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Abstract 
 

Global population is projected to increase to 9.8 billion people by 2050, resulting in a 
significant increase in food demand. Meeting this demand will necessitate agricultural 
intensification, which bears consequences for environmental and human health. 
Governments, NGOs, local decision makers, and other key stakeholders seeking to 
manage agricultural development safely and sustainably need quantitative analytical 
information on the efficacy of various agricultural yield intensification strategies, and 
the associated co-benefits and tradeoffs for human and ecological health. Conservation 
International seeks to address this need through Vital Signs, a data collection and 
monitoring program which has been implemented in sub-Saharan Africa. Through 
analysis of Vital Signs data collected in Rwanda, this project explores the relationships 
between yield and agricultural practices, and the association between farmer practice 
and household food security. For most crops, we did not find a strong positive 
association between the use of fertilizer and/or pesticides and yield (kg/hectare) 
reported by farmers. This finding suggests that agricultural development programs 
may be most productive when aimed at training smallholder farmers (the demographic 
most represented in Vital Signs data) on the correct usage and timing of these inputs, 
which theoretically can increase yield intensity. Further, our analysis generally found 
the use of intercropping as a strategy did not have significant negative associations with 
yield of a given primary crop (with the exception of maize), indicating that adding a 
compatible secondary crop to a plot may provide an extra benefit. In examining 
household food security, we find that households which are more food secure are more 
likely to employ intercropping as a strategy, and also use greater quantities of fertilizer 
and pesticides. Finally, this project examined the limitations of the Vital Signs database, 
and provides specific recommendations for improvement of data collection protocols. 
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Executive Summary 
 

Rwanda is a small, densely populated nation in East Africa where the vast majority of 
the population relies on subsistence agriculture. Most land is already devoted to 
farming, save for a few ecologically valuable protected areas, though pressure for 
agricultural extensification is mounting. Broadly, agricultural expansion carries 
environmental consequences as natural lands are converted for new uses and thus 
biodiversity and ecosystem services such as soil retention and water quality are 
threatened.  
 
Policy makers, regional extension agents, and farmers all seek to make agricultural 
management decisions that maximize agricultural production. Often, decision makers 
intend to, at the same time, improve human well-being and minimize ecological harm. 
There remains, however, a lack of information to guide efforts to this end, especially 
concerning smallholder farms. Conservation International developed the Vital Signs 
data collection protocols in an attempt to fill this knowledge gap, particularly at the 
small scale. Analyzing the efficacy of farmer practice, and tradeoffs and synergies 
between agricultural productivity and ecological and human wellbeing can provide 
important insights for the best path towards sustainable intensification.  
 
Vital Signs is an open-source database with indicators intended to be useful for 
examining these synergies and tradeoffs in sub-Saharan Africa. The data sets 1000+ 
indicators are gathered from biophysical data collection and systematic deployment of 
household surveys. Vital Signs has successfully launched in four countries- Rwanda, 
Ghana, Tanzania, and Uganda, although as of March 2019, Rwanda is the only country 
to have fully completed two rounds of data collection. 
 
Now in its initial post collection phase, Vital Signs data had prior to this analysis yet to 
be thoroughly analyzed. Evaluating only Vital Signs data from Rwanda, we explored 
the relationships between agricultural practice (defined to include the application or use 
of pesticides, fertilizers, improved/purchased seeds, erosion control strategies, and 
intercropping), yield (defined as kgs of crop harvest per hectare of cultivated area), food 
security, and the environment in Rwanda. Our project also provides an exploration of 
the data sets limitations, and provides recommendations to improve protocols and 
inform future Vital Signs efforts.  
 
To this end, we define four research questions. From Vital Signs data: 
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1. What are the discernable relationships between various agricultural practices 
and yield? 

2. How do the agricultural practices of farmers yielding higher (top quartile of 
harvest quantity) compare to the practices of farmers with lower yield (lower 
three quartiles)? 

3. What is the relationship between agricultural practice and household food 
security?  

4. What are the limitations of the Vital Signs data and how can data collection 
protocols be improved to make the data set more robust? 

 
To answer these questions, we disaggregated the data by crop variety, and ran a 
systematic series of mean comparison tests and separate sets of single and multiple 
regression models. Food security was analyzed by utilizing a household food security 
index score, developed to closely parallel the USAID index: “Household Food 
Insecurity Access Scale” (HFIAS).  
 
Broadly, our results do not indicate strong positive relationships between analyzed 
agricultural practices and reported yield. This suggests that, if farmers are reporting 
correctly, then the application of fertilizers and pesticides on rural household plots in 
Rwanda and the use of improved purchased seeds and erosion control techniques, is 
not translating to significantly higher yields for most crops. If intensification is the 
agricultural management objective, programs should therefore focus on training for the 
correct usage and timing of the application of these inputs. While this remains an 
overarching takeaway of this analysis, results varied by crop type, and any eventual 
agricultural management recommendations should be crop specific. In some tests, for 
example, inorganic fertilizer use was associated with higher yield (Irish potatoes, maize, 
and wheat), although the relative magnitude of the positive association was often found 
to be small. 
 
Further, in a simple comparison of the mean quantity of pesticides and fertilizers 
applied between top performing farmers and bottom performing farmers, the top 
performers applied more of these inputs. 
 
Households that intercropped were found to be significantly more food secure, and 
intercropping was not usually associated with significantly lower yield of the identified 
‘main crop’ on a given field. It is important to note that while this is a general pattern 
we observed, this was not the case for every crop in every test. In particular, 
intercropping was associated with lower yield of maize as a main crop. For other crops, 
our findings suggest a certain benefit to intercropping, as any harvest of secondary 
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crops is an added value of the space, compared to utilization of the same space in 
monoculture. 
 
Our analysis also found a number of limitations within the Vital Signs data set, and we 
make several recommendations to the Vital Signs data collection protocols to improve 
the robustness of future data. Currently, Vital Signs is considerably broad in the types 
of indicators that it covers, but shallow in its sample size. Sample size proved to be the 
most limiting aspect of analysis. Expanding sample size can be very resource intensive. 
Therefore, we recommend that sample size be expanded strategically based on the 
categories of research questions that are most relevant to the use case, such as those 
surrounding agricultural practice and food security. Having pre-defined research 
questions can aid processes of limiting the scope of indicators.  
 
A second issue was that selection of survey questions did not always match the desired 
analyses. For example, the food security index was limited to examining only one 
aspect of food security because questions were not present to cover all aspects of food 
security, and many questions were present that were not relevant to the main research 
questions. We recommend the removal of the least relevant survey questions, and the 
addition of questions that may bolster the desired analyses. We also ran into data 
quality issues such as outliers and data missingness. This can be addressed through the 
addition of a number of verification criteria to data collection protocols. 
 
Lastly, we suggest that producing a complete panel data set will improve the Vital 
Signs data’s ability to inform agricultural management decisions in a meaningful way. 
This can be resource intensive, but a shortened questionnaire coupled repeated 
surveying overtime may prove beneficial, and improve Vital Signs ability to answer key 
questions. 
 
A further specific recommendation is to add a household survey question which asks 
farmers how long a given practice has been employed. As benefits of applying 
fertilizers are actualized over time as soil quality slowly improves, adding a time-bound 
element would improve inference ability in analyses. The same is true for other 
agricultural practices included in the database. 
 
Vital Signs is a unique data set in its scale and integration across disciplines, although 
further data collection and analyses are needed to ensure that it can answer important 
questions about sustainable agriculture. Our project highlights some interesting 
findings from one of the first major explorations of Vital Signs data, and offers 
suggestions on ways that protocols can be improved to aid future research.  
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Objectives 
 

This analysis aims to analyze the relationships between agricultural practices, yield, 
food security, and the environment in Rwanda, and explore how these relationships can 
inform key stakeholders as they make agricultural development decisions into the 
future. As one of the first in-depth analyses of the Vital Signs Rwanda dataset, this 
research also intends to explore the limitations of the database, and make suggestions 
for the improvement of data management and data collection protocols.  

 
Research Questions 

1. What are the discernable relationships between various agricultural practices 
and yield? 

2. How do the agricultural practices of farmers yielding higher (top quartile of 
harvest quantity per area) compare to the practices of farmers with lower yield 
(lower three quartiles)? 

3. What is the relationship between agricultural practice and household food 
security?  

4. What are the limitations of the Vital Signs dataset and how can data collection 
protocols be improved to make the dataset more robust? 
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Significance
 

The global population is expected to grow from 7.7 billion people today, to 
approximately 9.8 billion by the year 2050 (UN 2017). With this rising population comes 
a rising demand for food. The United Nations Food and Agriculture Organization 
(FAO) projects that global agricultural production must increase 50% by 2050 in order 
to meet this demand (FAO 2017). Other projections indicate that agricultural demand 
will need to increase by at least twice that amount (100% to 110%), as household income 
and consumption of resource-intensive foods like meat increase (Tilman 2011). This 
increase in agricultural demand will strain an agricultural system that has already 
expanded considerably and will increase pressure on ecosystems. This can lead to 
severe environmental degradation, habitat fragmentation, and harm to biodiversity, 
water quality, and other ecosystem services we rely on.  
 
Because more than half of the population growth by 2050 is projected to occur in Africa, 
many African nations are actively pursuing agricultural development plans to meet 
these rising food demands in a sustainable way that minimizes harm to their valuable 
ecosystems (UN 2017; MINECOFIN 2000). However, these agricultural development 
decisions require large amounts of information at relevant geographic and temporal 
scales that often do not exist.  
 
Data for the Vital Signs program has been collected across Ghana, Rwanda, Tanzania, 
and Uganda; Rwanda has the most complete collection of data and has yet to be 
thoroughly analyzed. Focused only on Rwanda, the purpose of our project is to analyze 
the Vital Signs data set to examine current relationships between agricultural practices 
and production, food security, and environmental consequences. In addition, we seek to 
identify any limitations in the Vital Signs data to inform future data collection efforts. 
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Background
 

Rwanda is a country that exemplifies the conflicting pressures of agricultural expansion 
to address food security with the need to preserve sensitive habitat and valuable 
ecosystem services. Already the second most densely populated nation in Africa, 
Rwanda has a population growth rate of 2.6% annually, a rate which is only expected to 
increase as the large younger generation comes into reproductive potential (NISR 2014, 
MINAGRI 2015). Agriculture has already expanded rapidly to meet increased food 
demand; 33% of Rwanda’s national GDP is based in agriculture as of 2015, with the vast 
majority of that agriculture consisting of smallholder farmers (MINAGRI 2015). 
Agriculture also accounts for 72% of employment countrywide (FAO 2018). Yet despite 
the fact that the majority of Rwandans are farmers and the majority of land in Rwanda 
is used for farmland and pasture, Rwanda struggles to feed their growing population. 
 

Food Security 
Nutrition and food security is a global, primary development goal established by the 
1996 World Food Summit. The summit defined food security as “when all people, at all 
times, have physical and economic access to sufficient, safe and nutritious food that 
meets their dietary needs and food preferences for an active and healthy life” (World 
Food Summit 1996). The goal was later adopted in 2000 by the United Nations in their 
UN Millennium Declaration, which sought to halve global hunger by 2015 (United 
Nations 2000).  
 
Food security is assessed on four pillars according to the Food and Agriculture 
Organization of the United Nations (FAO): availability, access, utilization, and stability. 
Availability deals with food production, access deals with household food security, 
utilization deals with individual nutrition, and stability deals with how the three 
previous pillars change over time (FAO 2008). One common index to quantify food 
security is the Household Food Insecurity Access Scale (HFIAS). The HFIAS focuses on 
the access pillar of food security. The index score ranges from 0 to 27, with 27 being 
most food insecure. This index was developed by USAID’s Food and Nutrition 
Technical Assistance (FANTA) project (Coates et al. 2007). Rwanda has major issues 
with poverty and food security; 39.1% of Rwanda’s population is below the poverty line 
as of 2014 (NISR 2014) and 35% of children under 5 are considered chronically 
malnourished according to the World Food Programme (WFP 2018). According to the 
EIU, in 2018, Rwanda’s Food Security Index score stands at 38.4, where a score of 100 is 
most food secure. Rwanda was ranked 93rd globally in terms of food security according 
to the Global Food Security Index (EIU 2018). If the Rwandan government aims to feed 
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more people without importing more food, agricultural yields across the country will 
need to increase significantly to meet that demand.  

 
Intensification over Extensification 
At the broadest level, crop yield can increase in one of two ways - extensification or 
intensification. Extensification refers to increasing agricultural yield by clearing more 
land to farm on, while intensification refers to increasing yield by producing more crops 
in existing fields. Globally, nearly 40% of ice-free land is already dedicated to 
agriculture and livestock grazing; within Rwanda that percentage increases to 73% 
(Ramankutty et al 2008). Extensification leads to habitat fragmentation and loss and is 
one of the leading causes of extinction. Rwanda is an important area for species 
conservation due to the high levels of species richness, endemism, and threatened 
status. Most of the biodiversity in Rwanda is located along the Albertine Rift, which 
spans through eastern Democratic Republic of Congo, Southwestern Uganda and 
Northern Rwanda (Plumptre et al. 2007). Nonetheless, there is a risk that this 
biodiversity will be overlooked when large international NGOs are targeting 
conservation hotspots, because though it is thought that exceptional concentrations of 
endemic species are undergoing considerable loss of habitat in the Albertine Rift, there 
is still not sufficient data or documentation to officially list this region a conservation 
hotspot. It remains, however, a recognized important site for biodiversity (Myers et al. 
2000). 
 
All three national parks in Rwanda – Akagera, Nyungwe, and Volcanoes – are 
protected areas that provide exceptional ecosystem services such as biodiversity, water 
quality, air quality, and ecotourism. It is estimated that 70% of water obtained in 
Rwanda comes from National Parks (Plumptre et al 2007). Comparatively, Nyungwe 
Park has the highest levels of both endemic and globally threatened species. Volcanoes 
Park is best known for hosting one of only two remaining populations of endangered 
mountain gorillas ( Gorilla beringei beringei) . Mountain gorillas are also a keystone species 
critical to providing balance in their ecosystem, and they provide an economic service 
in the form of ecotourism; tourists pay over $1,000 USD to spend just an hour observing 
them in the wild. Akagera Park is the largest protected wetland in Central Africa and 
the only remaining refuge for savannah adapted species in Rwanda. A notable case 
study in wildlife restoration, many species that were extirpated during the Rwandan 
Civil War, such as lions, were successfully re-established within the park over the last 
decade. Only the national parks, a few small protected areas, and highly mountainous 
non-arable regions remain unfarmed and undeveloped within Rwanda. However, as 
agricultural pressures mount, the risk of encroachment into these ecologically 
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important areas will likely increase. Therefore, other solutions must be found that 
minimize expansion of farming by intensifying crop production on land already being 
farmed. Methods of intensification examined in this paper include intercropping, 
erosion control, and use of pesticides and fertilizer (Deininger et. al 2018; Brooker et al. 
2015; Snapp et al. 2010).  

 
Improving Agricultural Yield 
Decision makers in Rwanda must balance the need to address poverty and food 
insecurity through agricultural production with protecting unique and valuable 
ecosystems and wildlife. Increasing agricultural yield sustainably requires analysis of 
the efficacy of various agricultural practices in improving yield and food security, and 
their potential environmental consequences. Competition for arable land is high in this 
small and hilly nation of approximately 2.6 million hectares, and farmers must make the 
best possible use of limited space. According to the Rwandan government’s 2018 
Seasonal Agricultural Survey, the average farmer owns a plot of only 0.12 hectares on 
which to grow their crops. Many spaces that can be farmed include sub-optimal, steep 
hillsides and low marshlands.  
 
Eliminating agricultural yield gaps is critical to addressing food insecurity in low yield 
nations like Rwanda (Tilman 2011). A yield gap is defined as the difference between the 
average or actual yield of farmers and the maximum yield that is achievable under best 
agricultural practices. This maximum yield, also known as potential yield, occurs when 
nutrients and/or water are not limiting variables (van Ittersum and Cassman 2013). 
These yield gaps are usually attributed to a lack of modern inputs and technologies as 
well as biophysical limitations such as poor soil fertility, nutrient availability, and water 
access (Tilman 2011; Tittonell and Giller 2013). Smallholder farm yield gaps are 
pervasive in many African nations and recent genetic improvements that offer yield 
gains have not provided many improvements for smallholder farmers. This is because 
the greatest biophysical yield limitation in Africa is (broadly) poor soil fertility. Soil 
resistance to fertilizer inputs and increased labor required in degraded soil contributes 
to low yield and therefore chronic poverty (Tittonell & Giller 2013). Research indicates 
that improving soil fertility is also one of the most critical factors for developing climate 
change resilience and environmental sustainability in Rwandan agriculture. Other areas 
for yield improvement include: data management and tools, mechanization, water 
management, seed quality, and vegetable and livestock integration (Deininger et. al 
2018).  
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Intercropping may be an effective method to intensify agricultural output in some 
cases. Intercropping is defined as the practice of growing multiple crop species together 
in the same field at the same time. Some studies have found a significant positive 
correlation between intercropping and yield and yield stability attributed in part to 
increased soil carbon and nitrogen (Brooker et al. 2015, Snapp et al. 2010). While 
intercropping is often lauded as an efficient means of growing more with less land, the 
literature is mixed on whether this is always the case. While intercropping may increase 
yield, the results can be crop or site-specific (Himmelstein et al. 2017; Dallimer et al. 
2018; Swanepoel et al. 2018). Other literature indicates that while intercropping may not 
increase yield in certain areas, it reduces variance in yield from year to year, which 
farmers may favor for more consistent profits or food security (Saeur et al. 2018; Zhu, in 
prep). In terms of environmental benefits, intercropping may improve soil quality by 
reducing erosion, and may improve water quality by increasing nutrient uptake and 
thus reducing the flow of nutrients into waterways (Kremen and Miles 2012; Wood et 
al. 2015; Dwivedi et al. 2015). Another sustainable intensification practice that may be 
important to agricultural development is erosion control; erosion control leads to 
greater retention of water and fertile topsoil. This is critical in a hilly country like 
Rwanda, where the majority of agricultural land is on hillsides and intense rainy 
seasons frequently lead to severe erosion including landslides. Additionally, there is 
very little irrigation so water retention is a big added benefit. Government surveys 
indicate that 67% of smallholder farmers currently engage in erosion control activities 
(MINAGRI, 2018).  
 
Inputs such as fertilizer and pesticides can be critical to maximizing agricultural yield, 
particularly in places like Rwanda that typically rely on low-input agriculture, and 
broadly in areas with poor soil quality (Ciceri & Allanore 2019; Abate et al. 2000). 
However, these inputs can only maximize yield to a point and overuse can be harmful 
to water quality and biodiversity (Clay et al. 1995). Inorganic fertilizers and pesticides 
also require an up-front cost that may be prohibitive for the poorest farmers if these 
inputs are not properly and effectively subsidized (Nahayo et al. 2017). 
 
It is critical that decision makers consider the trade-offs of these various intensification 
methods in order to maximize crop yield while minimizing ecological harm and human 
health risk. At the same time, it’s also important to consider the existing policy 
framework and institutions that may influence the implementation of their agricultural 
development recommendations. 
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Policy Landscape 
The Rwandan government recognizes the critical role of the agricultural sector in 
addressing poverty and food insecurity and has made it a major pillar of their national 
development strategy. In 2000, as Rwanda recovered from the war and genocide of the 
1990’s, the new Rwandan government produced a series of development goals for the 
nation leading up to the year 2020. This document, Vision 2020, provided a framework 
of government priorities, and has been recently updated to Vision 2050. One pillar of 
these priorities was the overhaul of Rwanda’s agricultural sector. The stated goal was to 
grow the economy, reduce poverty, and increase food security. To accomplish this, the 
government wishes to increase agricultural productivity as much as possible 
(MINECOFIN 2000). The responsibilities of this goal have primarily fallen to the 
Rwandan Government’s Ministry of Agriculture and Animal Resources (MINAGRI), 
who oversee agricultural development and food security (MINAGRI 2015). 
 
MINAGRI has developed the National Agricultural Policy to outline how they will 
achieve the goals of the agricultural pillar of Vision 2020. This policy focuses on 
increasing productivity and intensifying agriculture sustainably to minimize 
environmental impacts. To increase productivity, the policy plan emphasizes the use of 
modern inputs such as fertilizers, pesticides, and improved seed varietals. Farmers are 
also encouraged to switch to high-value crops and to consolidate farm plots through 
farmer cooperatives. To sustainably increase agricultural production, the policy 
emphasizes intensification to increase yield without expanding agricultural area. The 
policy also focuses on addressing erosion problems to protect both soil and water 
quality and considering the potential environmental impacts of mechanization and 
modern inputs (MINAGRI 2017).  
 
MINAGRI oversees several programs meant to address the goals of the National 
Agricultural Policy, but the Crop Intensification Program (CIP) is that which is most 
relevant to this project. Initiated in 2007, the CIP mission is to increase national 
agricultural productivity through intensification practices and modernization. 
Intensification is defined as increasing agricultural productivity on a given plot of land, 
as opposed to expanding land area used for production (extensification). CIP 
intensification practices include consolidating smallholder farms, moving from 
traditional intercropping to monocropping, and increasing farmer access to extension 
services. Extension services include education on best practices, food storage facilities, 
and access to modern inputs at a subsidized price. These services are provided by 
regional extension agents. Inputs include improved seeds, fertilizer, pesticides, 
irrigation, and mechanization. Fertilizers are distributed in partnership with local, 
private distributors. CIP dictates which crops are grown, and when and where they are 
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planted. The program focuses on six main crops: maize, beans, rice, wheat, Irish 
potatoes, and cassava (MINAGRI 2011). 
 
Numerous academic analyses of the CIP indicate overall agricultural yield may be 
increasing, but there are serious limitations that may reduce the resilience of farmers to 
risk. First, farmer input in program design was limited, and this top-down approach 
may not capture all of the on-the-ground realities of program implementation. Also, 
monocropping can increase farmer risk if a crop fails, and leaves farmers vulnerable to 
fluctuations of that single crops price if they choose to sell excess crops. The poorest 
farmers may not be able to afford the required inputs to intensify properly, even with 
government subsidies. There is also evidence that consolidation programs do not 
increase productivity (Blarel et al. 1992). All of these factors increase the risk to farmers, 
and particularly poor farmers. This can serve to increase household food insecurity and 
reduces economic well-being, even if overall yield appears to be improving (Clay 2017, 
Nahayo et al. 2017, Cioffo et al. 2016).  
 
An additional MINAGRI program with relevance to this project is the One Cow per 
Poor Family Program, or Girinka Program. This program is primarily intended to 
address poverty and food insecurity by providing a dairy cow to the lowest-income 
households in Rwanda. The intent is to provide a source of dairy, meat, and added 
income if those products can then be sold. It is of significance that these cows also act as 
a source of organic fertilizer (manure) (MINAGRI 2018).  
 
Assessments of the Girinka Program have indicated that it has been at least somewhat 
effective, although with limitations particularly for the poorest households. 
Approximately one third of households have been reached by the program, and 
participation is positively associated with household food security and per hectare crop 
production (Nilsson et al. 2019; Paul et al. 2018). There has been insufficient fodder for 
the poorest households in the program, and a lack of training on livestock upkeep 
(Klapwijk et al. 2014). Manure use from the program as organic fertilizer is also limited 
by a lack of tools for moving manure, and lack of proximity to fields. There is also a lack 
of training on best practices for manure application (Kim et al. 2013). 
 
It is within this policy landscape that decision makers must push for effective 
agricultural development. If we can discern relationships between agricultural 
practices, crop yield, and food security at a local scale, policy makers will be able to 
make more informed agricultural development decisions that balance agricultural 
production, human well-being, and environmental health. This is particularly critical in 
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countries like Rwanda, where these needs are often in conflict and the policy landscape 
does not always reflect the most efficacious practices. 
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Data 
 

Vital Signs is an open-source database that examines indicators of agricultural practices, 
ecosystem health, and human wellbeing in sub-Saharan African nations. Data is 
collected on a hierarchy of scales referred to in the data protocols as ‘landscapes’ (the 
highest  level), ‘E-plots’ (within each landscape, defined below), and finally at the 
individual household and field levels (Figure 1.1). In Rwanda, two rounds of data 
collection have taken place, spaced approximately one year apart. In total, data was 
collected from 10 landscapes, which consist of 10 km by 10 km parcels (6 were sampled 
in the first round and all 10 in the second). Landscapes were purposefully placed in the 
distinct agro-ecological zones of Rwanda. Within each landscape are 10 randomly 
placed 20 m x 20 m ‘E-plots’, named for the shape of where biophysical data is collected 
at even point intervals within these boxes (Figure 1.2). Biophysical data includes 
vegetation, water quality, soil quality and chemical content, and tree species and size. 
For every E-plot, 3 households are interviewed which are in close proximity to 3 corners 
of the E-plot (Figure 1.2). Household interviews include questions on demographics, 
labor market participation, food security, nutrition, water sources, other sources of 
income, as well as, significant for our analysis, agricultural information including the 
number and size of plots cultivated by a member of the household, fertilizer use, 
pesticide use, irrigation and erosion control methods, yield, and the market value of 
harvested crops. There were 280 unique households within Vital Signs Rwanda data, 
with 154 households sampled in round 1, and 272 households sampled in round 2. 
 

 
Figure 1.1 Landscapes and agro-ecological zones from Vital Signs data collection in Rwanda. 
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Figure 1.2 Household selection near E-plots. Efforts are made to choose 
households on opposing corners of the E-plot (Vital Signs Household 
Survey Protocol 2.0). 
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Methods
 

Data Wrangling and Manipulation 
With the exception of initial data exploration and characterization of descriptive 
statistics, only Vital Signs data observations from Rwanda were analyzed by this 
project. For the purposes of equal comparison, farmer input and output data were 
filtered to only retain observations from plots which the farmer reported as: ‘under 
cultivation’. All tests were crop specific, that is, performed separately for each crop 
varietal.  
 
Due to sample size limitations, our analysis of the effects of pesticides, fertilizers and 
erosion control techniques did not explore each type of these independently, but rather 
as a summed total. For example, analyses only looked at the total quantity of pesticides 
applied, broadly defined to also include herbicides and fungicides, though did not 
perform specific analyses on each variety  of pesticide used. The same was true for 
fertilizers, although the total sum of organic and inorganic fertilizers were analyzed 
separately. With greater sample size, analyses could be improved by separately 
considering each variety of fertilizer and pesticide used, and each type of erosion 
control strategy applied, and this information is available from the Vital Signs 
indicators.  
 
Pesticides were listed in both liters and kilograms in the data (57% of farmers reported 
in kilograms), but for the purposes of this analysis, a liter of pesticide was considered to 
be equivalent to a kilogram of pesticide, as liquid pesticides were assumed to be water 
based, and therefore roughly equivalent to the density of water. 
 
For many crops, yield outliers appeared that were so far away from the distribution of 
all other observations, it was assumed there was some data misentry. To reduce the 
influence of these outliers, data for each crop were trimmed of the highest and lowest 
2.5% of yield observations.  
 
Finally, on intercropped fields, data were filtered such that only the yields of the crop 
variety that the farmer reported as each plot’s “main-crop” were compared. Here, we 
reasoned that the efficacy of agricultural strategies should be compared across as 
similar of fields as possible. 
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I. Yield and Agricultural Practice 
The relationship between yield and agricultural practice was analyzed via a systematic 
series of Welch's t-tests, clustered linear models, and clustered multiple regression 
models. These tests were run in succession of each other for each crop of adequate 
sample size. Constructing the analysis in this manner provides an opportunity to look 
at broader trends and patterns from results of statistical tests of varying complexity. 
Where t-test results simply demonstrate whether all farmers in the database who 
applied a given practice when cultivating a given crop received significantly higher 
yields than those that didn’t apply that practice, regression models layer on complexity 
and allowed us to control for variables which may contribute to observed differences, 
such as differing biophysical characteristics of plot location (Vital Signs ‘Landscape’) 
and growing season. Finally, looking at each farmer practice in a regression model by 
itself (as the only explanatory variable), and in a separate multiple regression model 
which included all practices for each crop, provides the opportunity to look at 
simultaneous and isolated associations with each practice and reported crop yield.  
 
Because there were multiple periods of reporting for some of the same plots (two 
rounds of data collection, plus multiple growing seasons reported in each) each 
regression model clustered robust standard errors on a unique plot identification 
number. Clustering in this manner adjust standard error estimates to account for the 
fact that the yield of a given crop is partially dependent on plot-specific characteristics. 
Soil conditions such as nutrient availability are highly localized, and are impacted by 
the selection of crops grown in the same area during previous seasons, and the practices 
applied to each plot over time. Further, clustering on unique plot id accounts for 
differing sunlight availability, which is also plot specific.  
 
In each case, tests were run on each crop in the database with adequate sample size. For 
t-tests, adequate sample size was determined to be a minimum of 15 data points from 
plots which grew that crop and applied a given practice, and a minimum of an 
additional 15 which grew the same crop but didn’t apply a given practice. For clustered 
linear models, adequate sample size was determined to be a minimum of 30 total 
observations of that crop, with at least 5 having applied a given practice. Multiple 
regression models were only run on eight crops with the greatest total sample size.  
 
Yield was defined as kilograms of harvested crop per hectare of area cultivated with 
that crop. These metrics were self reported by farmers as part of the Vital Signs 
household survey protocols, with only unit normalization required. A caveat here is 
that if a given plot was not entirely planted with its “main-crop”, farmers were asked to 
estimate the total coverage of this crop with possible responses being: ¼, ½ , ¾, or 
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almost all. These were assumed to be perfectly representative of the true area, with 
‘almost all’ approximated as equal to the full area of the field.  
 

a) Mean Yield Comparison 
Welch’s two-sample one-sided t-tests were used to compare the mean yield of all 
observations of a given crop which received a given practice (quantity irrelevant), to all 
observations of the same crop that did not receive that practice. This provided a coarse 
examination of the correlation between a given agricultural practice and yield, but does 
not account for any other agricultural practices employed, or other variables which may 
explain observed differences. For all practices except intercropping, the alternative 
hypothesis was that crops originating from plots which applied a given practice 
produced a higher yield than plots that did not. This is based on the assumption that 
agricultural practices are applied to increase yield, and thus results provide a first 
glimpse at whether or not a given practice is ‘working’.  
 
For intercropping, a Welch’s two-sample two sided  t-test was used. Here, the alternative 
hypothesis was that plots which intercropped produced a difference in yield from those 
grown in a monoculture. This test was used because yield was reported in a crop 
specific manner of a fields ‘main crop’. Therefore, if two fields, one which is employing 
intercropping, and the other which is growing its main crop in a monoculture, do not 
produce a difference in yield of a given ‘main crop’, then the secondary harvest from 
the field which intercropped has provided the benefit of an extra crops harvest. Thus, 
there can be a benefit to intercropping even if employing the strategy does not boost the 
yield of a given ‘main crop’, and a two-sided t-test is one way to evaluate whether such 
a benefit exists. 
 

b) Clustered Linear Models 
Linear regression models were run for each crop with adequate sample size, with yield 
regressed on each agricultural practice as the only explanatory variable. Each model 
included landscape, round, and season as control variables. Vital Signs landscape was 
used as a control as the distinct biophysical characteristics of each agro-ecological 
region, which determined the non-random placement of landscapes, is assumed to have 
an effect on the efficacy of each agricultural practice, and on yield broadly. Round was 
used as a control as any differences in weather patterns, etc. between the two years of 
data collection may have also impacted yield and practice efficacy, as likely does 
growing season (short-rainy, or long-rainy).   
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The following general form was used to develop the regression equation, with standard 
errors clustered on unique plot id: 
 

Yield for a given crop (kg per hectare) ~  Practice + Landscape + Round + Season 
 

c) Clustered Multiple Linear Regression Models 
Multiple linear regressions utilized the same equation as above, except a single model 
was run for each crop which simultaneously evaluated each farmer practice. This 
analysis was applied to eight crops in the database of greatest sample size (each had 
over 30 observations). Including more than these eight would have meant regressing on 
crops which had low sample size, and a low representation of observations having 
received certain practices. Each model again clustered robust standard errors on unique 
plot id, with the same control variables used as in other models (landscape, round and 
season).  
 
The following general form was used to develop the regression equation, with standard 
errors clustered on unique plot id: 
 

Yield for a given crop (kg per hectare) ~ Intercropping + Pesticides + Organic Fertilizer + 
Inorganic Fertilizer + Improved Seeds + Erosion Controls + Landscape + Round + Season 

 

d) Crop Value across Landscape 
Finally, we examined which crops translated to the highest valued harvests in each 
landscape (farmer reported total harvested crop value per hectare of area cultivated). 
The findings from this section of the analysis provide useful information for evaluating 
potential future changes if farmers are to gradually switch from growing lower value 
crops to higher value crops, as economic theory may predict. The results of this analysis 
may allow for predictions on what crop types and practices may become more common 
over time.   
 
We compiled the mean value (reported RWF/hectare) for each crop grown in each 
landscape. We then removed any crop types for a given landscape that had a sample 
size of less than 5. We chose to eliminate these crops with a low sample size for two 
reasons. Firstly, because we think it is less likely that farmers would switch to growing 
a crop if there are already so few people growing that crop- as this may indicate this is a 
specific niche crop, and may not have broader value to be captured. Secondly, we can't 
be as confident in the farmer's estimate of value if we have too few entries to average. 
However, because overall sample size was already limited, we wanted to avoid 
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over-restricting sample size. For that reason, we chose 5 to balance these two concerns. 
We then compiled tables showing the top three highest valued crops in each landscape. 
 

II. Yield Gap Analysis 
The next step in our analysis was to explore yield gap by crop type. The purpose of the 
yield gap analysis was to compare the practices of the best performing farmers to the 
rest of farmers for each crop type. The analysis was once again disaggregated by crop 
type. Note that this analysis was not disaggregated by landscape due to insufficient 
sample size, and may therefore be affected by landscape or other confounding 
variables. 
 
First, after data trimming, high-performing farmers were separated from 
under-performing farmers for each crop. Top farmers were defined as receiving yields 
in the top quartile (kg per hectare), while underperforming farmers were defined as 
falling in the bottom three quartiles. This division at the quartile level was based on 
other studies of yield gaps found in literature review (Fermont 2009, Ciampitti 2014). 
The second step was to identify how the amount of agricultural inputs of the top 
quartile differ from those of the underperforming farmers. Agricultural inputs included 
inorganic fertilizer, organic fertilizer, and pesticides. 
 
Welch’s two-sample one-sided t-tests were used to test whether mean quantities of 
pesticides, organic fertilizer, and inorganic fertilizer used on fields were higher in the 
top quartile than mean quantities of inputs used in the lower quartiles. This analysis 
was conducted in order to provide correlative evidence for how use of inputs differed 
between the high and low performing groups and to try and elucidate general patterns 
across various crop types.  
 

III. Food Security Analysis 
Previous work by Conservation International (unpublished Vital Signs data repository) 
used Vital Signs household survey results to score household food insecurity utilizing 
methodology which aimed to parallel the USAID “Household Food Insecurity Access 
Scale” (Coates et al. 2007) index score, or HFIAS. This methodology was chosen as the 
official HFIAS questionnaire sufficiently overlaps with questions included in Vital Signs 
household surveys, such that calculating a similar score is possible. 
 
Questions from the Vital Signs Household Survey asked the member of each surveyed 
household whom was ‘most responsible for preparing family meals’ a series of 
questions about their household’s access to food within the last 7 days (table 1.1). For 
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each question, responses had a possible range of 0-7 (days in the past week in which the 
specified event was experienced by someone in the home). With 8 scored questions, the 
total maximum score was 56, with higher numbers corresponding to more food insecure 
households, all else equal.  
 
 
Table 1.1. Vital Signs household survey questions included in scoring food security index. 
Questions were part of the larger household survey, and were asked of the household member most 
responsible for food preparation. 
 

How many times in the last week (number of days) did you or someone in your family: 

1. Rely on less preferred foods? 

2. Limit the variety of foods eaten? 

3. Limit portion size at meal-times? 

4. Reduce the number of meals eaten in a day? 

5. Restrict consumption by adults for small children to eat? 

6. Borrow food, or rely on help from a friend or relative? 

7. Had no food of any kind in the household?  

8. Go a whole day and night without eating? 

 
As some households were surveyed in both rounds, an average household score was 
derived for each household. We then compared the agricultural practices employed by 
more food secure households, to those employed by less food secure households.  
 
Simple linear regression models regressed food insecurity score on household 
agricultural practices. Households were placed in binary categories for each farmer 
practice. For example, households which intercropped any field in any round, were 
placed into a “sometimes intercrop” group, whereas households which never 
intercropped were placed into a “never intercrop” group. These were then used as 
levels of an intercropping factor in a linear regression model. The same methods were 
repeated for the application of fertilizer and pesticides, with separate models run for 
each. Each regression included a control variables for Vital Signs landscape, as food 
security varies regionally across Rwanda. 
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Next, we analyzed whether there were any discernible patterns in the different types of 
crops that households with varying food insecurity scores were growing. Based on 
index results, we took four groups of food security level (food secure, mildly food 
insecure, moderately food insecure, and severely food insecure) and compared the 
proportions of crops grown in each group. To place households in these categories the 
following thresholds were used, which besides a scaling factor, mimic those used by 
Nsabuwera et al. 2015 who employed the HFIAS index to make inferences on food 
security in Rwanda: 
 
> 36: Severely food insecure 
18-36: Moderately food insecure 
1-18: Mildly food insecure 
0-1: Food secure 
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Results  
 

Descriptive Statistics 
To contextualize our findings, we first offer a quick profile of some key descriptive 
statistics: 
 
In 9% of fields (n=216) some form of pesticide was applied in either the first or second 
round of data collection. Out of those pesticides, 91% were used to target insect & 
animal pests (n=196) while 4% were fungicides (n=9) and 5% were herbicides (n=11). 
Pesticide use varied by landscape and round, with the greatest amount used in 
landscape 3 in round 2, but none used in landscape 3 in round 1.  The main crops that 
received pesticide application were cassava, maize, sweet potatoes, and Irish potatoes 
(Appendix , Figures A2.5, A2.6).  
 
Organic fertilizers predominantly consisted of animal manure (97%), but also included 
crop residue (2%) and biomass transfer (>1%). 60% of fields used organic fertilizer in at 
least one round. Organic fertilizer was used by farmers in all landscapes in both rounds. 
The main crops that farmers applied organic fertilizer to included beans, maize, and 
Irish potatoes (Appendix , Figures A2.3, A2.4). 
 
In 17% of fields, inorganic fertilizer was applied during at least one round. Inorganic 
fertilizer types used in our sample were primarily Di-Ammonium Phosphate (42%), 
Nitrogen Phosphate Potassium (40%), and Urea (17%). Primary crops that had 
application of inorganic fertilizer included Irish potatoes, tea, maize, and paddy rice 
(Appendix , Figures A2.1, A2.2).  
 
For farmers who reported food loss for one or more of their crops, the primary reason 
for the loss was overwhelmingly rotting (60%), followed by insects (10.85%), flooding 
(9.95%), mammals (8.79%), and theft (4.65%) ( Appendix, Figure A1.2). 
 

Yield and Agricultural Practice 

a) Mean Yield Comparison 
At a .05 significance level, most plots applying a given strategy did not produce a 
greater yield in kilograms per hectare, though there were some exceptions.  
 
First, fields that intercropped had a significantly different mean yield for the main crop 
on a field for beans, maize, and sorghum (Table 2.1).  
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Table 2.1. Welch’s two-sample two-sided t-test results comparing 
reported mean yield harvest (kg) by cropping pattern 
(intercropped vs monocropped) and crop type. 

Main crop  Mean yield (kg): 

Monocropped 

Mean yield (kg): 

Intercropped 

p-value 

Banana Beer  9630.68  15563.67  0.160 

Beans  769.54  671.74  0.045 

Irish Potatoes  5170.80  5899.59  0.757 

Maize  1299.07  908.95  <.001 

Sorghum  1311.62  856.47  0.033 

Soybeans  404.02  534.57  0.427 

 
 
Plots which applied organic fertilizer had a significantly greater mean yield of Irish 
potatoes, bananas grown for beer, and beans out of the seven crops that were tested 
(Table 2.2). 
 

Table 2.2. Welch’s two-sample one-sided t-test results testing whether 
reported mean harvest (kg) of crops grown on plots which applied organic 
fertilizer were higher than plots which did not. This included all varieties of 
organic fertilizer. 

Main Crop  Mean yield: 

No organic fertilizer 

Mean yield: 

With organic fertilizer 

p-value 

Banana (beer)  8676.98  13991.59  0.048 

Beans  672.50  767.99  0.024 

Irish potatoes  3607.76  5616.30  0.007 

Maize  1068.73  1227.84  0.084 

Sorghum  1075.50  1391.89  0.122 

Soybeans  368.81  607.81  0.090 

Sweet potatoes  10330.65  8784.79  0.798 
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Only three crops had sufficient sample size to test for inorganic fertilizer, but mean 
yield was significantly greater for Irish potatoes and maize (Table 2.3). 
 

Table 2.3. Welch’s two-sample one-sided t-test results testing whether 
reported mean harvest (kg) of crops grown on plots which applied inorganic 
fertilizer were higher than plots which did not. This included all varieties of 
inorganic fertilizer. 

Main crop  Mean yield: 

No inorganic fertilizer 

Mean yield: 

With inorganic fertilizer 

p-value 

Beans  723.67  798.36  0.227 

Irish Potatoes  546.44  1363.79  <0.001 

Maize  1098.36  1420.76  0.014 

 
  
For pesticide use, out of the three crops that had sufficient sample size, Irish potatoes 
and paddy rice exhibited a significantly greater mean yield (Table 2.4). 
 

Table 2.4. Welch’s two-sample one-sided t-test results testing 
whether reported mean harvest (kg) of crops grown on plots 
which applied pesticides were higher than plots which did not. 
This included all varieties of inorganic fertilizer. 

Main crop  Mean yield: 

No pesticides 

Mean yield: 

With pesticides 

p-value 

Irish potatoes  3454.86  6626.72  <.001 

Maize  1190.42  995.31  0.866 

Paddy rice  7398.25  12375.35  0.014 

 
 

Erosion controls were positively associated with yield only for sorghum, out of four 
crops tested (Table 2.5). For use of improved seeds, out of six crops tested only 
soybeans were positively associated with yield (Table 2.6). 
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Table 2.5. Welch’s two-sample one-sided t-test results testing whether reported mean harvest (kg) of 
crops grown on plots which employed erosion control were higher than plots which did not. This 
included all types of erosion control. 

Main crop  Mean yield: 

No erosion control 

Mean yield: 

With erosion control 

p-value 

Beans  723.67  798.36  0.227 

Irish Potatoes  5170.80  5899.59  0.379 

Maize  1299.071  908.95  0.999 

Sorghum  1098.36  1420.76  0.014 

 
 
Table 2.6. Welch’s two-sample one-sided t-test results testing whether 
reported mean harvest (kg) of crops grown on plots which employed 
improved seeds were higher than plots which did not.  

Main crop  Mean yield: 

No improved seeds 

Mean yield: 

With improved seeds 

p-value 

Beans  780.99  664.70  0.992 

Irish Potatoes  4513.80  5608.68  0.057 

Maize  1174.93  1166.21  0.531 

Paddy  9449.90  11171.55  0.340 

Sorghum  1240.41  1149.41  0.636 

Soybeans  1098.36  1420.76  0.014 

 
 

b) Simple Clustered Linear Models 
No significant associations were found between intercropping and yield for any of the 
crops in our sample. However, both Irish potatoes and bananas grown for beer may 
exhibit a positive correlation between intercropping and yield of these as a primary 
crop, as a strong positive association is well within the 95% confidence interval. 
Although negative correlations between intercropping and yield cannot be ruled out, no 
crops showed a significant negative correlation at a 95% confidence level. This results 
indicates some crops may be grown with a secondary crop on the field and still yield 
the same amount as that same crop would in a monoculture. That would make the yield 
of any secondary crop a bonus to the yield of the primary crop (Figure 2.1).  
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Figure 2.1.  95% confidence interval of linear model of harvest volume 
coefficients for intercropping. Each model was crop specific (each line 
corresponding to an independent model), controlled for Vital Signs 
landscape, round and season, and clustered standard errors on unique 
plot id.  
 
 
Organic fertilizer use was not significantly associated with yield for any crop type. Irish 
potatoes may exhibit a small positive association, but a zero effect cannot be ruled out. 
Most crops exhibited something close to zero effect, but results for cassava and bananas 
for beer are rather inconclusive due to a wide confidence interval (Figure 2.2).  
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Figure 2.2. 95% confidence interval of linear model of harvest volume 
coefficients for the application of 100 kgs of organic fertilizer. Each 
model was crop specific (each line corresponding to an independent 
model), controlled for Vital Signs landscape, round and season, and 
clustered standard errors on unique plot id.  

 
 
Inorganic fertilizer use was positively associated with significantly higher yield for Irish 
potatoes, maize, and wheat. Paddy may exhibit a positive association, but a zero or 
negative effect cannot be ruled out at a 95% confidence level. Results for sweet potatoes 
were inconclusive due to large confidence interval (Figure 2.3).  
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Figure 2.3. 95% confidence interval of linear model of harvest volume 
coefficients for the application of 10 kgs of inorganic fertilizer. Each 
model was crop specific (each line corresponding to an independent 
model), controlled for Vital Signs landscape, round and season, and 
clustered standard errors on unique plot id.  

 
There were no significant results for use of pesticides, improved seeds, or erosion 
controls for yield. Many crops for each practice exhibited close to zero effect. However, 
paddy and sweet potatoes consistently exhibited wide error bars, and other crops 
showed wide error bars for only some practices (Figures 2.4 - 2.6). 
 

 
31 



 

 
Figure 2.4. 95% confidence interval of linear model of harvest volume 
coefficients for the application of 10 kgs of pesticides. Each model was 
crop specific (each line corresponding to an independent model), 
controlled for Vital Signs landscape, round and season, and clustered 
standard errors on unique plot id.  
 
The association between yield and pesticide use clustered near zero with relative 
certainty for tested crops, except for paddy which exhibited incredibly low confidence 
(Figure 2.4). 
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Figure 2.5. 95% confidence interval of linear model of harvest volume 
coefficients for the application of improved seeds. Each model was crop 
specific (each line corresponding to an independent model), controlled 
for Vital Signs landscape, round and season, and clustered standard 
errors on unique plot id.  
 
The association between yield and use of improved seeds also clustered around zero 
with relative confidence for most crops, with paddy and sweet potatoes showing large 
levels of uncertainty (Figure 2.5). 
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Figure 2.6. 95% confidence interval of linear model of harvest volume 
coefficients for use of erosion control. Each model was crop specific 
(each line corresponding to an independent model), controlled for Vital 
Signs landscape, round and season, and clustered standard errors on 
unique plot id.  
 
The association between the use of erosion controls and yield also clustered around 
zero for most crops, but four of those crops showed large levels of uncertainty, again 
including both paddy and sweet potatoes (Figure 2.6). 
 

c)  Multiple Regression Models 
In the multiple linear regression models, all agricultural practices were included in a 
single model of yield for each crop if there was sufficient sample size for that practice 
on that crop (n=5). Eight of the nine crops with largest sample size were analyzed: 
beans, Irish potatoes, maize, paddy rice, sorghum, soybeans, sweet potatoes, and wheat. 
Pyrethrum, with a sample size of 38, was not included as the quantity of its 
observations which received tested practices was severely limited. The results of a given 
practice varied by crop type, but most showing a non significant or close to zero effect 
of agricultural practices.  
 
Both organic and inorganic fertilizer exhibited results with much greater certainty than 
other practices (narrower confidence intervals), though modeled effects of each of these 
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clustered near zero for all crops. All other practices showed wide error bars in many 
cases, but this varied by crop (Figure 2.7).  
 
Intercropping was positively associated with yield for Irish potatoes, soybeans, and 
wheat, but was significantly negatively associated with yield for maize. All other crops 
with sufficient sample size showed no significant association (Figure 2.7). 
 
Erosion control was only significantly associated with yield for soybeans, for which the 
model shows a positive association. Most results were non-significant with great 
uncertainty, but erosion control was significantly negatively associated with yield for 
Irish potatoes and sorghum. (Figure 2.7). 
 
Out of crops that had sufficient sample size, pesticide use was only significantly 
positively correlated with yield for paddy rice. The association for wheat was negative, 
although a zero effect cannot be ruled out. Irish potatoes and sorghum exhibit relatively 
precise zero effects (Figure 2.7). 
 
Use of purchased seeds was significantly negatively associated with yield for beans and 
soybeans. All other crops showed no significant association, and sorghum and wheat 
showed relatively precise zero effects (Figure 2.7). 
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Multiple Linear Models 

 
Figure 2.7. 95% confidence interval of  multiple linear regression coefficients of yield volume for 
crops with greatest sample size. Each model controlled for Vital Signs landscape, round, and season, 
and clustered robust standard errors on unique plot id. 
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Yield Gap Analysis Results 
 

The results of the yield gap analysis are summarized in Tables 3.1,  3.2, and 3.3 below. It 
is important to note that this analysis was intended to give an overall description of the 
differences in input use across crop types, and did not account for control variables 
such as landscape. Thus, these findings only inform broad patterns in the data rather 
than any causal relationship. With greater sample size, future analyses could possibly 
incorporate regional variations.  
 
Results from a series of Welch’s two-sample one-sided t-tests indicated a significant 
increase in mean inorganic fertilizer use (kg) in top yielding fields when compared to 
low yielding fields for Irish potatoes and maize (Table 3.1). On average, farmers in 
top-yielding groups for Irish potatoes and maize used 74.38% more inorganic fertilizer 
than farmers in low-yielding groups (p<.001). Beans and wheat also showed an increase 
in mean inorganic fertilizer use, though this increase was not significant.  
 
 

Table 3.1. Results of Welch’s two-sample one-sided t-tests comparing mean inorganic fertilizer use 
(kg) of top quartile of fields (high performers) and the lower three quartiles (low performers) by 
crop type. 

Crop type 

Mean inorganic 

fertilizer use (kg) 

in low yield group 

Mean inorganic 

fertilizer use (kg) 

in high yield group  t-statistic  p-value  % Difference 

Beans  10.08  12.14  -0.463  0.321  16.97% 

Irish potatoes  71.23  285.64  -6.455  <.001  75.06% 

Maize  16.79  63.85  -3.376  <.001  73.70% 

Wheat  59.86  179.23  -1.288  0.114  66.60% 

Average of Significant Values  74.38% 

 
For all crops with sufficient sample size to be tested, fields in the high yield group 
received on average more inorganic fertilizer than in the low yield group. These results 
were significant for two out of the four crops (Table 3.1).    
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A series of Welch’s two-sample one-sided t-tests indicated a significant increase in 
mean organic fertilizer use (kg) between top yielding and low yielding fields for beans, 
Irish potatoes, maize, soybeans, and sweet potatoes (Table 3.2). Mean organic fertilizer 
use was on average 72.94% higher in top-yielding fields that showed a significant 
difference. Organic fertilizer use was also higher for crop types including bananas 
(beer), cassava, and sweet potatoes, though this increase was not significant. 
 

Table 3.2. Results of Welch’s two-sample one-sided t-tests comparing mean organic fertilizer use 
(kg) of top quartile of fields (high performers) and the lower three quartiles (low performers) by 
crop type. 

Crop type 

Mean organic 

fertilizer use (kg) 

in low yield group 

Mean organic 

fertilizer use (kg) 

in high yield group  t-statistic  p-value  % Difference 

Banana (beer)  3520.17 5315.92 -1.101 0.141 33.78% 

Beans  3092.06 8152.28 -3.196 <0.001 62.07% 

Cassava  978.58 1204.79 -0.339 0.369 18.78% 

Irish potatoes  5335.33 11473.89 -1.825 0.036 53.50% 

Maize  2333.59 8221.00 -2.292 0.012 71.61% 

Sorghum  915.64 5814.49 -2.875 0.004 84.25% 

Soybeans  1181.5 17485.37 -1.943 0.042 93.24% 

Sweet 
potatoes  10405.52  30689.39  -1.523  0.070  66.09% 

Average of Significant Values  72.94% 

 

For all tested crops, fields in the high yield group also received, on average, more 
organic fertilizer than in the low yield group. These results were significant for over 
half of tested crops (Table 3.2).  
 
There was no significant increase in pesticide use found between the high and low 
performing groups for any of the crops tested, including beans, Irish potatoes, maize, 
and paddy rice (Table 3.3). For Irish potatoes and paddy rice, pesticide use was higher 
in the high yield group, while for beans and maize pesticide use was lower in the high 
yield group. All p-values were greater than .05. 
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Table 3.3. Results of Welch’s two-sample one-sided t-tests comparing mean pesticide use (kg) of top 
quartile of fields (high performers) and the lower three quartiles (low performers) by crop type.  

Crop type 

Mean pesticide 

use (kg) in low 

yield group 

Mean pesticide 

use (kg) in high 

yield group  t-statistic  p-value  % Difference 

Beans  15.35  0.26  0.990  0.838  -5803.85% 

Irish Potatoes  21.74  198.67  -1.086  0.141  89.06% 

Maize  5.85  0.60  1.470  0.930  -875.00% 

Paddy  .43  4.34  -1.69  .065  90.09% 

 
For crops with sufficient sample size to be tested, mean use of pesticides was greater in 
the high yielding group for only two out of four crops, and none of these results were 
significant (Table 3.3).    
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Food Security Analysis Results 
 

Simple linear models were run on household food security index score as a function of 
agricultural intervention (inorganic fertilizer, organic fertilizer, pesticides, 
intercropping, and erosion control) with Vital Signs landscape as a control variable. We 
were unable to control for individual household income due to data missingness, as 
only 20 out of 280 households had a reported value for household income. Because 
household income is likely among the strongest contributors to household food 
security, this was an analysis limitation. We can logically assume that households with 
greater income purchase more food and more agricultural inputs such as fertilizers and 
pesticides. This likely partly accounts for some of the association between fertilizer or 
pesticide use and household food security.  
 
At a .05 alpha level, households that used inorganic fertilizer, used pesticides, or 
intercropped were each significantly more food secure than households that did not 
(Figures 4.2-4.3). Households that used organic fertilizer or employed erosion control 
techniques were also more food secure than households that did not, but the results 
were not significant at the 0.05 level. 
 
Households that used inorganic fertilizer were significantly more food secure than 
households that did not (p < .001). Mean index score was 4.3 points lower for 
households that used inorganic fertilizer (Figure 4.1).  
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Figure 4.2. Stacked bar chart of household food insecurity levels 
for households that did not use inorganic fertilizer (left) and 
those that did use inorganic fertilizer (right).  
 
Households that used pesticides were significantly more food secure than households 
that did not (p = .023). Mean index score was 3.1 points lower for household that used 
pesticides (Figure 4.2).  
 

 
Figure 4.3. Stacked bar chart of household food insecurity levels 
for households that did not use pesticides (left) and those that 
did use pesticides (right).  
 
Households that intercropped were significantly more food secure than households that 
did not (p = .036). Mean index score was 2.5 points lower for these households (Figure 
4.3).  
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Figure 4.3. Stacked bar chart of household food insecurity levels for 
households that monocropped (left) and households that intercropped (right).  
 
Food security varied across landscapes (Figure 4.4). Landscape 12 was most food secure 
followed by landscapes 2 and 3. Landscape 11 was by far the least food secure, followed 
by landscape 1, 4, and 7.  
 

 
Figure 4.4 Food security by landscape. Color indicates food 
security level, scored from food secure to severely food insecure. 
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Our comparison of the different crop types grown by farmers in the four levels of food 
security on the index scale (food secure (n=145), mildly food insecure (n=110), 
moderately food insecure (n=96), and severely food insecure (n=4)) determined that a 
different variety of crop types are grown by farmers at varying levels of food security. 
In terms of subsistence crops, groundnut, sweet potatoes and yams were grown more 
frequently by farmers in the severely food insecure group than by farmers in the food 
secure, mildly food insecure, and moderately food insecure group. Wheat was grown 
more frequently both in severely and moderately food insecure groups than in the 
mildly food insecure and food secure groups. Alternately, bananas (grown for both 
food and beer) and sorghum were not grown at all by farmers in the severely food 
insecure group, but grown only by farmers that were food secure, mildly food insecure, 
and moderately food insecure. All groups predominantly grew beans (lower in the 
severely food insecure group), Irish potatoes, and maize (Figure 4.5). 
  
Commodity crops in our sample include coffee, tea, and pyrethrum. Coffee was grown 
by farmers across all levels of food security, but was more prevalent in the groups of 
farmers who are severely food insecure. Alternately, pyrethrum is primarily grown by 
farmers who are food secure, with a small proportion also grown by farmers who are 
mildly food insecure. Finally, tea was grown across food secure, mildly food insecure, 
and moderately food secure groups, with the largest proportion grown in the 
moderately food insecure group (Figure 4.5). 
  
It was difficult to discern patterns for any other crops due to the low sample size. There 
is also a much lower diversity in the crop types grown in the severely food insecure 
group when compared to the food secure groups. However, this is likely largely a 
function of sample size as the severely food insecure group had only 4 households in 
the sample (Figure 4.5). 
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Figure 4.5. Distribution of crop types grown across food security levels. Crop types 
grown in households that are food secure, mildly food insecure, moderately food 
insecure, and severely food insecure. 
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Recommendations 
 

Data Recommendations 
If Conservation International wishes to answer key questions about sustainable 
agricultural production and smallholder food security, we recommend a number of 
changes to the Vital Signs data collection protocols in future rounds of data collection. 
  
With limited resources, it is important that Vital Signs prioritize sampling and survey 
questions based on the most likely use cases for the data. We will provide 
recommendations under the assumption that the main use case is to inform the 
agricultural management decisions of policy makers, extension agents, and smallholder 
farmers to intensify production sustainably and improve household food security. The 
following recommendations can be adapted to whatever use case the client designates 
to be the priority.  
 
Table 4.1. Data limitations, examples of those limitations, and recommendations to 

address those limitations.  

Limitation  Example  Recommendations 

Insufficient sample for some 
questions 

Over half of crops have 
sample size of n<15. 

Change sampling strategy based 
on indicators most relevant to the 
use case. 

Survey questions 
inconsistent with desired 
analyses 

Food security questions only 
cover one of four pillars of 
food security. 

Select survey questions based on 
planned analyses. Remove 
extraneous questions. 

Data quality concerns  Household income only 
reported for 20 of 280 
households. 
 
Outliers for yield and input 
use, for example with maize 
and Irish potatoes. Unclear 
whether these values are 
errors. 

1. Incorporate verification 
criteria into data collection 
protocol to protect against 
inaccurate reporting or 
recording. 

 
2. Add questions which speak 

to how long a farmer has 
employed a given 
agricultural practice. 

Longer term monitoring of 
same households (only two 
rounds complete) 

Only two rounds of data 
collection for only part of the 
sample, over a very short 
time span (~1 year). 

Continue future rounds of VS data 
collection with sufficient 
frequency for panel data analysis. 
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Currently, Vital Signs is incredibly broad in the types of indicators that it covers, but 
shallow in its sample size. Sample size proved to be the most limiting aspect of analysis, 
particularly once data was disaggregated by landscape, crop type, or agricultural 
practice. Only 15 of 30 crop types exhibited a sample size greater than 30.  Increasing 
sample size can be very resource intensive. Therefore, we recommend that sample size 
be expanded strategically based on the research questions that are most relevant to the 
use case. If the goal is to examine the relationship between agricultural practices and 
yield or food security, then sampling should be expanded to include more households 
that enact these practices. This may mean expanding the total number of households 
surveyed. The added cost and time requirement might be mitigated by surveying less 
frequently or using a shortened survey. 
  
An additional issue was that the selection of survey questions did not always match the 
desired analyses. Many of the survey questions may not be relevant to the main use 
case of the data, while certain questions may be missing that would improve the 
robustness of the results. For example, food security can be measured on four pillars: 
availability, access, utilization, and stability (FAO 2008). However, the food security 
index used for analysis Vital Signs data set was only able to address the access pillar of 
food security because there were not questions in the survey that could speak to the 
other three pillars. If Vital Signs wishes to produce a more robust food security index, it 
may be beneficial to include questions that can address all four pillars. It would also be 
beneficial to include questions of how long farmers have enacted a particular 
agricultural practice, as some practice may take multiple seasons to accrue benefits.  
 
Data quality was also an issue as unexpected outliers, variance, and data missingness 
were common. For example, out of 280 total households, only 20 reported a value for 
household income. As an additional example, kilograms of yield reported for a given 
field in a given season showed unusual outliers for numerous crop types such as maize 
and Irish potatoes. Under the current system of protocols, it is difficult to discern 
whether unusual outliers or variance are errors. If they are errors, it is unclear whether 
they are errors in reporting on the part of the respondent, or errors in recording on the 
part of the data collector. This makes it difficult to determine how to address these 
values. 
 
While statistical methods can be used to address these issues during analysis, more 
verification criteria could be built into the Vital Signs protocol to protect against errors 
during data collection. This would strengthen the data and minimize data loss, which is 
particularly key with a limited sample size. For example, to address outliers and 
variance thresholds can be established for the maximum and minimum values that 
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would be expected for a given indicator. If a value is recorded outside of that threshold, 
it should be flagged and possibly investigated further by the data collector through 
follow up questions with survey respondents. Some indicators that may most benefit 
from this include yield by both kilograms and Rwandan francs, and the amount of 
inputs used (i.e. fertilizers and pesticides). To address data missingness, if no value is 
reported for a given survey question, a follow up explanation should be provided as to 
why. Did the respondent choose not to answer for a specific reason? Did they not know 
the answer to the question? Was the data collector unable to reach the respondent? Or 
was the data simply lost during processing? This will help data analysts determine 
whether the missingness was random to better select the appropriate statistical 
analyses. It will also help identify issues with data collection that it may be possible to 
address. 
  
Vital Signs was designed to produce a panel data set and continuing to build the panel 
through future rounds of data collection will improve the data’s ability to causally 
answer questions such as those addressed in this report. This requires a sufficient 
sample size to account for any attrition that may occur over the course of repeated 
samplings. Both producing this sample size and repeated resampling of households 
would be time and resource intensive. One way to reduce costs may be to sample more 
infrequently. Similar panel data sets of smallholder household surveys sampled every 
three years. Sampling only occurred two to four times in these cases, and attrition 
ranged from 18% to 26% over those periods (Katengeza et al. 2019; Abro et al. 2018; 
Sauer et al. 2018). For Vital Signs, attrition between the two rounds of data collection 
(approximately one year apart) was small, at no more than 7%, but it is unknown how 
this may increase over multiple years of sampling. Despite this uncertainty, we assert 
that producing a complete panel data set will improve the Vital Signs data’s ability to 
inform agricultural management decisions in a meaningful way. 
 

Agricultural Management Considerations 
Results regarding the relationship between agricultural practices and yield varied by 
practice and crop type. This suggests agricultural management recommendations will 
be most effective when they are tailored to specific crops, and should consult analyses 
on the efficacy of practices concerning each individually. 
 
Broadly, the use of inputs such as organic and inorganic fertilizers, pesticides, and 
improved seeds were not associated with statistically significantly greater yields across 
crops. However, there were some exceptions, and further, analysis of the yield gap did 
show in a somewhat contradictory manner that top performers are still using more of 
these inputs. Finally, some inputs were associated with greater household food security, 
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although this is likely confounded by household income, presumably a strong predictor 
of household food security and input access and for which data was too limited to add a 
control. The result of intercropping being associated with greater food security is 
perhaps the most interesting, as this is not a strategy which requires purchasing inputs 
such as fertilizers and pesticides, and literature does suggest intercropping can reduce 
interannual variance in yield which could be reasoned to provide a slow accruing food 
security benefit (Dallimer et al. 2018; Swanepoel et al. 2018; Himmelstein et  al. 2017; 
Brooker et al. 2015, Snapp et al. 2010). Further, intercropping was seldom associated 
with significantly lower yield of a given primary crop, again suggesting there may be a 
benefit to the practice in the form of a secondary crops harvest. Maize was one 
exception to this pattern (table 2.1; figure 2.7). If continued research aligns with the 
results of this project, then a future recommendation may be to promote intercropping 
as a means of increasing yield and household food security, for all crops except maize.. 
This would likely occur at the regional extension officer level. 
 
Use of pesticides, improved seeds, and erosion controls all showed varied results when 
compared to yield depending on crop type. Some crops showed a positive association, 
some negative, but most showed no significant result. The lack of association found in 
these results seems counterintuitive to conventional knowledge, and warrants further 
investigation to confirm if there truly is or is not a relationship between application of 
these inputs and yield.  
 
Our results may partially be a product of limited sample size, or because inputs were 
applied incorrectly. If further analysis find similar trends to those identified here, 
agricultural managers should focus efforts on appropriate training for the correct 
timing and specific use of these inputs, as these are key  to maximizing their theoretical 
benefits (Tilman 2011). The Vital Signs data cannot speak to the current timing or rate of 
input application, and this warrants further investigation.  
 
The Vital Signs data also cannot speak to why fertilizer use is so low. The government 
currently provides subsidized inorganic fertilizer through regional extension services 
which partner with private fertilizer distributors. However, Nahayo et al. found that 
farmers’ use of subsidized fertilizers was hindered by poor distribution of fertilizer, 
with inadequate amounts and late deliveries. They also found that use of inputs 
including fertilizer was linked to non-farm income, which suggests that the cost of 
inputs may still be a barrier, despite subsidies (Nahayo et al. 2017). Vital Signs data 
might benefit from survey questions asking why farmers do or do not use fertilizers to 
help corroborate potential barriers to use. Extension services programs can then be 
altered to address those specific barriers.   
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Environmental and Policy Implications
 

Environmental Impacts 
It is critical to consider the potential environmental impacts of various agricultural 
management decisions, and forecast changes in farm inputs, land use and agricultural 
intensity. If the tentative patterns found in our results hold with further research, then 
there are a number of key takeaways and considerations for decision makers. 
 
Increased use of inorganic fertilizers may pose a risk to water quality, which is harmful 
to both the ecosystem and humans who depend on these water sources. When 
fertilizers are overused or used at incorrect times crops cannot uptake all nutrients, 
which then run off into waterways. Nutrient overload in rivers is known to perturb the 
ecosystem and affects the balance between and types of species that grow in native 
vegetation. Runoff also leads to eutrophication, killing fish and altering aquatic 
ecosystems (Clay et al. 1995). Nutrient overload also decreases the safety of drinking 
water. However, different inputs result in different outcomes. For example, excess 
nitrogen in drinking water affects digestive processes, hemoglobin and blood oxygen 
transport and has carcinogenic effects. All of these health effects are more dangerous for 
children and the elderly (Savci 2012).  
 
This harm can be mitigated by applying the correct amounts of fertilizer at the correct 
rate and time to ensure maximum uptake of nutrients by crops and minimal runoff into 
waterways (Tilman 2011). Proper planning of input application can also improve 
efficiency of use, meaning farmers spend less money on inputs for the same benefits to 
yields. This may allow some farms to overcome cost barriers to using fertilizer. 
Extension services would need to provide training to fertilizer recipients to ensure that 
they are aware of best practices for fertilizer application in addition to providing the 
correct amount of subsidized fertilizer in a timely fashion, which the program already 
struggles with (Nahayo et al. 2017). 
 
If intercropping is found to increase the total amount of food grown on a plot and 
increase food security, then it may provide a sustainable way to intensify agriculture 
that can also provide ecological benefits. Intercropping has been associated with 
reduced soil erosion and increased nutrient uptake. This means less sediment and 
nutrient runoff to waterways, which protects water quality (Clay et al. 1995). This may 
reduce the need for erosion control or for ecologically harmful inputs like fertilizer. It 
also reduces the pressure to extensify, or expand land cover for agriculture. Reducing 
this pressure is key to protecting the few ecologically critical habitats that remain 
uncultivated in Rwanda, and the biodiversity that they support. 
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The benefits of intercropping remain somewhat unclear and may be specific to certain 
crops or landscapes (Swanepoel et al. 2018). Therefore it may not be viable for all 
farmers to participate in intercropping. It may also require increased labor or additional 
seeds, which can be barriers to implementation. Theses are all tradeoffs that decision 
makers must consider, and partly why further research on the crop- and 
landscape-specific consequences of intercropping are necessary. 
 
Under the assumption that farmers will eventually switch to the crop types and 
agricultural practices that provide the greatest value, we can make some predictions 
about what crops and associated practices may be adopted in a given landscape over 
time. We can then infer the potential environmental impacts that ecosystems would face 
as a consequence of that switch. However when considering these potential impacts, we 
must take into consideration that they are based on an assumption that crop choice is 
not linked to other factors such as the cultural value of certain crops or family tradition 
of growing the same crop over generations. Thus any predictions and their associated 
implications should be considered carefully.  
 
Interestingly, commodity crops (tea, coffee, and pyrethrum) were infrequently present 
as one of the top three most valuable crops in a given landscape (Table A1.1). This may 
be because they are simply not present in some landscapes, and tied to the low sample 
size, but it demonstrates that these commercial crops may not be the best value for 
smallholder farmers. Another notable result of the analysis on crop value by landscape 
was that Irish potatoes were one of the top three most valuable crops in half of the 
landscapes in our sample (Table A1.1). According to our dataset, Irish potatoes use 
more inorganic fertilizer and pesticides per hectare than any other crop, and more 
organic fertilizer per hectare than the majority of crops (other than field peas and 
maize). This indicates that if there were to be an increased adoption of growing Irish 
potatoes in landscapes in which they are most valuable, we can expect an increase in the 
use of pesticides and fertilizer. These increases would pose a risk to groundwater 
quality and ecosystem health due to runoff in those landscape if mitigation measures 
are not taken. This is especially true if farmers are not trained on efficiency in the 
timing, rate, and amount of input application for maximum crop uptake. 
 

Policy Implications 
There are also numerous policy considerations for decision makers if they were to 
implement any agricultural management recommendations that might be suggested 
through further research. Some policies and programs already exist that seek to 
improve smallholder yield and household food security. These policies may provide 
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pre-existing frameworks for the implementation of project recommendations or may 
provide a hindrance. 
 
The Rwandan government has already enacted a number of policies in an attempt to 
increase farmer access to modern inputs, namely inorganic fertilizers, in an effort to 
modernize and intensify the agricultural sector. The Crop Intensification Program (CIP) 
promotes smallholder access to inorganic fertilizers through district-level extension 
service providers, which partner with private distributors to supply fertilizer at a 
subsidized price. As discussed, assuming that fertilizers are positively associated with 
yield, the program in its current form is likely not enough. Increasing access means 
reexamining the current extension service program and identifying ways to increase the 
amount and improve the timing of fertilizer delivery. This may mean increasing 
government funding to increase the amount of subsidized fertilizer and to lower the 
cost barrier. It may also mean improving distribution channels to ensure fertilizer 
arrives at the correct time. This would include improving infrastructure such as roads 
and increasing farmer participation so that fertilizers can be delivered in accordance 
with growing schedules. 
 
While organic fertilizers were not often associated with higher yields in our results, we 
can still consider the policy implications if these inputs were timed correctly, and able 
to work as well as possible . The only program that currently supplies organic fertilizer 
is the One Cow per Poor Family Program, or Girinka Program. This program provides 
dairy cows to low income households primarily to address food insecurity through 
meat and milk production. Organic fertilizer is a byproduct, but is intended as an 
added bonus for farming. Literature indicates that Girinka participation is positively 
associated with farm yield, which may be due to the additional fertilizer source (Paul et 
al. 2018). Decision makers may wish to consider whether it would be more effective to 
incorporate increased organic fertilizer access into the CIP or expand it within the 
Girinka Program. Girinka participants reported difficulty with transporting manure 
due to a lack of tools, so this may be an additional avenue for increasing organic 
fertilizer use (Kim et al. 2013). 
 
Current Rwandan government policy does not promote intercropping as a means of 
increasing yield or food security. Programs encourage monoculture and consolidation 
of small farms as a means of achieving the Vision 2020 agricultural goals. The CIP 
promotes the consolidation of smallholder plots and encourages all farmers in a given 
region to grow the same crop type (MINAGRI 2011). Intercropping is not promoted as a 
means of increasing yield or food security. There is evidence that this current strategy 
leaves the poorest farmers behind, and exposes smallholders to risk should a crop fail 
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or market prices fall. Overall, while the CIP’s monocropping strategy might increase 
overall yield in some cases, it may exacerbate food and economic insecurity, and lacks 
the environmental benefits linked to intercropping (Clay 2017, Nahayo et al. 2017, 
Cioffo et al. 2016). Because the government’s policies are focused on monoculture, 
intercropping may not fit the government’s vision of a consolidated agricultural sector. 
Therefore the idea of intercropping may meet resistance. However, this resistance may 
be overcome by emphasizing to decision makers the potential costs and benefits to the 
environment and household food and economic security of intercropping versus 
monocropping.  
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Conclusion
 

As populations continue to grow in the coming decades, so too will agricultural 
production and subsequent pressure on ecosystems. This is particularly true in 
sub-Saharan African nations like Rwanda, where populations are dense, most citizens 
are smallholder farmers, and land competition is mounting. However, with the right 
information, agricultural development decision makers can design solutions that 
maximize yields and protect food security while reducing the ecological impacts of 
farming. Vital Signs seeks to meet this need for information. 
 
This project analyzed the Vital Signs data set to explore the relationships between 
agricultural practices, yield, food security, and the environment in Rwanda. The project 
also tested the ability of the data set to speak to these relationships, and identified 
limitations to the robustness of the data. Based on these results, a number of 
recommendations were made regarding ways to strengthen the data set and improve 
data collection protocols going forward. The project found some mixed results 
surrounding the relationships between agricultural practices and yield or food security, 
though highlights opportunities for developing intercropping as a pathway to bettering 
food security and sustainable intensification.  
 
Vital Signs is a unique data set in its scale and integration of data across disciplines. 
Although further data collection and analysis is needed to ensure that it can answer 
important questions about sustainable agriculture. Decision makers will need to weigh 
the synergies and tradeoffs of different agricultural management decisions as they seek 
to maximize production, feed people, and minimize ecological harm. With 
improvements like those recommended in this report, Vital Signs could be a powerful 
tool for decision makers as they weigh these choices in the future. 
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Appendix
 

  
Figure A1.1 Crop type grown across fields in our study. Count of fields 
growing each crop type across each of 10 landscapes. 
 

 

 
Figure A1.2 Cause of post-harvest food loss by 

landscape. Color indicates landscape, and count 
indicates number of respondents.  
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Figure A1.3 Reported reason for intercropping by landscape. Color indicates 
landscape number and count indicates number of respondents. 
 
 
 

 
Figure A1.4 Reported soil quality by landscape. Color indicates 
soil quality, scored from good to average to bad. 
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Inorganic Fertilizer 
 

 

Figure A2.1 Total use of inorganic fertilizer (kg) by crop type 
over all landscapes and both rounds of data collection. 
 
 

 
Figure A2.2 Total amount of inorganic fertilizer (kg) applied 
by landscape and round of data collection   
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Organic Fertilizer 
 

 

Figure A2.3 Total use of organic fertilizer (kg) by crop type over 
all landscapes and both rounds of data collection. 
 
 

 
Figure A2.4 Total amount of organic fertilizer (kg) applied by 
landscape and round of data collection   
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Pesticides 
 

 

Figure A2.5 Total use of pesticides (kg) by crop type over all 
landscapes and both rounds of data collection. 
 

 
Figure A2.6 Total amount of pesticides (kg) applied by landscape 
number and round of data collection 
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Crop value by landscape 
 

Table A1.1. Mean value (RWF/hectare) of fields for the three highest value 
crops in each landscape are summarized in the table below. 

Landscape Number  Crop name  n 

Mean value 

(RWF/hectare) 

Landscape 1 

Tea  20  2,013,800 

Irish Potatoes  53  1,178,405 

Wheat  37  610,428 

Landscape 2  Blood Fruit  7  5,243,663 

Irish Potatoes  101  1,650,782 

Pyrethrum  42  739,179 

Landscape 3  Paddy rice  5  1,731,515 

Banana Food  11  1,322,043 

Sweet Potatoes  5  1,141,548 

Landscape 4  Sweet Potatoes  15  1,241,811 

Tea  7  729,118 

Irish Potatoes  30  462,512 

Landscape 6  Yams  16  2,112,954 

Sweet Potatoes  23  1,689,984 

Banana (beer)  51  1,498,279 

Landscape 7  Paddy rice  16  1,632,210 

Banana (food)  8  1,247,543 

Banana (beer)  8  527,158 

Landscape 8  Groundnut  6  591,954 

Beans  50  336,905 

Sorghum  16  175,894 

Landscape 10  Paddy rice  16  4,365,552 

Coffee  7  1,216,233 

Cassava  30  514,964 

Landscape 11  Irish Potatoes  5  1,042,257 

Sweet Potatoes  9  727,754 

Maize  16  346,895 

Landscape 12  Sweet Potatoes  5  1,073,634 

Irish Potatoes  32  564,446 

Sorghum  18  429,024 
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