and 
price incentives to be passed along to drivers.  

• If solar curtailment is the primary concern, consider aligning TOU prices to match the 
midday solar period, instead of setting one on-peak and one off-peak price.  

• Craft segment-differentiated strategies. Each market segment in the Charge Ready Pilot 
has different characteristics and load profiles so different demand response strategies are 
needed for each segment. For example, SCE has already identified workplaces as an 
appropriate segment to call load shift events because drivers have access and ability to 
adjust the time at which their car charges while they are at work. So, instead of calling load 
reduction (rebate) events in the evening when employees have left work and there is no 
load, it might be more beneficial to change the time of the load reduction events to earlier 
in the morning when peak load occurs. 

• Limit the time frame of morning throttling. Solar energy may be curtailed in morning 
periods so reducing the amount of charging in those periods by throttling may adversely 
impact curtailment and actually increase costs. Limiting the hours in which throttling 
occurs to only those where negative prices and curtailment do not occur (i.e., in the early 
morning hours, 6:00 - 8:00 a.m.) could reduce curtailment costs.  

• Consider changing pricing from a dollar per kWh to a time-based subscription model. 
Under this model, users could be charged a predetermined fee for a set amount of 
electricity during a set time, like early mornings. If they then exceed that usage in that time, 
they face an additional charge.  

• Consider alternative strategies, such as subscription charging or incorporating local site 
storage. These were outside of the scope of this project, but are discussed briefly in 
Appendix I.  

• Make timer capability or compatibility a requirement for charger vendors. 
  



 
 
 

 
 
 

104 

Expand the Program  
• Include residential segments or install more chargers in long-dwell segments; otherwise we 

will not be able to fully support midday charging.  
Research Driver Behavior 

• Consider tracking how drivers shift their charging from residential to non-residential 
segments and what incentivizes them to do so.  

• Conduct a robust economic study of how EV drivers respond to changes in price in non-
residential segments and then derive the self and cross-price elasticities. These values could 
then be entered into our project’s web-based tool and more robust results could be 
calculated. Our chosen elasticity methods do not reveal much load shifting. Elasticities 
derived from an experiment in our segments may reveal that load shifting is more 
prevalent. 

• Consider running our model with other interventions. We reported on the ones that are 
traditionally applied in these segments, but more may be of interest. 

• Compare the impact of periodic events with price changes against changing long-term 
electricity rates. 
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Glossary 
Baseload Power Electricity resources that cannot be easily turned off or on, like 

nuclear and hydro. 
 
Demand/Load Profile Demand for electricity (kWh) over the course of a day.  
 
Duck Curve  Term used to refer to the phenomenon where there is low demand 

in the middle of the day for fossil fuel based electricity (due to the 
availability of solar energy), followed by a rapid and large demand 
for fossil fuels in the evenings.  

 
Load Reduction A reduction in electricity demand at any point.  
 
Load Shift A shift in electricity demand from one period of the day to another.  
 
Peaker  Power resources that can easily be turned off or on. These are 

typically natural gas or oil and are expensive.  
 
Peak Shaving  A reduction in electricity demand during the peak period (normally 

18:00 – 21:00) through either load reduction or load shift.  
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Appendix I. Alternative Strategies 
The SCE Charge Ready Pilot follows the tradition of modifying the price per kWh to change 
electricity usage. However, this is just one of many strategies that have the potential to shift 
charging behavior or help shape supply and demand. Below is a summary of the challenges of a 
price per kWh incentive and potential alternate strategies.  

Challenges Associated with price/kWh 
The primary challenge associated with using a price per kWh incentive to change demand is that 
most drivers in our target segments do not pay for charging on a price per kWh scale. Site hosts 
pay the utility bills and thus pay the price per kWh fee. Drivers do not. Most of them pay either 
nothing, a fee for parking, or a fee for time used. Thus, incentivizing their behavior shift with a 
price per kWh incentivize is challenging.117 Communication about this price shift thus becomes 
key.  
 
But since the current incentives given to site hosts are relatively minimal on a dollar per kWh basis, 
communication about that metric may not be substantial enough to motivate site hosts to 
encourage their drivers to comply. If, instead, SCE is able to communicate about the overall energy 
savings in dollars for a month or even an entire year, they may be able to encourage site hosts to 
incentivize their own drivers to change their behavior. For example, “you could save up to $200 
per month/year if you encourage drivers to charge from 11:00 a.m. to 3:00 p.m.," may be more 
valuable than stating “you will get $0.05 discount on the price per kwh if you increase consumption 
between 11:00 a.m. to 3:00 p.m.” 

Subscriptions 
Rate design has always been at the center of the utility business model, and it is becoming even 
more important as new distributed energy resources (DERs) like EVs come onto the grid. Time 
of Use rates have been crucial in aligning traditional demand with new, variable forms of 
generation such as solar, but they may not be adequate to manage the growing load from EVs. 
There are some EV rate structures currently available for non-residential locations to help 
minimize the cost of electricity to the site host, but each market segment has a different load 
profiles and these new rates may or may not align with their particular charging availability. 
Moreover, demand charges are based on a site’s peak usage and this billing feature discourages 
many non-residential site costs from installing chargers because they are concerned EVs will 
increase their peak usage and therefore demand charges.118  
 
                                                
117 We are not advocating removing all pricing. Setting a price for charging is typically needed if a behavior 
change is desired. (Winn, “Electric Vehicle Charging at Work: Understanding Workplace PEV Charging 
Behavior to Inform Pricing Policy and Investment Decisions.”) 
118 Fehrenbacher, “Report”; “Demand Charges 101.” 
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In 2018, PG&E realized that many of these current rate structures are no longer appropriate for 
this realm of electricity consumption, and proposed subscription-style EV charging rates.119 These 
rates would allow the customer (i.e. a non-residential site host) to choose how much power they 
will need for their charging stations per month and pay a fee according to that number. This 
method would avoid the challenge of demand charges and encourage more investment in charging 
infrastructure. In addition, this type of billing could work in tandem with the fee structure already 
in use by EVSE vendors, thereby increasing the possibility of price pass through to the end driver. 
As SCE continues to look for new strategies to manage charging, they may want to consider their 
rate designs and specifically subscription style charging.120 

Managed Charging (by Utility) 
In addition to traditional demand response which incentivizes drivers to change their behavior, 
“managed charging” has been proposed as a way to change charging behavior.121 Managed 
charging considers EVs as a resource for the utility to shave peak load, reduce grid constraints, 
and allow more efficient and effective use of excess energy produced by renewable energy 
resources.122 It enables the utility to harness direct control over the chargers (much like  throttling 
in our model), but for all periods of the day. Drivers plug in their vehicles as usual, but the utility 
determines when the vehicle actually gets to charge, based on grid conditions.123 
 
In other words, it should perfectly create the load charging profile that SCE is trying to produce. 
While this policy could be found to be politically contentious and expensive to implement, it is a 
notable alternative strategy. 

Storage 
A common reaction to the complexity of charging EVs using renewable power is to simply store 
the solar energy and deploy it later. Even with battery costs dropping, shaping demand through 
demand response provides the benefit of not having to invest in additional generating capacity for 
utilities. TOU rates is a strategy to help shape demand, but it does not address the issue of 
“clustering” and the “timer peaks”124 associated with drivers adapting to TOU schedules. In a 

                                                
119 Lillian, “PG&E Proposes Subscription-Style EV Charging Rates.” 
120 Lillian. 
121 Cohn, “Managed Charging.” 
122 Zhang, Markel, and Jorgenson, “Value to the Grid from Managed Charging Based on California’s High 
Renewables Study.” 
123 “Managed Charging” is also referred to as V1G (unidirectional electricity flow from the grid into the 
battery), intelligent charging, adaptive charging, or smart charging. 
Myers, “Utilities and Electric Vehicles: The Case for Managed Charging.” 
124 Clustering is when loads, such as EVs, are aggregated within a specific location, causing stress on the 
transformer and infrastructure serving that location. Timer peaks occur when EV drivers adapt to TOU 
schedules by setting timers or changing behavior to charge at the onset of a period with lower rates, 
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study examining the impacts of DERs like EVs within Sacramento Municipal Utility District’s 
(SMUD) service territory it was found that such clustering and poor management could lead to 
17% of SMUD’s transformers potentially being replaced by 2030 due to transformer overload 
from EVs, at an average cost of $7,400 per transformer.125 
 
If transformer stress becomes a localized issue for utility providers, localized strategies might need 
to be deployed. One option is to identify these clustered “hot spots,” areas where transmission 
infrastructure is particularly stressed from EV overloading, and pair these vulnerable transformers 
and substations with energy storage.126 As battery costs continue to decline, incentives could be 
provided to site hosts that exhibit high peak loads despite pricing interventions. Essentially, if 
areas are identified where pricing strategies do not seem to be influencing charging behavior, the 
utility may want to consider storage in those critical areas. 
 
While storage might proactively address the problem of stressed infrastructure, it still does not 
address the issue of grid curtailment. It also does not address the more foundational causes, such 
as influencing charging behavior. 
 
 
 
 
 
 
 
 
  

                                                
resulting in peaks at the start of those periods. Both of these have been found to create stress on utility 
infrastructure.  
125 “Beyond the Meter: Planning the Distributed Energy Future, Volume II: A Case Study of Utility 
Integrated DER Planning from Sacramento Municipal Utility District.” 
126 Engel et al., “The Potential Impact of Electric Vehicles on Global Energy Systems.” 
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Appendix II. Rate Structures 
The following tables list the primary Time-of-Use rates for EVs in SCE’s territory in 2018, as well 
as the rate to be rolled out in late 2019.  
 

Table AII-1. TOU EV-4 (2018) (21-500 kw/month)127 
Hour 

Ending Period Summer Winter 
1 Super Off Peak 0.05 0.06 
2 Super Off Peak 0.05 0.06 
3 Super Off Peak 0.05 0.06 
4 Super Off Peak 0.05 0.06 
5 Super Off Peak 0.05 0.06 
6 Super Off Peak 0.05 0.06 
7 Super Off Peak 0.05 0.06 
8 Super Off Peak 0.05 0.06 
9 Off Peak  0.12 0.09 

10 Off Peak  0.12 0.09 
11 Off Peak  0.12 0.09 
12 Off Peak  0.12 0.09 
13 On Peak 0.29 0.11 
14 On Peak 0.29 0.11 
15 On Peak 0.29 0.11 
16 On Peak 0.29 0.11 
17 On Peak 0.29 0.11 
18 On Peak 0.29 0.11 
19 Off Peak  0.12 0.09 
20 Off Peak  0.12 0.09 
21 Off Peak  0.12 0.09 
22 Off Peak  0.12 0.09 
23 Off Peak  0.12 0.09 
24 Super Off Peak 0.05 0.06 

 
 
 
 
 
 
 

                                                
127 “SCE Advice Letter 3648-E: Schedule TOU-EV-4.” 
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Table AII-2. TOU EV-3 (2018) (<20 kw/month)128 
Hour 

Ending Period Summer Winter 
1 Super Off Peak 0.09 0.10 
2 Super Off Peak 0.09 0.10 
3 Super Off Peak 0.09 0.10 
4 Super Off Peak 0.09 0.10 
5 Super Off Peak 0.09 0.10 
6 Super Off Peak 0.09 0.10 
7 Super Off Peak 0.09 0.10 
8 Super Off Peak 0.09 0.10 
9 Off Peak  0.17 0.14 

10 Off Peak  0.17 0.14 
11 Off Peak  0.17 0.14 
12 Off Peak  0.17 0.14 
13 On Peak 0.36 0.16 
14 On Peak 0.36 0.16 
15 On Peak 0.36 0.16 
16 On Peak 0.36 0.16 
17 On Peak 0.36 0.16 
18 On Peak 0.36 0.16 
19 Off Peak  0.17 0.14 
20 Off Peak  0.17 0.14 
21 Off Peak  0.17 0.14 
22 Off Peak  0.17 0.14 
23 Off Peak  0.17 0.14 
24 Super Off Peak 0.09 0.10 

 
  

                                                
128 “SCE Advice Letter 3648-E: Schedule TOU-EV-3.” 
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Table AII-3. TOU EV-8 (2019) (21-500 kw/month)129 
Hour 

Ending Summer Period Summer Winter Period Winter 
1 Super Off Peak 0.13 Off Peak  0.13 
2 Super Off Peak 0.13 Off Peak  0.13 
3 Super Off Peak 0.13 Off Peak  0.13 
4 Super Off Peak 0.13 Off Peak  0.13 
5 Super Off Peak 0.13 Off Peak  0.13 
6 Super Off Peak 0.13 Off Peak  0.13 
7 Super Off Peak 0.13 Off Peak  0.13 
8 Super Off Peak 0.13 Off Peak  0.13 
9 Super Off Peak 0.13 Super Off Peak 0.07 

10 Super Off Peak 0.13 Super Off Peak 0.07 
11 Super Off Peak 0.13 Super Off Peak 0.07 
12 Super Off Peak 0.13 Super Off Peak 0.07 
13 Super Off Peak 0.13 Super Off Peak 0.07 
14 Super Off Peak 0.13 Super Off Peak 0.07 
15 Super Off Peak 0.13 Super Off Peak 0.07 
16 Super Off Peak 0.13 Super Off Peak 0.07 
17 On Peak 0.42 On Peak 0.29 
18 On Peak 0.42 On Peak 0.29 
19 On Peak 0.42 On Peak 0.29 
20 On Peak 0.42 On Peak 0.29 
21 On Peak 0.42 On Peak 0.29 
22 Super Off Peak 0.13 Off Peak  0.13 
23 Super Off Peak 0.13 Off Peak  0.13 
24 Super Off Peak 0.13 Off Peak  0.13 

 
  

                                                
129 “SCE Advice 3853-E.” 
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Appendix III. Emission Factors  

Peaker Operation and Demographic Data  
The following figures provide operational information on the 10 peaker plants in SCE’s territory, 
including the percentage of power produced on high ozone zones and PM days compared to other 
power plants. Demographic information for the community living within one-mile of each plant 
is also listed. All figures were gathered from the California Power Map.130 
  

                                                
130 “California Power Map — Beta.” 
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Barre Generating Station 

 
Figure AIII-1. Barre Generating Station Annual Average Operations (2015-2017) 

 
 

 
Figure AIII-2. Barre Generating Station Demographic Information  
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Center Generating Station 

 
Figure AIII-3. Center Generating Station Annual Average Operations (2015-2017) 

 

 
Figure AIII-4. Center Generating Station Demographic Information  
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Delano Energy Center, LLC 

 
Figure AIII-5. Delano Energy Center Annual Average Operations (2015-2017) 

 

  
Figure AIII-6. Delano Energy Center Demographic Information  
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Ellwood Generating Station 

 
Figure AIII-7. Ellwood Generating Station Annual Average Operations (2015-2017) 

  

 
Figure AIII-8. Ellwood Generating Station Demographic Information 
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Grapeland/Etiwanda Generating Station 

 
Figure AIII-9. Grapeland/Etiwanda Generating Station Annual Average Operations (2015-

2017) 
 

 
Figure AIII-10. Grapeland/Etiwanda Generating Station Demographic Information  
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Indigo Generating Station 

 
Figure AIII-11. Indigo Generating Station Annual Average Operations (2015-2017) 

 

 
Figure AIII-12. Indigo Generating Station Demographic Information 

  



 
 
 

 
 
 

124 

Long Beach Generating Station 

 
Figure AIII-13. Long Beach Generating Station Annual Average Operations (2015-2017) 

 

 
Figure AIII-14. Long Beach Generating Station Demographic Information 
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McGrath Generating Station 

 
Figure AIII-15. McGrath Generating Station Annual Average Operations (2015-2017) 

 

 
Figure AIII-16. McGrath Generating Station Demographic Information 
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Mira Loma Generating Station  

 
Figure AIII-7. Mira Loma Generating Station Annual Average Operations (2015-2017) 

 

 
Figure AIII-8. Mira Loma Generating Station Demographic Information 
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Sentinel Energy Center, LLC 

 
Figure AIII-17. Sentinel Energy Center Annual Average Operations (2015-2017) 

 

 
Figure AIII-18. Sentinel Energy Center Demographic Information 
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Hourly Fuel Mixes 
Table AIII-1. Hourly Fuel Mix 2018131 

 
 
  

                                                
131 “OASIS Database”; “Total System Electric Generation.” 

Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Renewables 20% 20% 19% 18% 18% 17% 17% 26% 36% 40% 43% 44% 43% 41% 40% 39% 37% 33% 23% 17% 16% 16% 17% 18%
Natural gas 29% 29% 29% 30% 30% 31% 31% 29% 27% 27% 28% 28% 29% 30% 32% 32% 34% 35% 37% 40% 39% 37% 35% 34%
Large hydro 9% 8% 8% 7% 8% 8% 8% 7% 6% 5% 6% 6% 7% 7% 7% 8% 8% 9% 11% 12% 11% 11% 10% 9%

Nuclear 8% 9% 9% 10% 10% 9% 9% 8% 8% 8% 8% 8% 7% 7% 7% 6% 6% 6% 6% 6% 6% 7% 7% 8%
Coal 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Other 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Import-Coal 5% 5% 5% 5% 5% 5% 5% 4% 3% 3% 2% 2% 2% 2% 2% 2% 2% 2% 3% 4% 4% 4% 4% 4%

Import-Large Hydro 2% 2% 2% 2% 2% 2% 3% 2% 2% 1% 1% 1% 1% 1% 1% 1% 1% 1% 2% 2% 2% 2% 2% 2%
Import-Natural Gas 3% 3% 4% 4% 4% 4% 4% 3% 2% 2% 2% 1% 1% 2% 1% 1% 2% 2% 2% 3% 3% 3% 3% 3%

Import-Nuclear 3% 3% 3% 4% 3% 4% 4% 3% 2% 2% 2% 1% 1% 1% 1% 1% 1% 2% 2% 3% 3% 3% 3% 3%
Import-Oil 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Import-Other (Petroleum Coke/Waste Heat)0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Import-Biomass 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Import-Geothermal 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Import-Small Hydro 1% 1% 1% 1% 1% 1% 1% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 1% 1% 1%

Import-Solar 2% 2% 2% 2% 2% 2% 2% 2% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 2% 2% 2% 2% 2%
Import-Wind 6% 6% 6% 6% 6% 6% 6% 5% 4% 3% 3% 2% 2% 3% 2% 2% 3% 3% 4% 4% 5% 5% 5% 5%

Import-Unspecified Sources 11% 11% 11% 11% 11% 11% 11% 9% 7% 6% 5% 5% 4% 5% 4% 5% 5% 5% 7% 8% 9% 9% 10% 10%
Average Import 3% 3% 3% 4% 3% 4% 4% 3% 2% 2% 2% 1% 1% 1% 1% 1% 1% 2% 2% 3% 3% 3% 3% 3%

2018 Fuel Mix
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Table AIII-2. Conservative Hourly Fuel Mix 2030132 

 
 

Table AIII-3. Diverse Hourly Fuel Mix 2030133 

 
 
 
                                                
132 Brinkman et al., “Low Carbon Grid Study.” 
133 Brinkman et al. 

Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Renewables 31% 32% 31% 31% 31% 31% 31% 38% 46% 48% 51% 52% 54% 52% 51% 48% 46% 43% 40% 35% 35% 34% 33% 34%
Natural gas 25% 25% 25% 25% 25% 25% 25% 25% 25% 25% 25% 25% 25% 25% 25% 25% 25% 25% 25% 25% 25% 25% 25% 25%

Storage 3% 3% 4% 4% 3% 3% 3% 0% 0% 0% 0% 0% 0% 0% 0% 0% 2% 2% 2% 2% 2% 3% 3% 3%
Large hydro 8% 8% 7% 7% 7% 8% 8% 7% 6% 6% 6% 5% 5% 5% 7% 8% 8% 9% 10% 11% 11% 10% 10% 9%

Import-Large Hydro 7% 7% 7% 7% 7% 7% 7% 6% 5% 4% 3% 3% 3% 3% 3% 3% 3% 4% 4% 5% 6% 6% 6% 6%
Import-Natural Gas 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3%

Import-Nuclear 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3%
Import-Biomass 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3%

Import-Geothermal 0.4% 0.4% 0.4% 0.4% 0.4% 0.4% 0.4% 0.3% 0.3% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.3% 0.3% 0.3% 0.3% 0.3%
Import-Small Hydro 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1%

Import-Solar 0% 0% 0% 0% 0% 2% 2% 2% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 0% 0% 0% 0% 0%
Import-Wind 6% 6% 6% 6% 6% 6% 6% 4% 3% 3% 2% 1% 1% 3% 2% 2% 2% 3% 4% 4% 4% 5% 5% 5%

Import-Unspecified Sources 9% 9% 10% 10% 10% 9% 9% 7% 4% 3% 3% 2% 1% 2% 1% 3% 3% 4% 4% 8% 8% 7% 7% 7%

2030 Conservative Fuel Mix

Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Renewables 28% 28% 27% 27% 27% 26% 25% 34% 44% 48% 71% 72% 72% 71% 72% 71% 37% 33% 23% 17% 16% 16% 17% 18%
Natural gas 21% 21% 21% 22% 22% 23% 23% 21% 19% 19% 0% 0% 0% 0% 0% 0% 26% 27% 29% 32% 31% 29% 27% 26%

Storage 2% 2% 2% 2% 3% 3% 3% 1% 0% 0% 0% 0% 0% 0% 0% 0% 5% 6% 7% 9% 9% 8% 9% 9%
Large hydro 10% 10% 10% 9% 8% 8% 8% 7% 6% 6% 6% 6% 7% 7% 7% 8% 8% 9% 11% 11% 11% 10% 10% 9%

Import-Large Hydro 7% 7% 7% 7% 7% 7% 7% 6% 5% 4% 3% 3% 3% 3% 3% 3% 3% 4% 4% 5% 6% 6% 6% 6%
Import-Natural Gas 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3%

Import-Nuclear 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3%
Import-Biomass 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4%

Import-Geothermal 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5%
Import-Small Hydro 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1%

Import-Solar 0% 0% 0% 0% 0% 0% 2% 2% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 0% 0% 0% 0% 0%
Import-Wind 6% 6% 6% 6% 6% 6% 6% 5% 4% 3% 3% 2% 2% 3% 2% 2% 2% 3% 4% 4% 5% 5% 5% 5%

Import-Unspecified Sources 10% 10% 11% 11% 11% 11% 10% 8% 5% 3% 2% 0% 0% 0% 0% 0% 2% 2% 4% 6% 7% 9% 10% 11%

2030 Diverse Fuel Mix
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Appendix IV. Pilot Event Impacts 
As of February 2019, SCE had run 8 pilot events, 4 of them as load reduction (rebates) and 4 as 
load shifting (discounts). Here we summarize the demand, GHG, air pollution, curtailment, and 
costs impacts of each of these events. For simplicity, we provide full details on 4 events per 
segment (2 load reduction and 2 load shift). We provide graphs of the load change for all other 
events.  
 
Note that pilot results are aggregated over an entire segment, so results may not be representative 
of individual sites. Each event is compared to a baseline average for the corresponding month. 
These baseline averages are aggregated by month hour and have been scaled for the number of 
chargers that "participated" during each event. There may be a different number of chargers in 
each segment participating in an event because site hosts have the option to opt out of demand 
response events.  The baseline data also excluded weekends in order to be consistent with the days 
on which events were called.  

Workplaces 
Load Reduction Events (July 31 and July 11) 
As expected, load reduction in the intervention window of 4:00 - 9:00 p.m. is minimal, as 
workplaces traditional load profile is not well suited to respond to rebates. In the July 31st event, 
an overall increase in usage suggests that load reduction efforts did not work. In the July 16th a 
mild increase in the target reduction window further suggests that load reduction in the afternoons 
is ineffective. Instead, workplaces may be more responsive to morning load reduction events.  
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July 31, 2018 Workplace Pilot Event:  
$0.10 Rebate, 50% Throttling, 396 Chargers, 2018 TOU 

 
Figure AIV-1. July 31, 2018 Workplace Load Reduction Event Graph 

 
Table AIV-1. July 31, 2018 Workplace Load Reduction Event Demand Impacts 

Time Demand 
Initial (kWh) New (kWh) Change (%) 

Intervention / Peak (4 - 9 pm) 242 292 21% 
Other 3,062 3,807 24% 
Total 3,304 4,099 24% 

 
Table AIV-2. July 31, 2018 Workplace Load Reduction Event Emissions and Environmental Justice 

Impacts 
Time GHGs NOx 

Initial 
(kg) 

New 
(kg) 

Change 
(%) 

Initial 
(kg) 

New 
(kg) 

Change 
(all) (%) 

Change 
(DACs) (kg) 

Intervention / 
Peak (4 - 9 pm) 52.55 68.03 29% 0.19 0.24 27% 0.01 

Other 595.54 728.46 22% 2.17 2.66 22% N/A 
Total 648.09 796.49 23% 2.36 2.89 23% 0.01 

 
Event Highlights 

• A load increase in the target window suggests evening throttling and price incentives are 
not effective.  

• GHG and air pollution emissions rose, causing a $7.42 social carbon cost and $11.70 NOx 
cost. The impact in DACs was negligible.  

• Consumer costs rose from $491.35 to $542.86, a $51.51 increase. 
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July 11, 2018 Workplace Pilot Event:  
$0.10 Rebate, 50% Throttling, 464 Chargers, 2018 TOU 

 
Figure AIV-2. July 11, 2018 Workplace Load Reduction Event Graph 

 
Table AIV-3. July 11, 2018 Workplace Load Reduction Event Demand Impacts 

Time Demand 
Initial (kWh) New (kWh) Change (%) 

Intervention / Peak (4 - 9 pm) 284 315  11% 
Other 3,588 3,441  -4% 
Total 3,872 3,755  -3% 

 
Table AIV-4. July 11, 2018 Workplace Load Reduction Event Emissions and Environmental Justice 

Impacts 
Time GHGs NOx 

Initial 
(kg) 

New 
(kg) 

Change 
(%) 

Initial 
(kg) 

New 
(kg) 

Change 
(all) (%) 

Change 
(DACs) (kg) 

Intervention / 
Peak (4 - 9 pm) 61.57 69.07 12% 0.22 0.25 14% 0.01 

Other 697.81 666.50 -5% 2.55 2.43 -5% N/A 
Total 759.38 735.57 -3% 2.77 2.68 -3% 0.01 

 
Event Highlights 

• An increase of 30.85 kWh in the target window (4:00 – 9:00 p.m.) suggests throttling and 
price incentives were not effective.  

• GHGs and NOx fell slightly, with negligible social financial benefit.  
• The impact on DACs was negligible.  
• Consumer costs fell $62.03, from $575.72 to $513.70. 
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Load Shift Events (November 14 and 28) 
Load shift events have the potential to impact workplace load more significantly because they 
operate in the period of time when most people are at work. In both November scenarios below 
we can see the impact of throttling happening in the morning periods (6:00 – 11:00 a.m.) and a 
slight load shift into the target window (11:00 a.m. - 3:00 p.m.). Although there was a 36 kWh 
increase in usage between those midday hours, we are still skeptical that the discount had an impact 
on drivers’ behavior since we know that they were not receiving that price incentive. Overall it 
seems that the November 14th and 28th events follow the general workplace usage pattern, but 
decreased overall usage slightly, most likely due to throttling. 
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November 14, 2018 Workplace Pilot Event:  
$0.05 Discount, 50% Throttling, 546 Chargers, 2018 TOU 

 
Figure AIV-3. November 14, 2018 Workplace Load Shift Event Demand Graph 

 
Table AIV-5. November 14, 2018 Workplace Load Shift Event Demand Impacts 

Time Demand 
Initial (kWh) New (kWh) Change (%) 

Intervention (11am - 3pm)  1,574 1,610 2% 
Peak (4 - 9 pm) 576 448 -4% 
Other 3,191 3,039 -5% 
Total 5,341 5,097 -5% 

 
Table AIV-6. November 14, 2018 Workplace Load Shift Event Emissions and Environmental Justice 

Impacts 
Time GHGs NOx 

Initial 
(kg) 

New 
(kg) 

Change 
(%) 

Initial 
(kg) 

New 
(kg) 

Change 
(all) (%) 

Change 
(DACs) (kg) 

Intervention  
(11am – 3pm) 274.65 278.54 1% 0.98 0.99 1% N/A 

Peak (4 - 9 pm) 124.93 65.04 -48% 0.45 0.32 -29% -0.02 
Other 619.09 608.24 -2% 2.26 2.23 -8% N/A 
Total 1,018.67 951.83 -7% 3.69 3.54 -4% -002 

 
Event Highlights 

• There was an increase in demand in the target window of 36 kWh, and a decrease in the 
peak period of 128 kWh. The overall decline in daily demand increased curtailment by 
0.04%, costing $21.88. 

• GHG emissions and NOx emission fell slightly, with a negligible reduction in social costs. 
• Consumer costs fell from $495.53 to $383.69, a $111.84 reduction. 
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November 28, 2018 Workplace Pilot Event:  
$0.05 Discount, 50% Throttling, 434 Chargers, 2018 TOU 

 
Figure AIV-4. November 28, 2018 Workplace Load Shift Event Demand Graph 

 
Table AIV-7. November 28, 2018 Workplace Load Shift Event Demand Impacts 

Time Demand 
Initial (kWh) New (kWh) Change (%) 

Intervention (11 am - 3 pm) 1,251 1,145 -9% 
Peak (4 - 9 pm) 458 412 -10% 
Other 2,536 2,567 1% 
Total 4,245 4,124 -3% 

 
Table AIV-8. November 28, 2018 Workplace Load Shift Event Emissions and Environmental Justice 

Impacts 
Time GHGs NOx 

Initial 
(kg) 

New 
(kg) 

Change 
(%) 

Initial 
(kg) 

New 
(kg) 

Change 
(all) (%) 

Change 
(DACs) (kg) 

Intervention  
(11am – 3pm) 218.31 206.89 -5% 0.78 0.74 -5% N/A 

Peak (4 - 9 pm) 99.30 76.68 -23% 0.36 0.31 -14% -0.01 
Other 492.10 516.69 5% 1.80 1.90 6% N/A 
Total 809.71 800.26 -1% 2.93 2.95 0% -0.01 

	
Event Highlights 

• There was an increase in demand in the target window of 121 kWh, and a decrease in the 
peak period of 46 kWh. The overall decline in daily demand increased curtailment by 
0.04%, $26.67 

• GHG emissions and NOx emission fell slightly, with a negligible reduction in social costs. 
• Consumer costs fell by $79.49, from $393.88 to $314.39. 
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Additional Events 
August 30, 2018 Workplace Pilot Event:  

$0.10 Rebate, 50% Throttling, 442 Chargers, 2018 TOU 

 
Figure AIV-5. August 30, 2018 Workplace Load Reduction Event Graph 

 
 

September 27, 2018 Workplace Pilot Event:  
$0.10 Rebate, 50% Throttling, 414 Chargers, 2018 TOU 

 
Figure AIV-6. September 27, 2018 Workplace Load Reduction Event Graph 
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October 16, 2018 Workplace Pilot Event:  
$0.05 Discount, 50% Throttling, 494 Chargers, 2018 TOU 

 
Figure AIV-7. October 16, 2018 Workplace Load Shift Event Graph 

 
 

October 30, 2018 Workplace Pilot Event:  
$0.05 Discount, 50% Throttling, 377 Chargers, 2018 TOU 

 
Figure AIV-8. October 30, 2018 Workplace Load Shift Event Graph 
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Destination Centers 
When moving from workplaces to destination centers, it is important to notice the change in scale. 
Peak usage in workplaces varies between 600 and 800 kW; destination centers have much smaller 
peak usage, ranging from 60 to 100 kW because they have fewer chargers. Destination centers 
seem to be much more variable in their load profile because the types of locations they include 
and the behaviors of people charging at these locations are not always consistent or predictable. 
However, there does seem to still be a peak period in the morning hours, and then three to four 
other smaller peaks throughout the rest of the day. 
 
Load Reduction Events (July 11 and July 31) 
In the July 11th event, demand in the intervention hours (4:00 – 9:00 p.m.) increased about 10 kWh 
and in the July 31st event, demand decreased in these hours by 20 kWh. These different responses 
suggest that the rebate and throttling may not be very effective at inducing demand response from 
EV drivers since load in these hours is relatively low. It is difficult to know how much demand 
was actually reduced on that day without knowing the baseline demand during those hours on the 
day of the event, but compared to the monthly baseline, these days did not respond according to 
our predictions.  
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July 11, 2018 Destination Center Pilot Event:  
$0.10 Rebate, 50% Throttling, 176 Chargers, 2018 TOU 

 
Figure AIV-9. July 11, 2018 Destination Center Load Reduction Event Demand Impacts 

 
Table AIV-9. July 11, 2018 Destination Center Load Reduction Event Demand Impacts 

Time Demand 
Initial (kWh) New (kWh) Change (%) 

Intervention / Peak (4 - 9 pm) 115  126  9% 
Other 515  535  4% 
Total 630  660  5% 

 
Table AIV-10. July 11, 2018 Destination Center Load Reduction Event Emissions and Environmental 

Justice Impacts 
Time GHGs NOx 

Initial 
(kg) 

New 
(kg) 

Change 
(%) 

Initial 
(kg) 

New 
(kg) 

Change 
(all) (%) 

Change 
(DACs) (kg) 

Intervention / 
Peak (4 - 9 pm) 26.12 21.51 -18% 0.09 0.10 11% 0 

Other 103.51 103.37 ~0% 0.38 0.38 -1% N/A 
Total 129.63 124.88 -4% 0.47 0.48 2% 0 

 
Event Highlights 

• There was an increase in demand in the intervention/peak period of 11 kWh. The overall 
increase in daily demand reduced curtailment by 0.01%, saving $2.87. 

• GHG and air pollution emissions decreased slightly, with a negligible impact on social 
costs. There was no impact in DACs.  

• Consumer costs decreased by 2.7%, from $94.20 to $91.62. 
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July 31, 2018 Destination Center Pilot Event:  
$0.10 Rebate, 50% Throttling, 172 Chargers, 2018 TOU 

 
Figure AIV-10. July 31, 2018 Destination Center Load Reduction Event Demand Graph 

 
Table AIV-11. July 31, 2018 Destination Center Load Reduction Event Demand Impacts 

Time Demand 
Initial (kWh) New (kWh) Change (%) 

Intervention / Peak (4 - 9 pm) 136  116 -15% 
Other 606  455 -25% 
Total  742 571 -23% 

 
Table AIV-12. July 31, 2018 Destination Center Load Reduction Event Emissions and Environmental 

Justice Impacts 
Time GHGs NOx 

Initial 
(kg) 

New 
(kg) 

Change 
(%) 

Initial 
(kg) 

New 
(kg) 

Change 
(all) (%) 

Change 
(DACs) (kg) 

Intervention / 
Peak (4 - 9 pm) 30.78 21.67 -30% 0.11 0.09 -18% 0 

Other 121.94 99.11 -19% 0.45 0.36 -18% N/A 
Total 152.72 120.77 -21% 0.56 0.46 -18% 0 

 
Event Highlights 

• There was an reduction in demand in the intervention/peak period of 20 kWh. The overall 
decrease in daily demand increased curtailment by 0.04%, a $13.77 cost. 

• GHG emissions fell by 21% and air pollution emissions fell by 18%. The reduction in 
social costs was negligible. There was also negligible impact in DACs.  

• Consumer costs decreased by 32.5%, from $110.90 to $74.85. 
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Load Shift Events (November 14 and 28) 
Load shift events may be more appropriate for the destination center segment because this 
segment often has a morning peak. In the November 14th event we can see the effect of throttling 
between the hours of 6:00 and 11:00 a.m. There does appear to be an increase in load directly after 
this throttling period around 12:00 p.m., and that spike is inconsistent with general load profile 
patterns for that month, suggesting that there may have been a shift from the morning to 
afternoon period. The November 28th event shows a similar reduction in load in the morning 
period compared to the monthly baseline, however there is no increase in demand in the following 
target period meaning that load was not shifting as intended. Both events closely reflect our 
modeled scenarios (D2 and D3-F) in the morning period which would be expected because of the 
direct nature of throttling.  It seems that destination centers are good candidates for morning 
throttling, but because there is not a consistent increase in the following target period, other 
strategies outside of a price discount should be considered.  
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November 14, 2018 Destination Center Pilot Event:  
$0.05 Discount, 50% Throttling, 117 Chargers, 2018 TOU 

 
Figure AIV-11. November 14, 2018 Destination Center Load Shift Event Demand Graph 

 
Table AIV-13. November 14, 2018 Destination Center Load Shift Event Demand Impacts 

Time Demand 
Initial (kWh) New (kWh) Change (%) 

Intervention (11 am - 3 pm) 195 174 -11% 
Peak (4 - 9 pm)  163 224 38% 
Other  388 307 -21% 
Total  745 705 -5% 

 
Table AIV-14. November 14, 2018 Destination Center Load Shift Event Demand Impacts 

Time GHGs NOx 
Initial 

(kg) 
New 
(kg) 

Change 
(%) 

Initial 
(kg) 

New 
(kg) 

Change 
(all) (%) 

Change 
(DACs) (kg) 

Intervention  
(11 am - 3 pm) 34.08 31.77 -7% 0.12 0.11 -6% N/A 

Peak (4 - 9 pm) 36.62 56.77 55% 0.13 0.19 47% 0.01 
Other 79.25 65.56 -17% 0.29 0.24 -17% N/A 
Total 149.94 154.10 3% 0.54 0.55 1% 0.01 

 
Event Highlights 

• There was an 11% decrease in demand in the target window, and a 38% increase in the 
peak period. The overall 5% decline in daily demand increased curtailment by 0.01% and 
costs by $8.05. 

• GHG and air pollution emissions increased slightly, with a negligible impact on social 
costs. There was minimal impact in DACs.  

• Consumer costs reduced by 19.4%, from $68.99 to $55.63 
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November 28, 2018 Destination Center Pilot Event:  
$0.05 Discount, 50% Throttling, 146 Chargers, 2018 TOU 

 
Figure AIV-12. November 28, 2018 Destination Center Load Shift Event Demand Graph 

 
Table AIV-15. November 28, 2018 Destination Center Load Shift Event Demand Impacts 

Time Demand 
Initial (kWh) New (kWh) Change (%) 

Intervention (11 am - 3 pm) 244 125 -49% 
Peak (4 - 9 pm)  203 170 -16% 
Other  484 276 -43% 
Total  930 570 -39% 

 
Table AIV-16. November 28, 2018 Destination Center Load Shift Event Demand Impacts 

Time GHGs NOx 
Initial 

(kg) 
New 
(kg) 

Change 
(%) 

Initial 
(kg) 

New 
(kg) 

Change 
(all) (%) 

Change 
(DACs) (kg) 

Intervention  
(11 am - 3 pm) 42.52 29.68 -30% 0.15 0.11 -28% N/A 

Peak (4 - 9 pm) 45.70 30.48 -3% 0.16 0.13 -20% -0.01 
Other 98.89 57.04 -42% 0.36 0.31 -42% N/A 
Total 187.10 117.20 -37% 0.68 0.45 -34% -0.01 

 
Event Highlights 

• There was an 49% decrease in demand in the target window, and a 16% decrease in the 
peak period. The overall 39% decline in daily demand increased curtailment by 0.04%, 
costing $23.71. 

• GHG and air pollution emissions decreased by about 35% each, with a negligible decrease 
in social carbon costs and a $5.03 decrease in NOx costs. There was minimal impact in 
DACs.  

• Consumer costs decreased by 46%, from $86.09 to $46.36 
  



 
 
 

 
 
 

144 

Additional Events 
August 30, 2018 Destination Center Pilot Event:  

$0.10 Rebate, 50% Throttling, 133 Chargers, 2018 TOU 

 
Figure AIV-13. August 30, 2018 Destination Center Load Reduction Event Demand Graph 

 
 

September 27, 2018 Destination Center Pilot Event:  
$0.10 Rebate, 50% Throttling, 176 Chargers, 2018 TOU 

 
Figure AIV-14. September 27, 2018 Destination Center Load Reduction Event Demand Graph 
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October 16, 2018 Destination Center Pilot Event:  
$0.05 Discount, 50% Throttling, 110 Chargers, 2018 TOU  

 
Figure AIV-15. October 16, 2018 Destination Center Load Shift Event Demand Graph 

 
 

October 30, 2018 Destination Center Pilot Event:  
$0.05 Discount, 50% Throttling, 150 Chargers, 2018 TOU 

 
Figure AIV-16. October 30, 2018 Destination Center Load Shift Event Demand Graph 
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Fleets 
Fleets are similar to destination centers in that their peak usage ranges between 30 and 80 kW, but 
they differ with regard to when that peak load occurs. Peak load generally occurs in the evening 
hours when fleet vehicles return from working that day, but there is also a small increase in the 
morning hours, probably from vehicles charging before they leave for the day. 
 
In general, load increases across all hours for these events during load shifting events and load 
reduction events. This may be because fleets have more limitations in terms of when they are 
working and when they can charge, so they may have very different elasticities compared to other 
segments. Utilities might consider additional price incentives or other communication or 
technological strategies to encourage load shifting from late afternoon to middle of the night 
because it seems fleets have that flexibility. 
 
Load Reduction Events (July 11 and July 31) 
In the July 11th load reduction events it is obvious to see where throttling occurred based on the 
flattening of load between 4:00 and 9:00 p.m. This throttling has a significant effect on peak 
shaving; however, overall load in this period actually increases by 8.82 kWh. This fact begs the 
question: does SCE truly want a reduction in demand in the 4:00 - 9:00 p.m. period, or for the 
current load to just be smoother? If it is the latter, then throttling could be a very effective strategy. 
Unfortunately, the opposite occurs in the July 31st event which suggests that throttling may not 
have been as effective. Overall load in the July 31st event increased by 142 kWh versus 22 kWh in 
the July 11th event so strategies currently implemented for fleets may need to be reconsidered.  
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July 11, 2018 Fleet Pilot Event:  
$0.10 Rebate, 50% Throttling, 32 Chargers, 2018 TOU 

 
Figure AIV-17. July 11, 2018 Fleets Load Reduction Event Demand Graph 

 
Table AIV-17. July 11, 2018 Fleets Load Reduction Event Demand Impacts 

Time Demand 
Initial (kWh) New (kWh) Change (%) 

Intervention / Peak (4 - 9 pm) 82  91 11% 
Other  89 102 14% 
Total  171 193 13% 

 
Table AIV-18. July 11, 2018 Fleets Load Reduction Event Emissions and Environmental Justice Impacts 

Time GHGs NOx 
Initial 

(kg) 
New 
(kg) 

Change 
(%) 

Initial 
(kg) 

New 
(kg) 

Change 
(all) (%) 

Change 
(DACs) (kg) 

Intervention / 
Peak (4 - 9 pm) 17.98 16.46 -8% 0.06 0.07 14% 0 

Other 17.90 19.61 10% 0.06 0.07 9% N/A 
Total 35.88 36.07 1% 0.13 0.14 12% 0 

 
Event Highlights 

• There was an 11% increase in demand in the target window. The overall 13% increase in 
daily demand increased curtailment negligibly.  

• GHG increased slightly and air pollution emissions increased by 12%, with a negligible 
impact on social costs. There was no impact in DACs.  

• Consumer costs increased by 8.2%, from $34.54 to $31.70. 
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July 31, 2018 Fleet Pilot Event:  
$0.10 Rebate, 50% Throttling, 52 Chargers, 2018 TOU 

 
Figure AIV-18. July 31, 2018 Fleets Load Reduction Event Demand Graph 

 
Table AIV-19. July 31, 2018 Fleets Load Reduction Event Demand Impacts 

Time Demand 
Initial (kWh) New (kWh) Change (%) 

Intervention / Peak (4 - 9 pm) 133  166  25% 
Other 145  255  75% 
Total 278  421  51% 

 
Table AIV-20. July 31, 2018 Fleets Load Reduction Event Emissions and Environmental Justice 

Impacts 
Time GHGs NOx 

Initial 
(kg) 

New 
(kg) 

Change 
(%) 

Initial 
(kg) 

New 
(kg) 

Change 
(all) (%) 

Change 
(DACs) (kg) 

Intervention / 
Peak (4 - 9 pm) 29.22 38.87 33% 0.11 0.14 32% 0.01 

Other 29.09 47.74 64% 0.11 0.17 63% N/A 
Total 58.31 86.60 49% 0.21 0.31 48% 0.01 

 
Event Highlights 

• There was an 25% increase in demand in the target window. The overall 51% increase in 
daily demand increased curtailment by 0.02%, costing $8.23. 

• GHG and air pollution emissions increased significantly in terms of proportion, but there 
was a negligible impact on social costs. There was no impact in DACs.  

• Consumer costs increased by 44%, from $56.14 to $80.70. 
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Load Shift Events (November 14 and 28) 
Because there is such little load in the morning and early afternoon periods, load shifting strategies 
do not seem to be very effective for fleets.  
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November 14, 2018 Fleet Pilot Event:  
$0.05 Discount, 50% Throttling, 68 Chargers, 2018 TOU 

 
Figure AIV-19. November 14, 2018 Fleets Load Shift Event Demand Graph 

 
Table AIV-21. November 14, 2018 Fleets Load Shift Event Demand Impacts 

Time Demand 
Initial (kWh) New (kWh) Change (%) 

Intervention (11 am - 3 pm) 66 118 79% 
Peak (4 - 9 pm)  148 225 51% 
Other 216 267 24% 
Total 431 610 42% 

 
Table AIV-22. November 14, 2018 Fleets Load Shift Event Demand Impacts 

Time GHGs NOx 
Initial 

(kg) 
New 
(kg) 

Change 
(%) 

Initial 
(kg) 

New 
(kg) 

Change 
(all) (%) 

Change 
(DACs) (kg) 

Intervention  
(11 am - 3 pm) 11.63 17.24 48% 0.04 0.06 45% N/A 

Peak (4 - 9 pm) 33.32 46.87 41% 0.12 0.20 64% 0.01 
Other 48.80 59.50 22% 0.18 0.22 21% N/A 
Total 93.74 123.61 32% 0.34 0.48 39% N/A 

 
Event Highlights 

• There was an 25% increase in demand in the target window and a 51% increase in the 
peak period. The overall 51% increase in daily demand increased curtailment by 0.02%, 
costing $8.23. 

• GHG and air pollution emissions increased slightly, with a negligible impact on social 
costs. There was no impact in DACs.  

• Consumer costs increased by 32.3%, from $38.84 to $51.40. 
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November 28, 2018 Fleet Pilot Event:  
$0.05 Discount, 50% Throttling, 74 Chargers, 2018 TOU 

 
Figure AIV-20. November 28, 2018 Fleets Load Shift Event Demand Graph 

 
Table AIV-23. November 28, 2018 Fleets Load Shift Event Demand Impacts 

Time Demand 
Initial (kWh) New (kWh) Change (%) 

Intervention (11 am - 3 pm) 72 104 44% 
Peak (4 - 9 pm)  161 173 7% 
Other  235 292 24% 
Total  469 569 21% 

 
Table AIV-24. November 28, 2018 Fleets Load Shift Event Demand Impacts 

Time GHGs NOx 
Initial 

(kg) 
New 
(kg) 

Change 
(%) 

Initial 
(kg) 

New 
(kg) 

Change 
(all) (%) 

Change 
(DACs) (kg) 

Intervention  
(11 am - 3 pm) 12.66 16.08 27% 0.05 0.06 25% N/A 

Peak (4 - 9 pm) 36.26 42.61 18% 0.13 0.14 9% 0 
Other 53.10 67.88 28% 0.20 0.25 28% N/A 
Total 102.02 126.57 24% 0.37 0.45 21% 0 

 
Event Highlights 

• There was an 44% increase in demand in the target window and a 7% increase in the peak 
window. The overall 21% increase in daily demand decreased curtailment by 0.02%, 
reducing costs by $9.36. 

• GHG and air pollution emissions increased, with a negligible impact on social costs. There 
was no impact in DACs.  

• Consumer costs increased by 32%, from $38.84 to $51.40. 
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Additional Events 
August 30, 2018 Fleet Pilot Event:  

$0.10 Rebate, 50% Throttling, 10 Chargers, 2018 TOU 

 
Figure AIV-21. August 30, 2018 Fleets Load Shift Event Demand Graph 

 
September 27, 2018 Fleet Pilot Event:  

$0.10 Rebate, 50% Throttling, 24 Chargers, 2018 TOU 

 
Figure AIV-22. September 27, 2018 Fleets Load Reduction Event Demand Graph 
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October 16, 2018 Fleet Pilot Event:  
$0.05 Discount, 50% Throttling, 83 Chargers, 2018 TOU 

 
Figure AIV-23. October 16, 2018 Fleets Load Shift Event Demand Graph 

 
 

October 30, 2018 Fleet Pilot Event:  
$0.05 Discount, 50% Throttling, 67 Chargers, 2018 TOU 

 
Figure AIV-24. October 30, 2018 Fleets Load Shift Event Demand Graph 
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Multi-Unit Dwellings (MUDs) 
Although there are many less chargers and much less usage in MUDs compared to other segments, 
we can still get a sense for the daily habits of EV drivers who use these facilities. The event data 
reveals several peaks throughout the day (mainly lunchtime) and then a much larger peak in the 
evening when drivers come home from work.  
 
Load Reduction Events (July 11 and July 31) 
The July 11th event follows the general trend of MUD average monthly usage, but we can see the 
effect of throttling in the evening period by the dip in usage that occurs around 7:00 p.m. Again, 
it is unclear how much the rebate affects their decision to charge as compared to 50% throttling, 
but based on the fact that the usage is about half that of the baseline, it seems that the price 
incentive did not have much of an impact. In the July 31st event, usage increased by almost 20 
kWh, suggesting throttling and the rebate had little to no effect on customer behavior probably 
because of a lack of information.  
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July 11, 2018 Multi-Unit Dwelling Pilot Event:  
$0.10 Rebate, 50% Throttling, 23 Chargers, 2018 TOU 

 
Figure AIV-25. July 11, 2018 MUDs Load Reduction Event Demand Graph 

 
Table AIV-25. July 11, 2018 MUDs Load Reduction Event Demand Impacts 

Time Demand 
Initial (kWh) New (kWh) Change (%) 

Intervention / Peak (4 - 9 pm) 36 18 -49% 
Other  50 31 -38% 
Total  87 50 -43% 

 
Table AIV-26. July 11, 2018 MUDs Load Reduction Event Emissions and Environmental Justice 

Impacts 
Time GHGs NOx 

Initial 
(kg) 

New 
(kg) 

Change 
(%) 

Initial 
(kg) 

New 
(kg) 

Change 
(all) (%) 

Change 
(DACs) (kg) 

Intervention / 
Peak (4 - 9 pm) 8.53 2.29 -73% 0.03 0.01 -59% 0 

Other 11.23 6.03 -46% 0.04 0.02 -47% N/A 
Total 19.76 8.32 -58% 0.07 0.03 -52% 0 

 
Event Highlights 

• There was an 49% decrease in demand in the target window. The overall 43% decrease in 
daily demand had a negligible impact on curtailment and associated costs. 

• GHG and air pollution emissions decreased significantly proportionately, but with a 
negligible impact on social costs. There was no impact in DACs.  

• Consumer costs decreased by 39%, from $12.91 to $7.90.  
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July 31, 2018 Multi-Unit Dwelling Pilot Event:  
$0.10 Rebate, 50% Throttling, 22 Chargers, 2018 TOU 

 
Figure AIV-26. July 31, 2018 MUDs Load Reduction Event Demand Graph 

 
Table AIV-27. July 31, 2018 MUDs Load Reduction Event Demand Impacts 

Time Demand 
Initial (kWh) New (kWh) Change (%) 

Intervention / Peak (4 - 9 pm) 29 47 65% 
Other  53 49 -7% 
Total  82 96 18% 

 
Table AIV-28. July 31, 2018 MUDs Load Reduction Event Emissions and Environmental Justice 

Impacts 
Time GHGs NOx 

Initial 
(kg) 

New 
(kg) 

Change 
(%) 

Initial 
(kg) 

New 
(kg) 

Change 
(all) (%) 

Change 
(DACs) (kg) 

Intervention / 
Peak (4 - 9 pm) 6.72 13.28 98% 0.02 0.04 77% 0 

Other 11.84 10.16 -14% 0.04 0.04 -15% N/A 
Total 18.56 23.45 26% 0.07 0.08 18% 0 

 
Event Highlights 

• There was an 65% increase in demand in the target window. The overall 18% increase in 
daily demand had a negligible impact on curtailment. 

• GHG and air pollution emissions increased significantly proportionately, but with a 
negligible impact on social costs. There was no impact in DACs.  

• Consumer costs increased by 32%, from $11.69 to $15.50. 
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Load Shift Events (November 14 and 28) 
The limited number of MUDs participating in these events makes it difficult to draw general 
conclusions. It is very difficult to determine a shift in load from the morning to early afternoon 
period because of the low amount of demand in the November 14th event. The November 28th 
event also does not show any evidence of load shift, further evidencing the fact that these events 
are not being properly advertised and drivers charging at MUDs may not be very flexible in terms 
of their charging habits.  
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November 14, 2018 Multi-Unit Dwelling Pilot Event:  
$0.05 Discount, 50% Throttling, 10 Chargers, 2018 TOU 

 
Figure AIV-27. November 14, 2018 MUDs Load Shift Event Demand Graph 

 
Table AIV-29. November 14, 2018 MUDs Load Shift Event Demand Impacts 

Time Demand 
Initial (kWh) New (kWh) Change (%) 

Intervention (11 am - 3 pm) 5 9 93% 
Peak (4 - 9 pm)  11 2 -82% 
Other  22 55 153% 
Total  38 66 75% 

 
Table AIV-30. November 14, 2018 MUDs Load Shift Event Demand Impacts 

Time GHGs NOx 
Initial 

(kg) 
New 
(kg) 

Change 
(%) 

Initial 
(kg) 

New 
(kg) 

Change 
(all) (%) 

Change 
(DACs) (kg) 

Intervention  
(11 am - 3 pm) 0.84 1.33 58% ~0 ~0 ~0% N/A 

Peak (4 - 9 pm) 2.69 0 -100% 0.01 0 -100% 0 
Other 5.10 13.14 158% 0.02 0.05 150% N/A 
Total 8.63 13.95 62% 0.03 0.05 67% 0 

 
Event Highlights 

• There was an 93% increase in demand in the target window and a 82% reduction in the 
peak period. The overall 75% increase in daily demand had negligible effects on 
curtailment. 

• GHG and air pollution emissions increased significantly proportionately, but with a 
negligible impact on social costs. There was no impact in DACs.  

• Consumer costs increased by 30%, from $3.23 to $4.19. 
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November 28, 2018 Multi-Unit Dwelling Pilot Event:  
$0.05 Discount, 50% Throttling, 10 Chargers, 2018 TOU 

 
Figure AIV-28. November 28, 2018 MUDs Load Shift Event Demand Graph 

 
Table AIV-31. November 28, 2018 MUDs Load Shift Event Demand Impacts 

Time Demand  
Initial (kWh) New (kWh) Change (%) 

Intervention (11 am - 3 pm) 5 5 3% 
Peak (4 - 9 pm)  11 42 268% 
Other  22 44 105% 
Total  38 91 140% 

 
Table AIV-32. November 28, 2018 MUDs Load Shift Event Demand Impacts 

Time GHGs NOx 
Initial 

(kg) 
New 
(kg) 

Change 
(%) 

Initial 
(kg) 

New 
(kg) 

Change 
(all) (%) 

Change 
(DACs) (kg) 

Intervention  
(11 am - 3 pm) 0.84 0.85 2% 0.003 0.003 2% N/A 

Peak (4 - 9 pm) 2.69 11.98 346% 0.01 0.04 218% 0.01 
Other 5.10 10.61 108% 0.02 0.04 107% N/A 
Total 8.63 23.46 172% 0.03 0.08 162% 0.01 

 
Event Highlights 

• There was an 3% increase in demand in the target window and a 268% increase in the 
peak period. The overall 140% increase in daily demand had negligible effects on 
curtailment and associated costs. 

• GHG and air pollution emissions increased significantly proportionately, but with a 
negligible impact on social costs. There was minimum impact in DACs.  

• Consumer costs increased by 148%, from $3.23 to $8.01. 
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Additional Events 
August 30, 2018 MUD Pilot Event:  

$0.10 Rebate, 50% Throttling, 35 Chargers, 2018 TOU 

 
Figure AIV-29. August 30, 2018 MUDs Load Shift Event Demand Graph 

 
 

September 27, 2018 MUD Pilot Event:  
$0.10 Rebate, 50% Throttling, 22 Chargers, 2018 TOU 

 
Figure AIV-30. September 27, 2018 MUDs Load Shift Event Demand Graph 
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October 16, 2018 MUD Pilot Event:  
$0.05 Discount, 50% Throttling, 0 Chargers, 2018 TOU 

 
Figure AIV-31. October 16, 2018 MUDs Load Shift Event Demand Graph 

 
 

October 30, 2018 MUD Pilot Event:  
$0.05 Discount, 50% Throttling, 0 Chargers, 2018 TOU 

 
Figure AIV-32. October 30, 2018 MUDs Load Shift Event Demand Graph 

 


