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Abstract

High runoff from impervious surfaces of the urbanized environment can have negative impacts
on receiving water bodies. In Hawai‘i, this problem is exacerbated by drastic gradients in
elevation, where the landscape rapidly changes from steep ridges to relatively low-lying valleys.
These steep slope gradients increase runoff during rain events. Maunalua Bay, O‘ahu, Hawai‘i, a
region located on the southeastern coast, has been declared an impaired water body by the
Hawai‘i Department of Health due to high levels of nutrients and pollutants. Nine highly
urbanized watersheds feed into Maunalua Bay. Runoff from these watersheds brings harmful
sediment and pollutants directly into Maunalua Bay’s waters. This project aims to provide insight
into remediating Maunalua Bay’s waters by combining hydrologic modeling and analyses on the
runoft-reduction potential of green infrastructure with region-specific climate change
projections. The Environmental Protection Agency’s Stormwater Management Model 5.1
(SWMM) was used to create hydrologic models of the nine watersheds that feed into Maunalua
Bay. The goal in developing such models is to identify stormwater runoff hotspots in the
Maunalua Bay region so that stakeholders can determine where to prioritize remediation efforts
on land. The runoff reduction potential of strategically-placed green infrastructure elements was
modeled for the Wailupe watershed. Simulations indicate that green infrastructure constructed at
a large enough scale can have significant reductions on stormwater runoff from a given location
This analysis serves as the starting point for green infrastructure recommendations for the
Maunalua Bay region. Additionally, this project explores a variety of climate change scenarios
specific to the Maunalua Bay region and analyzes how climate change may influence regional
runoff patterns in the future. We conducted an analysis of a climate change-representative storm
event using a multiplicative change factor (MCF), allowing us to quantify simulated differences
in runoff coefficients and peak flow. We identified 20 subcatchment hotspots with the highest
runoff coefficient and peak runoff (cfs) values under climate change conditions. These results aid
in informing management practices that prioritize future green infrastructure placement in top
ranking peak flow and runoff coefficient subcatchments that will ultimately aid in reducing
runoff that feeds into the Maunalua Bay.
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Project Objectives

1. Create reproducible hydrologic models for the watersheds of Maunalua Bay, O‘ahu,
Hawai‘i for future teams to identify areas of high stormwater runoff once more
precipitation and stream gauge data becomes available.

2. Provide recommendations and cost estimates for optimal green infrastructure placement
to reduce stormwater runoff from the Wailupe watershed.

3. Use Coupled Model Intercomparison Project (CMIP6) climate data to determine how
shifts in precipitation due to climate change influence stormwater runoff from the
Wailupe watershed.

4. Develop a region-wide ArcGIS model to identify suitable locations for rain gardens

within areas of high stormwater runoff to reduce sediment entering Maunalua Bay,
O’ahu, Hawai’1.

Background

Land Acknowledgement

We acknowledge that the land in which our project takes place was home to and is still home to
kanaka maoli (“Native Hawaiians”), who were the original stewards of the land, and many of
whom were displaced from their unceded ancestral lands.

The Maunalua Bay Region

The Maunalua Bay region is located on the southeastern shore of O‘ahu, Hawai‘i. The 28 mi?
region encompasses Maunalua Bay and the surrounding apana (“watersheds’). Nine different
apana, with a total contributing area of 57 km?, drain water from the region into Maunalua Bay.
Average rainfall within the Maunalua Bay region varies dramatically over short distances due to
the interactions between the mountainous terrain, trade winds, and heating and cooling of the
land, amongst other factors (Stevens et al., 2017). Heavy rain and high winds, associated with
strong storms during /0'oilo (November to April), are often the cause of regional flooding.
However, these storms vary annually, occurring up to five times per year in some years, to being
absent in others (Miller et al., 2009).

Maunalua Bay lies between the geologic features of Koko Head (Kuamo ‘okdne) and Black Point
(Kiipikipiki ‘0). The Bay contains 6.3 mi” of ocean waters and nearly 8 miles of shoreline,
providing surrounding communities with numerous important biological and social resources
(Atkinson, 2007). Within the Bay, broad reef flats extend 3,000 feet from the shoreline before
dropping 15 feet to 20 feet in depth. The corals that make up the fringing reef flats, along with
the Bay’s unique mixture of fresh and saltwater, provide habitat and food for a diversity of
aquatic organisms (Dept. of Planning and Permitting, 2019; Miller, 2009). Additionally, the



Bay’s attractive beaches give rise to a variety of recreational opportunities including surfing,
scuba diving, parasailing, boating, and fishing (Miller, 2009).

Cultural Significance

Prior to Western settlement, Native Hawaiians carefully managed the resources of the Maunalua
Bay region. The Ancient Hawaiian land division system divided the Islands into districts called
moku, which were then subdivided into smaller areas called ahupua’a. Ahupua ‘a extended
vertically from the mountains down to the waters of the fringing reef. The vertical arrangement
allowed for maximization of biodiversity over short distances (Mueller-Dombois, 2007).
Ahupua ‘a contained a range of resources from the uplands, plains, and the sea, providing
everything the people needed to survive (Blaisdell et al., 2005). The health of the
mountain-to-sea ecosystems, and of the people and their livelihoods, remain connected today;
activities in the upland region affect life downstream (Blaisdell et al., 2005). Degradation of the
ahupua ‘a of the Maunalua Bay region through increased urbanization is directly causing damage
to the Bay.

Maunalua Bay was once an extremely productive ecosystem, supporting a fishery that supplied
fish, limu (“seaweed”), and invertebrates to the region (Malama Maunalua, 2006). However,
development and urbanization of the Maunalua Bay region over the last 70 years has had
significant negative impacts on the Bay. Prior to the 1950s, the Maunalua Bay region consisted
mainly of small ranches, dairies, farms, and homes. Now, around 45% of the region is urbanized,
42% 1s non-urban (mostly steep slopes in the upper watersheds), and less than 1% is used for
agriculture (Miller et al., 2009). The region boasts a population of 60,000 people and features a
dozen neighborhoods, 8 shopping malls, and other large, commercial sites. The Bay is directly
linked to employment and economic benefits of community stakeholders, who rely on the region
for their livelihoods (Kittinger et al., 2016).

Ecological and Community Health Problem

The rapid and recent development of the region has led to the replacement of large, natural areas
with impervious surfaces such as roads, parking lots, and roofs. These impervious surfaces
prevent the natural landscape from performing water retention and filtering functions (Miller et
al., 2009). The natural streams in the region have also been degraded through straightening and
concrete lining, which increases the rate of runoff flow into the Bay. Infrastructure such as
Kalanianaole Highway and other roads along the Bay have destroyed estuaries and shoreland
wetlands—features that have been shown to counteract increased rates and volume of surface
and stormwater runoff from impervious surfaces (EPA, 2021). Additionally, a significant portion
of base flow that normally would provide freshwater to lower streams, shoreline wetlands, and
inshore habitats of the Bay, is now diverted into storm drains via culverts, roads, and drains,
preventing groundwater recharge (Miller et al., 2009). Urbanization in the region has ultimately
led to a drastic increase in the volume of polluted runoff and land-based sediment flowing into
the Bay (Takesue & Storlazzi, 2017). In 2009, the average annual suspended sediment
concentration measured 9.6 mg/L, just in the Wailupe watershed alone (Storlazzi, et al., 2010).
Previous studies have suggested that chronic concentrations above 10 mg/L are considered high,
resulting in damaging impacts to coral reefs and reef organisms (Rogers, 1990).



Field studies have shown that modification of terrestrial ecosystems resulting in sedimentation,
nutrient enrichment, and turbidity into receiving waters can have detrimental effects on coral reef
ecosystems at local scales (Fabricius, 2005; Wolanksi et al., 2009). Coral reefs play an integral
role in the Maunalua Bay ecosystem. They provide habitat for fish life, support the local food
web, and act as a buffer along the coastline against natural hazards such as hurricanes. The coral
reef ecosystem has ecological, economic, and cultural value to the community.

In Maunalua Bay, urbanization has led to increased polluted runoff, sediment exposure, and
subsequent coral decline. Historically, coral reef cover consisted of 25-meter to 33-meter wide
patches covering up to 50% of the reef (Pollock, 1925). However, in 2009, there was less than
5% coral cover in the same area over most of the reef slope (Wolanski et al., 2009). Sediment
composition and water flow magnitude greatly influence sediment yield, causing varying levels
of stress in the corals (Weber et al., 2006; Waters et al., 2015). The increase in polluted runoff
leads to a decline in corals, which leads to an increase in invasive algae, which leads to a decline
in fish. Fish communities of the Maunalua reef have some of the lowest populations in the
Hawaiian Islands (Williams, et al., 2009, Minton et al., 2014).

Numerous nutrients have the potential to affect coral reefs, but the most prevalent are excess
nitrogen and phosphorus (Hallock and Schalger, 1986). Inputs of such nutrients feed algae which
can suffocate the coral and inhibit recruitment of coral larvae (Wolanski et al., 2009). Sediment
exposure also diminishes the photosynthetic efficiency of corals and increases respiration,
causing bleaching and necrosis (Weber et al., 2006). The composition of the sediment and the
water flow magnitude across the land surface are the main influences on sediment yield entering
the Bay; since water flow varies over time, the corals experience varying levels of stress (Weber
et al., 2006; Waters et al., 2015). This has increased the incidence of waves breaking along the
coast, and consequently, has increased coastal erosion (Wolanski et al., 2009).

The Hawai‘i Department of Health (DOH) has declared Maunalua Bay an impaired water body
for recreation, aquatic habitat, and wildlife habitat, due to high levels of bacteria, suspended
solids, and nutrients (USDA NRCS, 2004). This impairment has consequential implications for
the health, economic well-being, and cultural integrity of the region's residents (Miller et al.,
2009). The most critical threats to the Bay are polluted runoff and sediment input, invasive alien
algae, and unsustainable harvesting practices. We have established that the Maunalua Bay region
is an important area of focus due to the high runoft’s detrimental impact on the Bay. However,
there is still uncertainty on where the runoff rates are highest and, therefore, where the optimal
places are within the watershed to intervene. Our project will determine high runoff locations,
which will inform intervention actions.

Green Infrastructure

Green Infrastructure (GI) refers to a “range of measures that use plant or soil systems, permeable
pavement or other permeable surfaces or substrates, stormwater harvest and reuse, or
landscaping to store, infiltrate, or evapotranspirate stormwater and reduce flows to sewer systems
or surface waters” (Water Infrastructure Improvement Act, 2019). Examples of green
infrastructure include rain gardens, bioswales, green roofs, and permeable pavement. By filtering
and absorbing stormwater where it falls, or close to it, green infrastructure provides cleaner water
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and runoff. It can also provide cleaner air, flood protection, diverse habitat, and visually
appealing green spaces (EPA, 2021).

Green infrastructure is an effective tool for reducing and filtering stormwater runoff and
associated pollutants from urban areas (Sparkman et al., 2017). The soil media and plant
components of green infrastructure elements, such as rain gardens, play an important role in the
pollutant removal process. Plant mechanisms and chemical processes are particularly effective at
removing stormwater contaminants (Sharma and Malaviya, 2021). Watersheds equipped with
LID elements have been found to remove significantly higher amounts of nitrogen, phosphorus,
and sediment on an annual basis compared to traditional watersheds (Sparkman et al., 2017).

Green infrastructure elements can be implemented in the community at several scales, including
urban and residential scales (USEPA). Implementing green infrastructure in optimal locations
across the Maunalua Bay region has the potential to significantly reduce pollutant loads flowing
into the Bay. When placed in locations of high stormwater runoff and flow volume, green
infrastructure will serve as a stormwater management tool, reducing the impacts of urbanization
and associated reduction in natural vegetation. Green infrastructure activities, such as
implementation of rain gardens and rain barrels, are already ongoing in the region. Our client
Malama Maunalua, is part of the "CPR Campaign", which is currently focused on addressing
flooding in the Maunalua Bay watersheds by offering free rainwater assessments and promoting
rain barrels to the community.

Often used interchangeably with green infrastructure is the term low impact development (LID).
Low impact development is a "management approach and set of practices that can reduce runoff
and pollutant loadings by managing runoff as close to its source(s) as possible, including overall
site design approaches and individual small-scale stormwater management practices that promote
the use of natural systems for infiltration, evapotranspiration and the harvesting and use of
rainwater”" (USEPA, 2012). Green infrastructure is considered to be an umbrella term under
which LID resides.

Climate Change Impacts

Earth has been undergoing an unprecedented warming process since the Industrial Revolution.
The Sixth Assessment Report (AR6) of the Intergovernmental Panel on Climate Change (IPCC)
reports the change in global mean surface temperature (GMST) is assessed to be 0.69
(0.52-0.82)°C from the 1850-1900 baseline to 1986-2005 reference period. Projected increases in
temperature are expected to cause a general increase in precipitation extremes, leading to more
intense drought periods and heavy rainfall events associated with increased storm intensities
(Chu et al., 2010).

Climate change is also expected to have impacts on the El Nifio-Southern Oscillation (ENSO).
ENSO is a recurring climate pattern involving changes in the temperature of waters in the central
and eastern tropical Pacific Ocean, related to changes in the easterly trade winds. Additionally,
El Nifio tends to increase the number of tropical cyclones (TC) in the eastern and central North
Pacific regions. This makes for increased risk of TC activity in Hawai‘i during the TC season of
El Nifio years (NOAA, 2015). These expected increases in storm intensity (Norton et al., 2011 &
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Murakami et al., 2013) are expected to influence future storm runoff, ultimately affecting the
communities, ecosystems, and economic revenues associated with the Maunalua Bay region.

Project Significance

Malama Maunalua is a community-based, non-profit organization dedicated to the environmental
stewardship of Maunalua Bay, Hawai‘i. To ensure the health of the Bay, Malama Maunalua
conducts restoration and conservation efforts, ensuring a foundation of scientific evidence and
cultural and local knowledge. Malama Maunalua addresses three critical threats to Maunalua
Bay: land-based sources of pollution, overfishing, and invasive alien algae. The objectives of this
project aim to address the first threat—sources of pollution flowing from land into the Bay.

Community members, especially fishers and kupuna (“elders”), who depend upon a healthy Bay
for their livelihoods and cultural practices, would significantly benefit from additional research
focused on land-based sources of pollution. However, capacity and expertise limit the ability of
Malama Maunalua to conduct a region-wide watershed assessment to prevent high runoff
entering Maunalua Bay. The combined efforts of our group and Malama Maunalua will aid in the
management of the watersheds feeding Maunalua Bay.

Waialae Nui

( Waialae ki,

Maunalua Bay

Data USGS
Data SOEST/UHM

Figure 1. The Maunalua Bay Region, O ‘ahu, Hawaiian Islands, U.S.A. Data provided by the U.S.
Geological Survey and the University of Hawai i at Manoa School of Ocean, Earth, Science, and
Technology (SOEST). (Credit: Dornan et al., 2020).
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A previous group project of The Bren School of Environmental Science & Management
developed protocols to identify runoff hotspots (areas within a watershed that produce the
greatest runoff quantity) within the Wailupe watershed. The protocols require utilizing a
hydrologic modeling tool, the Environmental Protection Agency’s Stormwater Management
Model 5.1 (SWMM). Malama Maunalua is interested in expanding this hydrologic analysis to
the entire region, but this project has been delayed due to a lack of precipitation and stream
gauge data in the region. However, Malama Maunalua has begun placing rain gauges throughout
Maunalua Bay, which makes creating a SWMM model for each watershed more possible. The
new precipitation data collection began in 2019, and could be useful for calibrating SWMM
models in the future. For this reason, we created SWMM models for the region that will be
prepared for future calibration. To test and maintain reproducibility, we utilized the previous
group’s protocol to create SWMM input files for the 8 other watersheds in the region. These
watersheds are Kuli‘ou‘ou, Hahaione, Kamilo Iki, Kamilo Nui, Niu, Portlock, Waialae Iki, and
Waialae Nui (Figure 1). Furthermore, we build on the previous group’s project by determining
the impact of green infrastructure and climate change on runoff hotspots in the Wailupe
watershed.

Methods and Results

SWMM Model Setup

We used the U.S. Environmental Protection Agency’s (EPA) Storm Water
Management Model 5.1 (SWMM )—an open source tool that can be
downloaded from the EPA website. SWMM simulates hydrologic
processes, taking into account impervious surfaces, to estimate ‘
stormwater runoff and pollutant loading, and can represent both natural | |
and urbanized watersheds. This model is ideal for the Maunalua Bay |
region, which is urbanized in the lower watershed and natural in the

upper watershed. SWMM requires precipitation data, subcatchment |
delineation, subcatchment characteristic data, stormwater network data, \

and stream gauge data. When setting up SWMM to model runoff ‘
hotspots, we followed protocols developed by a previous Bren Group

Project (Dornan et al., 2020) during their runoff hotspot analysis of \ &
Wailupe. We started setting up the Kuli‘ou‘ou SWMM model first L
because, after Wailupe, it is the watershed with the most precipitation \
data. We also created SWMM models for Hahaione, Kamilo Iki, Kamilo

Nui, Niu, Portlock, Waialae Iki, and Waialaec Nui watersheds. We will use

the Kuli‘ou‘ou watershed as an example here as we lay out our methods.

Stormwater Network , ‘

The stormwater network was created by merging the stormwater TR M

conduits ArcGIS layer with the streams. For the ArcGIS model used

to create the stormwater network, see Appendix A. Figure 2. Kuli*ou‘ou Subcatchments
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Subcatchment Delineation

Subcatchment delineation is a process in which watersheds are broken down into smaller flow
areas based on the digital elevation model (DEM). Subcatchment delineation is helpful in
determining runoff hotspots, or subcatchments within the watershed that contribute higher runoff
flow and volume than surrounding subcatchments. This allows runoff intervention on a smaller
scale. Subcatchment delineation is particularly important in urbanized watersheds because
waterflow has been changed by stormwater systems and leveling. Subcatchments can be
delineated in such a way that the urban stormwater network is also taken into account when
determining water flow over the surface. This is done by lowering elevations where stormwater
drains are located so that water flows in those areas during simulations. We performed the
subcatchment delineation in ArcGIS Pro, utilizing the Kuli‘ou‘ou watershed outline, streams,
and the stormwater network (Figure 2). For more details on the methods, see Appendix B.

Subcatchment Characteristics

SWMM requires several characteristics for each watershed subcatchment to be input in order to
simulate runoff. We calculated percent impervious cover, soil curve number, and slope for each
subcatchment in the 8 watersheds using ArcGIS Pro. These characteristics affect the volume or
velocity of runoff. For more details on the methods, see Appendix C. For all SWMM inputs for
subcatchment characteristics, see Appendix D.

Impervious Surface Cover

Percent impervious cover is calculated using data layers for
existing bike lanes, buildings and rooftops, and roads. The spatial
layer for roads was buffered by 6 feet to account for sidewalks. All
streets were assumed to have sidewalks. This layer was then
combined with the buildings footprints layer and bike facilities
layer, using the ArcGIS “Union’ tool, to take into account
impervious buildings, rooftops, and bike paths into a single layer.

The resulting layer was then compared to Google Earth

images of the watersheds to ensure that no major “ ' i
impervious surfaces were missed, such as parking lots and \ | \
. \ kS
roads. The few surfaces that were missed were then drawn ‘ ﬁ‘\,;
manually into the layer (Figure 3). s‘ﬁ‘gi
[ = |=_‘\
AN
The percent of impervious cover in each subcatchment 3E ’ﬁwha‘ :
was then calculated using the ‘Tabulate Area Intersection’ § ".,;f":sg:“;"i"'
tool in ArcGIS. These results can be found in Appendix D. (o .r’%;‘;-s%ﬂz-.\
‘l-)""d\ R = S

Soil Curve Numbers

SWMM can take into account the infiltration of stormwater into

soils using curve numbers. A soil curve number is a metric that Figure 3. Kuli“ou®ou Impervious
represents the amount of runoff that infiltrates the soil. It is based ~ ©OV¢r

on the area's hydrologic soil group, land use, treatment and
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hydrologic conditions. Curve numbers range from 0 to 100, with 0 representing
completely saturated wet surfaces (such as lakes or oceans), and 100 representing
completely impervious surfaces (USDA, Soil Conservation Service).

We utilized the previous Bren group project’s soil curve data, which
combines both soil hydrologic group and land use data. Hydrologic
Soil Groups are broken into groups A, B, C, and D, representing
different soil types and infiltration levels. A soil curve number is
produced by jointly assigning scores to the different combinations
of hydrologic soil groups and land uses (Figure 4). A table listing
the soil curve numbers by land cover and hydrologic groups found
in the region can be found in Appendix E.

The ‘Tabulate Area Intersection’ tool in ArcGIS was then used to
calculate the percent area of each curve number within each
subcatchment. The resulting attribute table was exported to R to
create a new column with an average curve number per
subcatchment using a weighted average method. This resulted in a
final shapefile with the curve numbers for the Maunalua Bay
region.

Percent Slope

SWMM also requires a percent slope for each subcatchment. To
calculate this, the 10 meter DEM layer used in the Subcatchments
Delineation method was used to calculate the area percentage of
different slopes in each subcatchment in ArcGIS. The resulting
table was then exported to R to calculate the weighted mean slope
for each subcatchment.

Figure 4. Kuli*ou*ou Soil
Curve Numbers

SWMM Preparation

To prepare our SWMM input file, we utilized the code produced by the previous Bren Group
Project. This code is available on GitHub at https://github.com/nataliedornan/Kahuwai. We
reformatted their code so it could all be run at once, which is easier for users unfamiliar with R.
This code can be found at our GitHub account https://github.com/aloha-aina/Aloha-Aina. The
data needed to run this code include stormwater system, subcatchment delineation, and
subcatchment characteristics.

Kuli‘ou‘ou Model Calibration

SWMM requires precipitation data from the region of interest to simulate runoff from storm
events. Precipitation data was provided by the National Oceanic and Atmospheric
Administration’s (NOAA) National Centers for Environmental Information (NCEI) for the
Wailupe Valley School 723.6, HI US COOP:519500 (WVS) and Paiko Drive 723.4, HI US
COOP:517540 (Paiko Drive) stations between the years 1977 and 2014 (NOAA NCEI, 2021).
WVS is located in the Wailupe watershed, while Paiko Drive is located in the Kuli‘ou‘ou
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watershed. The two watersheds are separated by the Niu watershed.The R code can be found in
the Aloha-Aina GitHub project.

Due to the lack of data availability for the Kuli‘ou‘ou watershed at a time interval necessary for
SWMM, we conducted a time series analysis comparing Wailupe and Kuli‘ou‘ou rainfall. This
was done to determine whether the watersheds received similar enough rainfall to use rainfall
data from Wailupe as a proxy for Kuli‘ou‘ou rainfall.

©
N
o

== Kuliouou
== \Wiliwilinui
== Hawaii Loa

Precipitation (in)
o o
o 3

0.00;

0 5 10 15 20
Hours

Figure 5. Ridgeline Precipitation data across watersheds for January 18, 2021.

Because precipitation varies with elevation, we compared both upper watershed and lower
watershed precipitation in Wailupe and Kuli‘ou‘ou. First, we compared the ridgeline
precipitation gauges, which had uniform rainfall over a 2021 storm event (Figure 5).

Next, we compared the lower watershed WVS precipitation to Paiko Drive precipitation. We
found a relationship between WVS and Paiko Drive daily total precipitation across multiple
storm events (Figure 6, Appendix F), confirming that WV'S precipitation data for the Wailupe
watershed could potentially be used as a proxy for Paiko Drive precipitation data in the
Kuli‘ou‘ou watershed for our Kuli‘ou‘ou SWMM model.
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Figure 6. Wailupe Valley School and Paiko Drive NOAA precipitation data comparison for the January
4-10, 1996 storm.

However, an additional factor when choosing storm events to run in SWMM is that the
precipitation data needs to be paired with stream gauge data to facilitate in-model calibration,
comparing observed and simulated streamflow. For this project, we utilized stream discharge
data from the USGS station 16247900 (Kuli‘ou‘ou Valley at Kuli‘ou‘ou, O‘ahu, HI). The data
for this stream gauge was downloaded from the USGS National Water Information System. This
data was available from 2009-07-09 to 2010-10-03, and thus limited our available window of
precipitation data to pair with stream gauge data for model calibration.

We found two storms that overlapped with the stream gauge data, however they were unable to
be used for model calibration. The first storm (November-December 2009) had an overall similar
precipitation pattern between Wailupe and Kuli‘ou‘ou, but had too few data points for SWMM to
generate runoff (Figure 7). Most storms had similar rainfall for both watersheds; however, the
storm on October 11, 2009 had precipitation that differed between the watersheds, and therefore,
would not accurately produce stream flow for the Kuli‘ou‘ou watershed (Figure 7). Due to the
data limitations, we were unable to calibrate the SWMM model we produced for the Kuli‘ou‘ou
watershed.
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Figure 7. Wailupe Valley School and Paiko Drive NOAA precipitation data comparison for
November-December, 2009 storm (left). December 3, 2009 only had six data points. October 11, 2009
had uneven precipitation between the watersheds (right).

SWMM Results

Because we were unable to calibrate our model due to data limitations, we instead focused on
creating SWMM input files for the remaining watersheds in the Maunalua Bay region. These
input files provide Malama Maunalua with hydrologic models for the entire region, and will be
ready for calibration once the necessary precipitation and stream gauge data becomes available.

We created SWMM input files for the 8 remaining watersheds in the Maunalua Bay region,
including Kuli‘ou‘ou.To create the input files, we designed multiple ArcGIS models that
streamline the process for delineating subcatchments, creating subcatchment characteristics
layers, and creating the stormwater network layers. These models allowed us to more effectively
reproduce the previous group’s protocols. An example of one of the SWMM hydrologic models
created through this process is shown in Figure 8.

Figure 8. Diagram of the EPA Storm Water Management Model 5.1 Setup for the Kuli‘ou‘ou Watershed.
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At this time, we are unable to calibrate the models due to a lack of data availability. However,
these models will be useful for identifying stormwater runoff hotspots in the future when
calibration data becomes available. Malama Maunalua has placed two rain gauges in the
Kuli‘ou‘ou watershed, one at the ridge line and one at mid-watershed, approximately 350 meters
above sea level. This precipitation data collection began in 2019. There is currently no stream
gauge data published by USGS for this time period. Therefore, we recommend the installment of
additional stream gauges in the Kuli‘ou‘ou watershed. Furthermore, aside from Wailupe and
Kuli‘ou‘ou, the other watersheds in the region lack precipitation and steam gauge data. In order
to expand this SWMM analysis to the entire region, more precipitation and stream gauges need
to be placed throughout the region in each watershed.

Green Infrastructure — Wailupe Watershed

In SWMM, green infrastructure options are modeled through eight different types of ‘low
impact development’ (LID) controls. LID controls available to model in SWMM include:
bioretention cells, rain gardens, green roofs, permeable pavement, infiltration trenches, rain
barrels, rooftop disconnections, and vegetative swales. Each LID control is represented by a
combination of vertical layers whose properties are defined on a per-unit-area basis, meaning
that differently-sized LIDs of the same design can be placed in various subcatchments of a single
study area. During a simulation, SWMM performs a moisture balance that keeps track of how
water moves between and is stored within each LID layer, accounting for infiltration,
evapotranspiration, and any overflow that may occur from larger storm events.

Selection of LID Control Type and Location

For this project, green infrastructure recommendations and analysis are focused in the Wailupe
watershed. Wailupe was chosen for GI analysis because it is the only watershed within the
Maunalua Bay region for which a SWMM 5.1 hydrological model has been both developed and
calibrated (Dornan et al., 2020). Calibration for this model was previously completed using the
NOAA precipitation gauge for the Wailupe watershed: COOP:519500 Wailupe Valley School
723.6 HI US (WVYS), located at 21.2918° N, -157.7534° W (NOAA NCEI, 2020) paired with
observed stream discharge data from the USGS station 16247550 (Wailupe Gulch at E. Hind Dr.
Bridge) located at 21.2853° N, -157.7542° W.

The previous Bren group project that completed and calibrated the Wailupe hydrologic model
used a 2.8-inch, 11 hour storm event that occurred on March 14, 2009 to identify the top 19
subcatchments in Wailupe with the highest runoff coefficient values (Figure 9). A runoff
coefficient is a ratio of the total volume of runoff flowing from a subcatchment relative to the
total volume of rainfall that the subcatchment receives across its area (Ratzlaff, 1994). For the
purposes of this project, the 19 subcatchments with the highest runoff coefficient values in
Wailupe are classified as runoff hotspots. The runoff coefficient hotspots in the Wailupe
watershed were used as an initial starting point for guiding optimal green infrastructure
placement. The primary goal of implementing green infrastructure in the Maunalua Bay region is
to reduce stormwater runoff and pollutants (such as suspended solids (dirt), nutrients (nitrogen
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and phosphorous), and heavy metals (lead, copper, and zinc)) originating from the highly
impervious, urbanized environment.

Legend
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=z

Figure 9. Wailupe Watershed Runoff Hotspots. Left: Blue polygons represent the top 19 hotspots in
Wailupe watershed based on runoft coefficient values (Credit: Dornan et al., 2020). Right: Wailupe
hotspot areas overlaid onto most recent Google satellite imagery.

We observed each of the Wailupe runoff coefficient hotspots via Google Earth, finding that all 19
of the subcatchments consist of residential areas containing predominantly single-family homes
(Figure 9). The fact that every hotspot contains only residential areas significantly limited the
size and LID control-type that could be implemented for this study. Given the size of each
subcatchment and total volume of stormwater flowing from each subcatchment hotspot, the
addition of smaller-sized LID controls that are normally implemented at the residential scale
(such as a rain barrel, rain garden, or rooftop disconnection) will not reduce runoff enough to be
reflected in the SWMM simulation.

Malama Maunalua has produced a variety of outreach materials that provide recommendations

for residential-scale LID measures that homeowners can implement to reduce stormwater runoff
from their properties. Primarily, these recommendations focus on rain gardens and rain barrels.
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Given the size limitations and the relatively small storage capacity of these LID measures, we
chose to instead focus our residential-scale analysis on green roofs. A green roof is a layer of
vegetation planted over a waterproof liner that is installed on top of a flat or slightly-sloped roof
(National park Service, 2021). Green roofing provides a larger-scale LID option with greater
potential for reducing the total volume of runoff flowing from a residential property, and
therefore, from a subcatchment overall.

Green Roofing Scenarios in Runoff Hotspots

For each of the runoff hotspots in the Wailupe watershed, we modeled three different
green roofing scenarios: 1) 20% of houses in each hotspot contain a green roof, 2) 30% of
houses in each hotspot contain a green roof, and 3) 50% of houses in each hotspot contain
a green roof.

We used ArcGIS to calculate the total surface area (sq. ft) of buildings in each of the
hotspot subcatchments. We then multiplied each hotspot’s total building surface area by
0.2, 0.3, and 0.5 to obtain the appropriate total green roof area that should be applied to
each hotspot for the three different green roofing scenarios.

Non-residential LID Scenarios

As previously mentioned, the land area contained in each of the Wailupe runoff
coefficient hotspots is strictly residential. However, because Malama Maunalua has
experienced past difficulty encouraging individual homeowners to implement GI features
on their properties, they specifically expressed interest in also exploring how GI elements
placed in non-residential locations can reduce stormwater runoff. Therefore we expanded
the analysis outside of the runoff coefficient hotspots, to quantify the runoff-reduction
potential of large-scale GI features located in public or commercial properties.

To find suitable locations for non-residential GI placement, we observed each of the
Wailupe subcatchments via Google Earth. A number of those that contained public
and/or commercial property were identified and chosen for LID modeling in SWMM.
Suitable public or commercial areas within each of the selected subcatchments, identified
through satellite imagery, were used to guide which type of LID control could
realistically be added to a particular location in a subcatchment. We considered
appropriate LID options for public spaces, taking into consideration area, aesthetics, and
feasibility. We considered green roofs and permeable pavements where subcatchments
contained commercial buildings and/or public parking lots. Conversely, we considered
bioretention cells or rain gardens as appropriate capture solutions for public park spaces.

Specific GI best practices were followed when determining the potential placement of
certain LID controls. Rain gardens and bioretention cells were not considered for any
subcatchment hotspot with an average slope gradient greater than 10%. These same
controls were also not added to a subcatchment if, in a real-world scenario, they could not
be placed at least 10 feet from a building or at least four feet from a sidewalk, concrete
slab, or retaining wall (Hawai’i DOH, 2013). The ‘Measure’ tool on Google Earth was
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used to verify that such criteria could be met in a real-world setting within a given
subcatchment.

Modeling LID Scenarios in SWMM

After determining the appropriate types and locations of green infrastructure scenarios for the
Wailupe watershed, based on previously determined runoff hotspots and satellite imagery, we
then determined appropriate parameter measures and sizes for LID controls before manually
adding them to the Wailupe SWMM hydrologic model and running simulations with LIDs in
place.

Parameterization

In SWMM, LID controls are modeled through a combination of vertical layers. SWMM
LID layers include a surface layer, pavement layer, soil layer, storage layer, and/or drain
system. There is also a drainage mat layer that is unique to green roof LID controls. A
drainage mat is a multi-layer fabric mat that combines soil separation, drainage and
protection functions; they are often used for residential green roofs (Conservation
Technology, 2008). The LID layer combinations differ depending on the type of LID, but
are representative of an LID control’s real-world function and design. For example, a rain
barrel in SWMM only contains a storage layer and a drain layer, whereas a bioretention
cell contains a surface, soil, storage, and drain layer.

Each vertical layer has a set of parameters that ultimately determines the LID control’s
capacity to infiltrate, store, and filter runoff. Parameter values were determined based on
information found in the SWMM manual, literature, and resources provided by Malama
Maunalua. Because Hawai‘i contains unique soil and vegetation types relative to other
places in the U.S., and to many places referenced in the literature, we primarily referred
to Hawai‘i-specific sources when determining sensitive LID model parameters such as
Surface Roughness, Conductivity, and Seepage Rate. This is because green infrastructure
features in the real-world should ideally contain native vegetation and soil types (Wagner
et al., 2013). We wanted the modeled LID controls in this study to represent Hawaiian
soil and vegetation as closely as possible in order to more accurately model the
runoft-reduction potential introduced through GI. The parameters used for the different
LID types modeled in this study are shown in Appendix G.

Sizing

When adding LID controls to a subcatchment in SWMM, a user must define the area of
each LID unit (in ft*). For the green roofing analyses in hotspot subcatchments, green
roofs were capped at 3000 ft*. The values for 20%, 30%, and 50% of the total building
area previously calculated for each subcatchment were divided by 3000 to determine the
number of green roofs that should be applied to each hotspot (the number of houses was
rounded up when necessary to keep each green roof surface area at or below 3000 ft?).

For non-residential areas, we used the ‘Measure’ tool on Google Earth to determine the
approximate size of any LID control that corresponds to a specific building or feature.
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For example, if a green roof were considered for placement on top of a mall strip, then
we used the ‘Measure’ tool to determine the approximate size of the mall strip’s roof
area. This value was then used for the LID unit area in SWMM. Similar measurement
methods were used for other LID controls relating to specific areas, such as permeable
pavement systems. For any LID control that did not correspond to a specific building or
feature (rain garden, bioretention swale, vegetative swale), we based sizing on available
space and standard LID measurements found in the literature.

Running the Simulation

After LID control scenarios were added to a hotspot subcatchment, the subcatchment’s
percent imperviousness and percent perviousness were recalculated to account for any
impervious area replaced by a green infrastructure element. Next, we ran the model under
the March 2009 storm event to quantify the reduction in total runoff and peak flow values
as a result of green infrastructure implementation. Peak flow is a measure of the
maximum discharge value measured during a storm event and can have implications for
the volume of pollutants flowing from a subcatchment.

Results: Runoff Reduction from Green Roofing

The addition of green roofing to runoff hotspots significantly reduced the total runoff volume,
peak runoff values, and runoff coefficients for every hotspot subcatchment across all three green
roof scenarios. Figure 10 depicts a time series of stormwater discharge (runoff) in
cubic-feet-per-second (cfs) for the five hotspots with the highest initial runoff coefficients. As
shown in the figure, the primary reduction in stormwater runoff from the addition of green
roofing occurs during the period of peak runoff, occurring between hours 5 and 6.

Across the three scenarios, reductions in total runoff volume, peak runoff, and the runoff

coefficients increased as the percentage of green roofs applied to each subcatchment increased.
The following sections outline the results for each green roofing scenario in more detail.
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Figure 10. Time series of observed simulated discharges from the top five runoff coefficient hotspots for
the March 14, 2009 storm event, starting at hour 4. Colored lines represent simulated discharge for each
hotspot under different green roof scenarios (Black: Simulated discharge when 0% of homes have green
roofs, Orange: Simulated discharge when 20% of homes have green roofs, Green: simulated discharge
when 30% of homes have green roofs, Blue: Simulated discharge when 50% of homes have green roofs).

20% Green Roofing in Hotspots

Adding green roofs to 20% of homes located in the Wailupe hotspots reduced peak runoff
from the hotspots by an average of 15.8%. The greatest peak runoff reduction simulated
in the 20% scenario was a 21.5% reduction in subcatchment 40. The smallest peak runoff
reduction for this scenario was a 7.5% reduction observed in subcatchment 65. Prior to
the addition of LIDs, the 19 runoff hotspots produced a total of 6,290,000 gallons of
runoff. With 20% of houses in the hotpots converted to green roofing, total runoff
decreased to 5,710,000 gallons (a 9.2% decrease). Table 1 contains more detailed results
of runoff parameters for each hotspot subcatchment under this scenario.
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Table 1. Summary Output Table of Significant Runoff Parameters For the 20% Green Roofing Scenario
(20% of houses in runoff hotspots retrofit with green roofing).

Subcatchment Total Runoff (1 0° gal) Peak Runoff (cfs) Runoff Coefficient
68 0.31 9.34 0.609
60 0.13 4.14 0.608
67 0.38 11.85 0.601
47 0.16 5.45 0.588
46 0.21 6.21 0.586
45 0.20 6.84 0.585
65 0.30 9.04 0.575
71 0.15 4.71 0.567
54 0.28 9.47 0.555
59 0.23 6.87 0.554
89 0.85 25.07 0.542
51 0.18 5.92 0.541
29 0.06 1.83 0.540
23 0.64 19.81 0.536
63 1.13 35.59 0.534
40 0.07 2.23 0.532
21 0.07 2.29 0.512
22 0.09 2.70 0.511
49 0.27 8.97 0.508

30% Green Roofing in Hotposts

Adding green roofs to 30% of homes located in the Wailupe hotspots reduced peak
runoff from the hotspots by an average of 23.4%. The greatest peak runoff reduction
simulated in the 30% scenario was a 30.9% reduction also occurring in Subcatchment 40.
The smallest peak runoff reduction for this scenario was a 17.1% reduction observed in
Subcatchment 89. With 30% of houses in the hotspots converted to green roofing, total
runoff decreased from the initial value of 6,290,000 gallons to 5,330,000 gallons (a
15.3% decrease). Table 2 contains more detailed results of runoff parameters for each
hotspot subcatchment under this scenario.
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Table 2. Summary Output Table of Significant Runoff Parameters For the 30% Green Roofing Scenario
(30% of houses in runoff hotspots retrofit with green roofing).

Subcatchment Total Runoff (106 gal) Peak Runoff (cfs) Runoff Coefficient
68 0.30 8.72 0.579
59 0.23 7.30 0.574
60 0.12 3.75 0.564
67 0.36 10.88 0.563
46 0.19 5.73 0.551
51 0.18 5.92 0.541
47 0.15 4.89 0.533
45 0.18 6.02 0.523
71 0.14 4.23 0.522
54 0.26 8.75 0.518
89 0.81 23.50 0.517
63 1.06 32.89 0.501
23 0.60 18.16 0.500
29 0.05 1.72 0.498
65 0.25 6.90 0.483
40 0.06 1.96 0.476
49 0.25 8.11 0.466
21 0.06 2.05 0.463
22 0.08 2.37 0.463

50% Green Roofing in Hotposts

Adding green roofs to 50% of homes located in the Wailupe hotspots reduced peak runoff
from the hotspots by an average of 38.4%. The greatest peak runoff reduction simulated
in the 40% scenario was a 48.6% reduction which again occurred in subcatchment 40.
The smallest peak runoff reduction for this scenario was a 27.8% reduction observed in
subcatchment 89. With 50% of houses in the hotspots converted to green roofing, total
runoff decreased to 4,610,000 gallons (a 26.7% decrease). Table 3 contains more detailed
results of runoff parameters for each hotspot subcatchment under this scenario.
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Table 3. Summary Output Table of Significant Runoff Parameters For the 50% Green Roofings Scenario
(50% of houses in runoff hotspots retrofit with green roofing).

Subcatchment Total Runoff (1 0 gal) Peak Runoff (cfs) Runoff Coefficient
68 0.27 7.55 0.522
67 0.31 9.06 0.491
46 0.17 4.83 0.486
60 0.11 3.04 0.479
89 0.73 20.48 0.467
59 0.19 5.49 0.466
54 0.23 7.39 0.447
71 0.12 3.35 0.439
63 0.93 27.75 0.438
47 0.12 3.85 0.431
23 0.52 15.02 0.431
29 0.04 1.34 0.414
51 0.14 4.37 0.414
45 0.14 4.53 0.408
65 0.21 5.24 0.400
49 0.21 6.52 0.386
22 0.07 1.78 0.374
40 0.05 1.46 0.372
21 0.05 1.60 0.371

LID Runoff Reduction Results: Non-Residential Areas

Subcatchment 78: LID Controls in a Commercial Shopping Center

Subcatchment 78 is one of the few subcatchments in the Wailupe watershed that contains
non-residential areas. We added two LID controls to public spaces in this subcatchment: a
green roof scaled to the size of the ‘Aina Haina Shopping Center roof and a permeable
pavement system scaled to the size of the ‘Aina Haina Shopping Center parking lot. The
green roof totaled 49,100 ft* and the permeable pavement totaled 55,295 ft* (Figure 11).
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Figure 11. Theoretical placement of a green roof and permeable pavement system in subcatchment 78.
The green rectangle represents a green roof along the ‘Aina Haina Shopping Center and the blue
rectangle represents a permeable pavement system in the ‘Aina Haina Shopping Center parking
lot.

Without the addition of LID controls, subcatchment 78 produced 860,000 gallons of
runoff and a peak runoff value of 28.6 cubic-feet-per-second (cfs) during the March 2009
storm event. Individually adding the green roof and permeable pavement LID controls
reduced the total runoff values to 760,000 gallons and 730,0000 gallons, respectively.
Simulated peak flow under the green roof and permeable pavement scenarios was 25.5
cfs and 24.6 cfs, respectively (an ~11% reduction created by each LID control). Under a
combined LID scenario, where the green roof and permeable pavement were both added
to subcatchment 78, total runoff decreased to 640,000 gallons (a 26% reduction). Under
this same scenario, peak flow decreased to 21.9 cfs (a 23% reduction) (Figure 12).
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Figure 12. Time Series of simulated discharges from subcatchment 78 for the March 14, 2009
precipitation event under different LID Scenarios, starting at hour 4 of the storm event. Observed data
provided by NOAA NCEI precipitation gauge COOP:519500 (WAILUPE VALLEY SCHOOL 723.6 HI
US). (Black: Simulated discharge (cfs) with no LIDs in place, Green: Simulated discharge (cfs) for green
roof only, Orange: Simulated discharge (cfs) for green roof and permeable pavement combination
scenario).

Subcatchment 11: LID Controls in a
Public Park

Subcatchment 11 is one of the largest
subcatchments in the Wailupe
watershed. Subcatchment 11 also has
one of the highest peak runoff values
simulated during the March 14, 2009
storm event, implying that this portion
of the watershed contributes a
significant amount of runoff into
Wailupe Stream and ultimately, into
Maunalua Bay. Subcatchment 78 is also
one of the few subcatchments in the
Wailupe watershed that contains a
public park area— Nehu Park. The park
consists of a few trees, and a large,
grassy area. It is located in the

middle of a neighborhood and
surrounded by houses from which a Figure 13. Theoretical placement of 900 ft* rain garden in
well-placed rain garden has potential ?\'chu Park. located in the Wailupe watershed. The rain garden
to capture runoff. We modeled the is shaded yellow.

Nehu Park
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runoff-reduction potential of adding a 900 ft* rain garden area to Nehu Park (Figure 13).
Under the March 14 storm event simulation, we did not see a significant reduction in
simulated runoff from subcatchment 11 with the rain garden area in place (Table 4). The
900 ft* rain garden decreased the runoff coefficient value by only 0.3% and the peak
runoff value by 1.5%. Total runoff decreased by 1,000 gallons.

Table 4. Summary Output Table of Subcatchment 11 Significant Runoff Parameters.

LID Scenario Total Runoff (10° gal) Peak Runoff (cfs) Runoff Coefficient
No LIDs 1.36 40.87 0.553
900 sq.ft Rain garden 1.35 40.26 0.550

LID Cost Estimates

The costs of green infrastructure vary widely across geographic regions and can be quite
substantial when implemented at large-scales. However, it is likely that the prices associated with
green infrastructure in the U.S. will decline as market demand increases (USEPA, 2008). In the
following sections we will outline the potential monetary costs of the various LID controls
modeled in this study, including capital and maintenance costs. Given the scope of this project, a
full cost-benefit analysis of green infrastructure implementation was not feasible and therefore
social and environmental costs and/or benefits are not included in our calculations.

Green Roof Costs

The cost of green roofing is variable, ranging in price from $18-$64 per cubic foot of
storage (a cubic foot of storage is about 7.5 gallons of water). Difference in price depends
on construction materials. Such as filter membranes, drainage layers, support panels, and
thermal insulation (NOAA, 2015). To ensure proper use and efficiency, annual
maintenance costs include frequent watering and tending for plant survival, invasive
species control, and yearly inspections for structural integrity and leak reduction. This
cost could range from $0.75-$1.50 per ft* (Green Values National Stormwater
Calculator).

The potential cost of installing green roofing on 20% of the homes in the Wailupe
hotspots (equaling approximately 370,637 ft* of green roofing) ranges from
approximately $6,671,000 to $23,721,000. The average price per house ranges from
$8,952 to $31,828 for the green roofings itself, and from $1,956 to $3,912 for yearly
maintenance.

The total cost of installing green roofing on 30% of the homes in the Wailupe hotspots
(equaling 555,955 ft* of green roofing) ranges from approximately $10,007,000 to
$35,581,000. The total price of installing green roofing to 50% of homes in the hotspot
areas (equalling 926,591 ft* of green roofing) ranges from approximately $16,679,000 to
$59,302,000.
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The price for 49,100 ft* of green roofing on top of the Aina Haina Shopping center
ranges from $883,800 to $3,142,400, with yearly maintenance costs between $36,825 and
$73,650.

Permeable Pavement Costs

Permeable pavement costs range depending on the material chosen for implementation.
Permeable pavement systems are often composed of a combination of asphalt and
concrete, or other porous materials. However, individual materials such as porous asphalt,
pervious concrete, and permeable interlocking concrete can range from; $1-$1.50, $3-$9,
and $7-$14, per square foot, respectively. Annual maintenance costs range from
$400-$500 per acre which include regular inspections for clogging, cracks, and potholes
in order to ensure the most efficient water infiltration (Green Values National Stormwater
Calculator; USEPA, 2013).

Most maintenance costs are attributed to areas in colder climates that demand snow
plowing, salting, and de-icing that alter the state of the permeable pavements. For
Hawai’i, maintenance costs would fall in the lower cost range since there would be little
to no complications due to freeze-thaw stress.

Although permeable pavement options cost more than traditional pavement to construct
initially, low maintenance and stormwater management costs can contribute to economic
savings, long term (USEPA, 2013).

Rain Garden Costs

Rain garden installation costs $7-$60 per cubic foot of storage. Rain gardens require
annual maintenance costs of about $0.70 per ft? for regular landscaping and upkeep to
ensure that the green infrastructure practice is functioning properly (NOAA, 2015; Green
Values National Stormwater Calculator). Initially, rain gardens may require more labor
for maintenance, but generally it will decrease over time if they contain appropriate
vegetation. Traditional use of endemic, low maintenance Hawaiian plant species such as
Carex (Carex wahuensis), Thiihilavakea (Marsilea villosa), and Ma'o (Gossypium
tomentosum) would demand less water consumption and regular landscaping
maintenance.

The price of installing a 400 ft* rain garden in Nehu Park ranges from $2,800 to $24,000.
This estimate does not include construction costs. The installation of rain gardens in
public parks could be turned into a community project, where members of the community
have the opportunity to volunteer and work together to build rain gardens in their local
parks.
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Climate Change — Wailupe Watershed

We determined the impacts of future climate change scenarios on the runoff coefficients and
peak flow values of the subcatchments in Wailupe. The runoff coefficient is a ratio of the total
volume of runoff relative to the total number of rainfall that a subcatchment receives across its
area (Ratzlaff, 1994). Peak flow is a measure of the maximum discharge value measured during
the storm event. We used projected precipitation data to view differences in runoff coefficients
and peak flow under extreme climate change scaled conditions.

To understand the impact of future climate change on the Maunalua Bay region, we have utilized
climate data provided by the PanGeo Gallery, utilizing Jupyter Notebooks with Python 3. This
data server contains global climate data from the Coupled Model Intercomparison Projects
(CMIP6). CMIP6 are coordinated general circulation model (GCM) simulations, constituting
climate projections used in the Intergovernmental Panel on Climate Change (IPCC) Sixth
Assessment Report (AR6). Specifically, this CMIP6 dataset contains historic and projected
precipitation fluxes up to 2100 with four Shared Socioeconomic Pathways (SSPs) based on
different possible concentrations of greenhouse gas (GHG) emissions and climate policies.

For this analysis, we confine our assessment of precipitation impacts on the island of O‘ahu to
concentration-driven simulations, focusing on four SSPs that include: SSP1-2.6, SSP2-4.5,
SSP3-7.0, and SSP5-8.5, which result in end-of-century approximate total radiative forcing
levels of 2.6, 4.5, 7.0, and 8.5 W m 2, respectively. The SSPs describe alternative evolutions of
future society in the absence of climate change or climate policy. SSP1 is a pathway of
sustainability, which assumes climate protection measures are being taken and global commons
are being preserved; SSP2 is a middle of the road pathway, which assumes Intermediate GHG
emissions around current levels until 2050 then falling but not reaching net zero by 2100; SSP3
is a pathway of regional rivalry, which assumes increased future economic and social
development, fast-growing population and increasing inequalities; SSP5 is a pathway of
fossil-fueled development, which assumes intensified exploitation of fossil fuel resources with a
high percentage of coal and an energy-intensive lifestyle worldwide. Generally, the SSPs have a
higher associated accumulated concentration of atmospheric CO, (Figure 14).
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Figure 14. Future annual emissions of CO: from the [PCC AR6. Future annual emission of CO,
(GtCO,/yr) from 2015-2100 where colored lines represent SSPs. (IPCC, Box SPM.1)

To determine how climate change-driven shifts in precipitation influence differences in
stormwater runoff in the Wailupe watershed, we extracted daily total precipitation for the island
of O‘ahu from historical periods and projected periods: 1984-2014 and 2020-2050, respectively.
See Appendix H for the code used to extract these values. Precipitation data was filtered for
March 14 for each year to align with the Wailupe storm events used as SWMM input. The March
14 daily total precipitation was then averaged across 2020-2050 for each SSP and separately for
the 1984-2014 historical precipitation. We then took the ratio of daily total precipitation averaged
across 2020-2050 for each SSP divided by historical daily total precipitation across 1984-2014 to
serve as the multiplicative change factor (MCF), as depicted below.

Projected daily total precip avg from 2020—2050

MCF SSP. March 14— Historical daily total precip avg from 1984—2014

This methodology was deployed for three separate CMIP6 models (Figure 15). We multiplied
each time step in the SWMM model input by the maximum (2.20) and minimum (0.40) MCF
across all SSPs and CMIP6 models. This was applied to the Wailupe watershed for the March 14,
2009 storm event to serve as the extreme scenarios associated with climate change impacts
(Figure 15).
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Figure 15. Multiplicative Change Factors for the March 14 Storm Event. Multiplicative change factors
(MCF) by Shared Socioeconomic Pathways (SSPs) for the Wailupe March 14 storm event. Points indicate
CMIP6 models (Black: BCC-CSM2-MR, Green: CNRM-ESM2-1, Orange: IPSL-CM6A-LR).

Minimum and Maximum MCF

SWMM output provides total precipitation (inches), total runoff (inches), total infiltration
(inches), impervious runoff (inches), pervious runoff (inches), total runoff (inches, gallons), peak
runoff (cfs), and runoff coefficient by subcatchment in the watershed. Over the course of the
11-hour storm on March 14, 2009, the maximum MCF model simulated discharge of 11,059.47
cfs and the minimum MCF model simulated discharge of 344.66 cfs, whereas the stream
discharge gauge observed a total of 3,617.86 cfs. There was a 194% increase in peak discharge
with the max MCF applied and a 78% decrease in peak discharge with the min MCF applied at
hour 5:45 as compared to the observed peak discharge that occurred on March 14, 2009 (Figure
16).
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Figure 16. Time Series of Observed, Maximum and Minimum Multiplicative Change Factor (MCF)
Simulated Discharge for the March 14, 2009 Precipitation event. Observed data provided by NOAA
NCEI precipitation gauge COOP:519500 (WAILUPE VALLEY SCHOOL 723.6 HI US). (Black:
Observed, Green: Minimum MCF simulated, Orange: Maximum MCF Simulated).
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Runoff Coefficients

For the March 14, 2009 storm, runoff coefficients range from 0 to 0.82 with the max MCF
applied and from 0 to 0.60 with the min MCF applied. See Appendix I for code used to view
differences in runoff coefficients for each subcatchment.The spatial distribution of runoff
coefficients for both can be observed in Figure 17. Hotspots here were defined as the top 20
highest runoff coefficient subcatchments in the lower, urbanized watershed (Table 5). Knowing
changes in runoff coefficients related to climate change impacts will aid in management practices
that prioritize future placement of green infrastructure in top ranking runoff coefficient
subcatchments which will ultimately help reduce runoff that feeds into the Maunalua Bay. When
comparing runoff coefficients from a previous study for the March 14, 2009 storm event (Dornan
et al., 2020), we found that subcatchments 89, 14, 65, 23, and 63 are the top 5 subcatchments that
experienced the greatest difference between max MCF scaled runoff coefficients and historically
simulated March 14, 2009 runoff coefficients. Future concentration on these specific
subcatchments as target areas for green infrastructure placement will ultimately aid in reducing
runoft that will feed into the Maunalua Bay.

Min MCF

Max MCF

Runoff Coefficient

o
©

oo0o0ocooo
S“hwrooN

Figure 17. Modeled Runoff Coefficient Results for Wailupe Watershed. Left: March 14, 2009 storm with
the min MCF applied. Right: March 14, 2009 storm with the max MCF applied. Higher runoff
coefficients indicate areas where more precipitation becomes stormwater runoff.
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Table 5. Summary Output Table of Top 20 Runoff Coefficient Subcatchment with Min and Max MCF
Results and Significant Parameters.

Subcatchment

45

47

60

40

51

54

21

29

67

71

49

46

13

59

22

35

36

63

23

68

65

14

91

89

Slope
10.837372
9.017865
10.200056
7.774446
3.205696
11.985041
2.133592
4.303893
13.094514
1.229756
4.973908
11.626618
9.180995
2.801558
9.355130
5.224538
2.502320
3.413503
11.350848
2.091764
16.778001
12.285943
10.062202
7.225773

12.267217

Percent Impervious
75.81188
73.67874
66.27512
65.26444
65.70618
65.90850
64.38962
63.75090
65.31544
63.33945
59.22529
61.33458
59.97949
60.72206
58.61615
57.36459
58.10591
57.37835
59.59508
60.15849
56.40240
54.98557
51.97367
49.19777

54.37988

Area (sqft)
205273.48
163180.85
130703.86

78272.63
194382.01
301206.44

78832.74

62214.52
376961.02
161251.17

42008.07
317060.05
209977.29
210147.80
241399.55
106889.43
163977.29
103198.24

1260905.98
712111.05
306366.86
309782.87
244581.39
543493.09

929708.78

Runoff Coefficient, Min MCF
0.594
0.586
0.531
0.528
0.516
0.514
0.511
0.510
0.509
0.493
0.489
0.484
0.481
0.473
0.465
0.463
0.461
0.458
0.454
0.452

NA
NA
NA
NA

NA

Runoff Coefficient, Max MCF

35

0.815

0.799

0.821

0.762

0.746

0.748

NA

0.747

0.809

0.793

0.809

NA

0.789

NA

0.751

0.745

NA

NA

0.746

0.759

0.813

0.770

0.764

0.755

0.748



Peak Flow

Peak flow is a measure of the maximum discharge value measured during the storm event. Peak
flow ranges from 0 to 106.39 cfs for the March 14, 2009 storm with the max MCF applied and 0
to 15.29 cfs for the March 14, 2009 storm with the min MCF applied (Appendix I). Figure 18
shows the spatial distribution of the peak flows for both MCF values applied to the March 14,
2009 storm event. Hotspots here were defined as the top 20 highest peak flow (cfs)
subcatchments in the lower, urbanized watershed (Table 6). To determine the influence of
subcatchment area on peak discharge, we normalized peak discharge by dividing each
subcatchments peak discharge value by its total area. The subcatchments with the highest
normalized peak flow values were defined as hotspots (Appendix J). Viewing differences in peak
flow under the min and max MCF applied will help inform management practices that prioritize
future placement of green infrastructure in top ranking peak discharge subcatchments which will
ultimately help reduce runoff that feeds into the Maunalua Bay. When comparing peak flow from
a previous study (Dornan et al., 2020), we found that subcatchments 63, 11, 28, 74, and 89 are
the top 5 subcatchments that experienced the greatest difference between max MCF scaled peak
discharge and historically simulated March 14, 2009 peak discharge. Future implementation of
green infrastructure in these subcatchments specifically will ultimately aid in reducing runoff
that feeds into the Maunalua Bay.

Min MCF Max MCF

Figure 18. Modeled Peak Flow Results for Wailupe Watershed. Left: March 14, 2009 storm used with the
min MCF applied. Right: March 14, 2009 storm used with the max MCF applied.
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Table 6. Summary Output Table of Top 20 Highest Peak Flow Subcatchment with Min and Max MCF
Results and Significant Parameters

Subcatchment

63

28

42

11

89

74

62

58

78

23

76

7

75

79

91

52

10

67

34

55

20

Slope
11.3508475
9.6951530
12.7741916
0.9475857
12.2672167
0.5130342
4.9693069
13.4737125
0.6625196
2.0917640
12.6689327
24.3708501
3.1037990
0.7809627
7.2257735
14.2092259
13.0349991
13.0945141
6.5716791
14.0124563

28.7382083

Percent Impervious
59.595082
45.648739
52.075244
60.176841
54.379880
49.951879
57.621143
50.489651
45.869531
60.158489
21.946154
14.101788
49.969260
55.674414
49.197766
49.068201
46.827316
65.315445
55.845327
43.238717

5.926749

Area (sqft)
1260906.0
1400355.0
1097149.0
1461121.3
929708.8
15934731
816823.7
794612.3
1272102.3
7121111
1533842.8
2174275.2
646779.6
703208.6
543493.1
521285.7
527259.5
376961.0
439337.8
456026.8

3260351.4

Peak Runoff (cfs), Min MCF
15.29
13.56
12.15
11.91
10.85
10.07

9.66
8.76
8.38
8.09
7.40
6.79
6.65
6.63
5.86
5.66
5.46
5.35
5.31
4.37

NA

Peak Runoff (cfs), Max MCF

106.39

99.65

80.56

105.54

37

79.13

90.09

62.88

57.25

69.55

59.82

52.96

56.98

47.57

48.58

47.33

38.27

38.42

37.74

35.34

NA

64.99



Probability of Extreme Climate Change Events

Another important factor to consider with extreme climate change events is the probability of
those events occurring today. We conducted a density distribution analysis of present-day
Wailupe precipitation from 1996-2013 to determine if the MCF-scaled precipitation amounts
associated with the March 14, 2009 storm are unlikely to occur by the standards of today’s
climate. We summed the sub hourly Wailupe precipitation data to obtain a dataframe with daily
total precipitation across the time series, where the average was 0.35 inches. We then applied the
dnorm function in baseR to the dataframe of daily total precipitation (in) (Appendix K). In
Figure 19, the vertical orange line represents the max MCF (2.20) multiplied by the average
precipitation of the March 14, 2009 storm (0.20 inches) and the green line represents the min
MCEF (0.40) also multiplied by the average precipitation of the March 14, 2009 storm (0.20
inches). The intersections of the vertical lines with the density distribution black line represent
the likelihood of a max or min MCF equivalent storm occurrence. The likelihood of a min MCF
scaled storm event is 69% and the likelihood of a max MCEF scaled storm event is 77%. These
results indicate that the max scaled March 14, 2009 event is 0.09 inches more than the density
distribution mean, suggesting climate change impacts are unlikely to alter the types of green
infrastructure that would be necessary in the future.
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Daily Precipitation (in)
Figure 19. Density Distribution of Wailupe precipitation events. Black line indicates the density
distribution of the Wailupe daily total precipitation time series from 1996-2013. Orange line depicts the
max MCF multiplied by the March 14, 2009 average precipitation (0.2 inches). Green line depicts the min
MCF multiplied by the March 14, 2009 average precipitation.

38



Wailupe LID Eftfectiveness Under Climate Change Scenarios

One factor to consider prior to the implementation of green infrastructure elements is their
effectiveness under the potential impacts of climate change and larger storm events. The costs
associated with large-scale green infrastructure projects can come with substantial costs, and
their long-term effectiveness and benefits must justify the necessary expenditures. To explore the
effectiveness of LIDs under climate change scenarios, we applied the MCFs to subcatchment 78
within the Wailupe watershed.

Methods

The same LID controls as modeled in subcatchment 78 previously (a green roof and
permeable pavement parking lot scaled to the ‘Aina Haina Shopping Center) were
modeled under two climate change scenarios— one that represents a average wetter
climate across the Maunalua Bay region and one that represents an average drier climate
across the region. For the wetter climate scenario, we modeled subcatchment 78 runoff
with the Max MCEF applied to the March 14, 2009 storm event. To represent a drier
climate change scenario, we applied the Min MCF values to the March 14 storm event.
Both scenarios were modeled in SWMM and runoft parameters for subcatchment 78
were used to illustrate how LID controls might function under realistic climate change
scenarios.

Results — Max MCF

With the Max MCF applied, peak flow from subcatchment 78 increased to 69.6 cfs
(compared to 21.7 cfs when the Max MCF was not applied). This represents a 220.7%
increase in the peak flow value. Adding the 49,100 ft* green roof and the 55,295 ft* of
permeable pavement and simulating the Max MCF scenario decreased peak flow to 54.1
cfs (Figure 20).

In the initial LID analysis for subcatchment 78 (with no MCF applied), the addition of
the green roof and permeable pavement reduced the subcatchment’s peak flow by 23%.
Under the Max MCF scenario, which represents average wetter conditions across the
region, the addition of the two LID controls resulted in a 22.3% reduction in peak flow
and a 19.5% reduction in the overall volume of runoff from subcatchment 78. These
results show that the LIDs retain 97% of their effectiveness in reducing peak flow under
the larger storm event.
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Figure 20. Time series of simulated LID scenario discharges from subcatchment 78 for the
March 14, 2009 precipitation event with the Max MCF applied, starting at hour 4 of the storm.
(Black: Simulated discharge (cfs) with no LIDs, Green: Simulated discharge (cfs) with the
addition of a green roof and permeable pavement).

Results — Min MCF

When the Min MCF was applied to the March 14, 2009 storm event (representing
average regional drier conditions), peak flow from subcatchment 78 decreased from 28.6
cfs to 8.4 cfs (a 70.6% decrease). With the addition of the green roof and permeable
pavement LID controls, peak runoff decreased from 8.4 cfs to 6.3 cfs (Figure 21). This is
a 25% reduction in peak runoff with the two LIDs in place compared with no LIDs. With
the decrease in precipitation, the LIDs became slightly more effective at reducing the
peak flow from subcatchment 78 (25% under the Min MCF scenario compared to 23%
under normal conditions).
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Figure 21. Time series of simulated LID scenario discharges from subcatchment 78 for the March
14, 2009 precipitation event with the Min MCF applied, starting at hour 4 of the storm. (Black:
Simulated discharge (cfs) with no LIDs, Green: Simulated discharge (cfs) with the addition of a
green roof and permeable pavement).

41



Optimal Locations for Green Infrastructure in Maunalua Bay

Rain gardens, in particular, are aesthetically pleasing, ideal for implementation at the residential
scale, and capable of removing much of the sediment in runoff. Rain gardens are built
depressions planted with vegetation that collects and treats stormwater runoff from impervious
surfaces such as rooftops, driveways, parking lots, and roads (Figure 22). They are designed to
capture runoff and filter the water through the plants and soils—reducing the amount of sediment
and pollution entering storm drains, streams, and the ocean. Small, multiple rain gardens that are
incorporated uphill and downhill of a given site or runoff hotspot would be the most effective
(Cahill, et al., 2018). Ideally, rain gardens implemented in Maunalua Bay would serve to reduce
the flow of sediment and pollutants into the Bay, decreasing harm inflicted on the coral reef
habitat.

Figure 22. Community Rain Garden. Image from University of Minnesota.

Community rain garden programs already exist in Hawai’i such as the Ko‘olaupoko Rain Garden
Co-op and Cost Share Program, which provides grant funds for residents and communities who
are interested in installing a rain garden on their property. The project grant funds come from the
U.S. Environmental Protection Agency and the State of Hawai‘i, Clean Water Branch, Polluted
Control Runoff.

In order to identify optimal locations for rain garden placement throughout the entire Maunalua
Bay region, different methods and data were utilized from the previous analyses. Instead of using
SWMM and precipitation data from USGS, ArcGIS and rainfall data from the Rainfall Atlas of
Hawai‘i were used. Rainfall data was needed for the entire region, which was not available
through USGS.

We created a ModelBuilder model in ArcGIS that consists of three models: Site Locator, Runoff
Hotspot, and Optimal Rain Garden Location. The Site Locator model determines suitable
locations for rain garden placement based on proximity to impervious surfaces, buildings,
streams, sidewalks, wetlands, stormwater drains, flood zones, and parks, as well as the location's
slope and soil curve number. Next, the Runoff model utilizes hydrologic tools in ArcGIS and
rainfall data from the Rainfall Atlas of Hawai‘i to determine areas of high runoff. Then, the
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Optimal Rain Garden Location model takes into account the results from both aforementioned
models to determine optimal rain garden intervention locations across the Maunalua Bay region.
Lastly, we calculated the yearly volume of sediment reduction that results from rain garden
implementation.

Site Locator Model

The suitable locations for rain gardens are mostly in the lower parts of the watersheds due to the
slope restriction of a 6% grade or less (Figure 23). This is also due to the fact that the upper
watershed is mostly natural habitat and our model focuses on locating rain gardens near
impervious surfaces.
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Figure 23. Site Locator Model Results. All of the suitable locations for rain gardens are in pink. The
darker pink indicates the upper quantile of the data, where rain gardens are most suitable due to proximity
to streams, stormwater drains, flood zones, impervious surfaces, parks, and wetlands. Data from the City
and County of Honolulu, the Hawaii Statewide GIS Program, and The University of Hawaii, among other
sources listed in the metadata in Appendix L.
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Runoff Hotspot Model

To determine a rainfall hotspot, the ArcGIS ‘Flow Accumulation’ tool was used, which

calculates accumulated flow as the accumulated weight of all cells flowing into each downslope
cell in the output raster. A rainfall hotspot should be an area that receives a large amount of water
from surrounding cells at a higher elevation. The runoff hotspots map below is at a less fine scale
resolution than our site suitability output map due to the resolution of the rain data available from
the Rainfall Atlas of Hawai‘i.

Runoff Hotspots
:] Maunalua Bay Region
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Figure 24. Runoff Hotspot Model Results. The areas of annual average flow accumulation of greater than
30,000 mm (the upper quantile) are shown in dark blue. Rainfall data from the Rainfall Atlas of Hawai‘i.

Results in Figure 24 show there are runoft hotspots in both the urbanized and natural
environment. The runoff hotspots in the urbanized lower watershed are expected since
stormwater must flow through those areas to reach the ocean. However, the runoff hotspots in the
natural upper watershed are unexpected. They appear to be pinch points in the landscape, where
water must flow through a tight space. As the upper watershed tends to receive more rain, these
areas have a large amount of rain water flowing through them in the tight valleys before the
valleys widen. After the valleys widen, this water would then flow across a wider surface area,
resulting in lower flow accumulation values.

For a future analysis on optimal rain garden placement, the flow accumulation values could be
first constrained by the slope before taking the highest values. This would enable us to have
more runoff hotspots within the area of interest. Rain garden placement in the upper watershed
would ruin the natural habitat, and would limit the amount of water that could naturally flow
over the surface and evaporate from the landscape before reaching the urbanized area.
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Optimal Rain Garden Location Model
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Figure 25. Optimal Locations for Rain Gardens. The runoff hotspots are in dark blue and the rain gardens
are in green. The optimal locations for rain garden placement are areas where runoff hotspots are greatest
and rain garden suitability is highest.

The runoff hotspots layer has a larger cell size (62,500 m?) than the rain garden suitable locations
layer (625 m?). For this reason, we clipped the runoff hotspots by the rain garden suitable
locations layer, resulting in a layer with the optimal locations for rain gardens that had cell areas
of 625 m?. We conservatively assumed that one 25 m? rain garden could fit within each optimal
location cell, although theoretically 25 could fit. This allows for variability in placement of the
rain garden. If the optimal location overlaps both public and private property, the one rain garden
could be implemented in either location within the optimal cell depending on who is building it.
However, stakeholders could decide to place more rain gardens within the optimal location cell.

Sediment Calculation

In order to calculate the amount of sediment removed by rain gardens, we first needed to identify
the amount of sediment that would flow when it rains. The amount of sediment that would flow
per mm of rainfall (0.6 kg/mm) was calculated using the below equation. The average annual
suspended sediment concentration, taken at a stream gauge in Maunalua Bay in 2009, measured
9.6 mg/L (USGS 16247550 Wailupe Gulch at E. Hind Dr. Bridge, O‘ahu, HI) (Storlazzi, et al.,
2010). Using the USGS Rainfall Calculator, we found that 1 mm of rainfall on an area of 62,500
m? is equal to 62,500 L of water. We multiplied these two numbers to determine the amount of
sediment per mm of rainfall.
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96mg 4 62500L _ sediment (kg)
L 1mm — 7" rainfall (mm)

Next, we created an equation to calculate the per year sediment reduction that results from rain
garden implementation in a particular hotspot. We divided the annual flow accumulation per cell
(found in the Runoff model) by the runoff hotspot cell area (62,500 m?) to get the flow
accumulation per m?. We then multiplied this by the rain garden area (25 m?) to determine how
much rain would flow through each rain garden. Next, we multiplied the flow through the rain
garden by the number of rain gardens within the hotspot. Then, we multiplied by the amount of
sediment that would flow per mm of rainfall (0.6 kg/mm) to get the amount of sediment that
flows through the hotspot per year. This number was then multiplied by 0.56 to determine the
amount of sediment that each rain garden would be able to remove from runoff per year, as it is
recommended that rain gardens aim to reach a target of sediment reduction by 56% to be
effective (Cahill, et al., 2018).

annual flow accum. per cell (mm/year)
62,500 (m?)

sediment (kg) 4 0.56 = sediment (kg)

* 2y« i *
25 (m") * number of rain gardens * 0.6 rainfall (mm) year

Implementing all 81 rain gardens could reduce the amount of sediment by 6,408 kg per year. To
put this into context, the annual suspended sediment discharge from the same stream gauge in
2009 (USGS 16247550 Wailupe Gulch at E. Hind Dr. Bridge, O‘ahu, HI) discharged 286,089.78
kg of sediment into the Bay. As this sediment reduction is not significant compared to how much
sediment is annually discharged from one stream gage, rather than focusing on implementing
many rain gardens, capture solutions which will capture sediment high in the watershed at the
source, may be a more effective option.
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Table 6. The amount of sediment reduction by implementing rain gardens in runoff hotspots in Maunalua
Bay, given flow accumulation, assuming that sediment flow is 0.6 kg/mm of rainfall.

Hotspot # Rain Gardens Flow Accumulation (mm rain) Sediment Reduction (kg/yr)
1 4 9,193,579 4,942
2 8 32,000 34
3 1 38,900 5
4 18 80,000 194
5 2 36,262 10
6 3 2,051,482 827
7 33 45,000 200
8 8 22,830 25
9 4 318,000 171
Total 81 11,764,053 6,408
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Figure 26. Kahala Mall Runoff Hotspot. Here is a zoomed-in example of one hotspot in the region.
Runoff hotspot (blue) surrounding Kahala Mall in Maunalua Bay. The optimal locations for rain gardens
are shown in green.
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Kahala Mall Case Study

Kahala Mall is the only mall in the Maunalua Bay region and a known runoff hotspot. In March
2006, the mall was shut down due to flooding after a powerful thunderstorm (Hawaii News Now,
2006). This area had the highest flow accumulation in the region based on the DEM, which is
compounded by the presence of a mall, a major impervious surface. 9,193,479 mm of rainfall
flows through this hotspot each year and there are 4 optimal locations for rain gardens. Using
these numbers and the equations above, we calculated that implementation of these 4 rain
gardens can reduce the amount of sediment flowing into Maunalua Bay by 4,942 kg per year.

Cost Calculation

Rain gardens are estimated to cost $1,230 per 100 ft2, which equates to $132 per m? (Cullison).
Each 25 m? rain garden would cost $3,310, and the total cost of all 81 rain gardens is $268,110.
These costs do not take into account upkeep for the rain gardens over time, as excess sediment
will need to be removed in order for the rain garden to continue to effectively function. Also, the
plants will need to be watered and tended to.

Rain Garden Recommendations

We recommend that the local government implement the 4 rain gardens outside Kahala Mall as a
priority, before then focusing on building rain gardens in the 77 other optimal locations. Based
on flow accumulation and ease of installation, these 4 rain gardens are responsible for 77% of the
total estimated sediment reduction. In addition to the City and County of Honolulu installing the
rain gardens, the City should also encourage property owners to install rain gardens on their land.
Although rain gardens may not be the most effective type of green infrastructure for the region,
given its low cost and effort to build, rain gardens may be an easy step towards implementing
more green infrastructure. If implementing only 4 rain gardens outside Kahala Mall can reduce
4,942 kg per year, although it may not be significant compared to the annual amount of sediment
discharge into the Bay, this reduction in sediment can still contribute to a healthier Bay.

Discussion

Our objective is to provide recommendations on green infrastructure selection and placement for
runoff capture based on the results of our comprehensive hotspot identification within the
Maunalua region. Determining optimal placement of green infrastructure is a complex task that
must consider hydrologic factors, placement feasibility, and climate change effects to maximize
both management benefits and successful capture. With the available data, we explored different
LID strategies to show how we could provide the most effective green infrastructure for cost
effectiveness and aesthetic consideration within the Wailupe watershed. Different green
infrastructure design and placement results may be preferential, depending upon stakeholder
engagement and feasibility.

Main Findings

The expansion of hydrologic models in the region has been hindered by the lack of available
data. In order to obtain runoff hotspot findings and intervene with green infrastructure, more
precipitation and stream gauges need to be placed in the Maunalua Bay region. Furthermore,
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implementation of green infrastructure at optimal locations such as Kahala Mall to reduce runoff,
including sediment and pollutants, can have a significant impact on the heath of Maunalua Bay.

According to climate change projections and SWMM results, climate change could either
increase or decrease storm intensity and runoff in the Maunalua Bay Region. We found that
climate change projections can affect future stormwater runoff into the Bay, but under either
future storm intensity scenario, green infrastructure elements will still provide significant
stormwater runoff reductions.

Study Limitations

Our study was limited by the amount of precipitation and stream gauge data in the region. In
order to calibrate the SWMM models, stream gauges will need to be placed within each
watershed in the Maunalua Bay region. These stream gauges can be paired with the precipitation
gauges that Malama Maunalua recently installed for model calibration; however, based on our
results, at least one paired precipitation gauge and stream gauge measurement at an hourly
resolution, located above the stream gage in each watershed, is critical for a complete
characterization of Maunalua Bay hydrology.

This study was also limited in its ability to model changes to pollutant loads as a result of LID
control placement in the Wailupe watershed. In the absence of available pollutant data, overall
runoff and peak flow were used as a proxy for pollutant loading from a subcatchment. In our
analysis determining the optimal locations for rain garden placement in Kuli‘ou‘ou, annual
average rainfall data was used, instead of storm data.

Green Infrastructure

Our results imply that green infrastructure can be an effective mechanism for reducing
stormwater runoff flowing into Maunalua Bay from the urbanized environment.

Modeling of green infrastructure elements within the Wailupe watershed hotspots revealed
significant reductions in total runoff volume and peak flow when implemented at a large enough
scale. In order to have a significant impact on runoft reduction, appropriate forms of GI must be
chosen. Small-scale GI features, such as rain gardens and rain barrels, are often lauded for their
stormwater capture capabilities. However, this project has found that smaller-scale GI types are
much less effective at reducing runoff in comparison to larger forms of GI incorporated at a level
that is scaled to a roof, parking lot, or other large feature. Efforts to implement and encourage
green infrastructure construction across the Maunalua Bay region should first focus on larger GI
features, such as green roofing and permeable pavement. This is not to say that rain gardens and
other small-scale green infrastructure options should be ignored, but rather designed,
constructed, and placed in the most strategic manner possible in order to fully maximize their
effectiveness. Targeting identified stormwater runoff hotspots within a watershed would be one
strategic method when considering placement of any GI features, especially those of a
smaller-size.

For the Wailupe watershed in particular, stormwater runoff hotspots have been found to be
located primarily in residential areas. The costs associated with adding a highly effective GI
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feature to a residential property (e.g. a green roof or permeable driveway) are likely to deter
many residents from wanting to make an investment in GI on their property. Government
subsidies or rebate programs should be explored as one option for reducing the financial burden
associated with adding GI features to residents’ properties. The additional benefits outside of
stormwater management should also be communicated to homeowners whenever possible. For
example, green roofs can reduce a homeowner’s energy costs related to heating and cooling;
reduce air pollution and greenhouse gas emissions that would otherwise be emitted during energy
production; and improve human health by reducing heat stress (USEPA, 2008).

Given the proven ability of green infrastructure to filter pollutants, it can also be inferred that
green infrastructure elements will not only be effective at reducing the amount of runoff flowing
from the urbanized environment, but that it will also be effective at improving runoff quality
before it reaches the Bay’s waters. When implemented across urbanized areas of the Maunalua
Bay region, green infrastructure can serve as a stormwater management tool that intercepts
chemical and sediment pollutants before it reaches the Maunalua Bay. However, it is important to
note that an overwhelming majority of the sediment pollution that reaches Maunalua Bay
originates in the upper watersheds and as a result, there are limitations on the potential of our
recommended green infrastructure improving the overall health of Maunalua Bay.

Climate Change

Results show that the top ranking runoff coefficient and peak flow subcatchment hotspots in
lower Wailupe watershed are similar across the minimum and maximum MCF applied. This is
likely due to the influence of large areas (sqft) and high percent imperviousness from the
urbanized lower watershed subcatchments (Tables 4 & 5). However, the ranking of peak flow
hotspots were more variable when the minimum and maximum was MCF applied (Table 5). This
can be attributed to the influence of subcatchment area (sqft), slope, and percent imperviousness.
A previous Bren group project found peak flow can be attributed to high percept impervious
cover (~45% or more) for peak flow hotspots in the lower Wailupe watershed region (Dornan et
al., 2020). We 1dentified specific subcatchments that experienced the greatest difference between
max MCF scaled values and historical March 14, 2009 values associated with runoff coefficients
and peak flow (subcatchement 63 and 89, for example). Therefore, strategic implementation of
green infrastructure in the lower Wailupe watershed hotspots will ultimately help reduce runoff
that feeds into the Maunalua Bay as climate change continues to impact the watershed.

The green roof and permeable pavement controls in subcatchment 78, scaled to the ‘Aina Haina
Shopping Center, resulted in a 22.2% and 25% decrease of discharge with the Max and Min
MCEF applied, respectively, compared to a 23% decrease under the normal March 14, 2009 storm
conditions. These results indicate that green infrastructure features have the ability to remain
effective in the face of climate change, retaining their ability to reduce (and filter) stormwater
runoff during larger storm events.

Our results also indicate that the probability of extreme climate change scaled events are likely to
occur today. Therefore, strategic implementation of green infrastructure in the lower Wailupe
watershed will aid in the preparation of extreme climate change events occurring today as well as
in the future.
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Conclusions

Currently, Maunalua Bay is experiencing an overwhelming amount of sediment buildup that is
smothering corals. Reducing the flow of sediment into Maunalua Bay will help conserve
biodiversity by protecting species that rely on the coral reef for habitat. Implementing green
infrastructure targeted to reduce the flow of sediment can help promote a healthier environment
for marine life, the coral reef community, and the community members. Furthermore, many
community members depend on the Bay for their livelihoods and cultural practices, and
protecting the coral reef will help to improve fishing and water quality. A main part of Hawaii’s
economy is reliant on tourism, which depends on maintaining the local environment. Coral reefs
are valuable snorkeling sites for tourists. The implementation of green infrastructure throughout
the Maunalua Bay region will bring economic and cultural benefits.

Study Relevance

This project contributes to the understanding of the hydrologic dynamics in the Maunalua Bay
region that are connected to the health of Maunalua Bay. Our evaluation of the Bay has
successfully created hydrological models for all of the watersheds, which provides complete
coverage when combined with the pre-existing Wailupe model. Once the appropriate
precipitation and stream gauge data is available, these models can be calibrated and used to
identify effective management areas for both total runoff and peak flow (sediment hotspots) in
the whole Bay. Identification of these hotspots assists Malama Maunalua in prioritizing areas that
are optimal for green infrastructure, reducing stormwater pollution into the Bay.

Furthermore, we have identified within the Wailupe watershed hotspot areas that are suitable for
green roofs and permeable pavement, and how climate change is projected to impact these areas.
Within the Kuli‘ou‘ou watershed, we have identified optimal locations for rain gardens which
can significantly reduce sediment flowing into the Bay.

Recommendations for Future Work

Our SWMM models are the basic SWMM models with the stormwater network, slope,
impervious surfaces, and soil curve numbers. These models could be improved to more
accurately reflect reality by including other data such as temperature and evaporation data, which
SMWM is able to take into account. In order to make the SWMM models more comprehensive,
we recommend that temperature and evaporation data be included. Including temperature data
could produce a more accurate model that considers how much water did not enter the stream
due to evaporation throughout the time series.

Additionally, we recommend the placement of capture solutions in the upper watershed, such as
sediment traps or basins, to address the significant sedimentation contributions originating in the
upper watershed. Sediment traps and basins are often used at the inflow of green infrastructure
features to assist with the removal of accumulated sediment and ensure the green infrastructure
does not get clogged, but are often used on their own (USEPA, 2017). Green infrastructure
placement is not feasible in the upper watershed due to the steep slopes and inaccessible terrain.
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A coupled approach of upper watershed intervention and green infrastructure placement in the
lower watershed could increase the effective capability of stormwater and sediment capture.

LIDs could be placed within SWMM to determine optimal placement in additional watersheds.
Once calibrated, LID placement and parameter manipulation could reveal the highest capture
impact on runoff reduction. A region-wide approach to green infrastructure placement would
need more specific considerations of cost and aesthetic use.

Our findings will further aid Malama Maunalua in their scientific analysis and community efforts
through the Maunalua Bay region. The cumulative region-wide SWMM input files will identify
hotspots that Malama Maunalua can prioritize as they work to determine green infrastructure
placement in the future. Our findings can provide the basis for Malama Maunalua to pursue
external grant funding or projects necessary for collaborative work with community partners and
stakeholders to address continued ruoff issues with climate change implications.

52



References

Alsobrooks, A.D. Rain garden fact sheet. Prince George’s County Department of the
Environment.
https://cbtrust.org/wp-content/uploads/Fact-Sheet-and-Guidelines Rain-Garden 042120.

pdf

Arcos-Aguilar, R., Favoretto, F., Kumagai, J.A., Jimenez-Esquivel, V., Martinez-Cruz, A.L.,
Aburto-Oropeza, O. Diving tourism in Mexico — Economic and conservation importance.
(2021) Marine Pohcy, 126.

Arlington Echo, Rain gardens. (2010). Environmental Literacy and Outdoor Education.
https://www.arlingtonecho.org/restoration-projects/rain-gardens.html

Atkinson, Anne. (2007). A Natural and Cultural History of Maunalua Bay and Its Watershed.
[Unpublished master’s thesis, San Francisco State University].

http://www.imuamaunalua.org/wp-content/uploads/A-Natural-Cultural-History-of-Mauna
lua-Bay.pdf

Bessell-Browne, P., A. P. Negri, R. Fisher, P.L.. Clode, A. Duckworth, R. Jones. (2017). Impacts
of turbidity on corals: The relative importance of light limitation and suspended
sediments. Marine Pollution Bulletin. 117: 161-170.
https://doi.org/10.1016/j.marpolbul.2017.01.050

Blaisdell, R.K., Lake, J.K. & Chang, H.K. (2005). Cover Essay: Ka Ahupua‘a. EcoHealth, 2,
373-375. https://doi.org/10.1007/s10393-005-8932-8

Cahill, M., Godwin, D., & Tilt, J.H. (2018). Rain gardens: low-impact development fact sheet.
Oregon State University.

https://extension.oregonstate.edu/sites/default/files/documents/12281/rain-gardens-fact-sh
eet.pdf

Chu, P, Chen, Y. R., & Schroeder, T. A. (2010). Changes in Precipitation Extremes in the
Hawaiian Islands in a Warming Climate, Journal of Climate, 23(18), 4881-4900.
Retrieved Mar 14, 2022, from
https://journals.ametsoc.org/view/journals/clim/23/18/2010jcli3484.1

Cullison, Todd. Hawaii residential rain garden manual. Hui o Ko‘olaupoko.

https://www.huihawaii.org/uploads/1/6/6/3/16632890/raingardenmanual-web-res-smaller.
pdf

53



Department of Planning and Permitting. (2019). Public Review Draft — East Honolulu
Sustainable Communities Plan.

http://www.honoluludpp.org/Portals/O/pdfs/planning/EastHonolulu/2019%20EHSCP%20
PRD%20Feb%20Web.pdf

Dornan N., Durand, E., Jagadeesh, T., and Johnson, E. (2020). From Mauka to Makai: Reducing
Stormwater Runoff Pollution in Maunalua Bay, O‘ahu, Hawaii. UC Santa Barbara Bren
School of Environmental Science & Management.
https://bren.ucsb.edu/projects/creating-region-wide-green-infrastructure-strategic-plan-m
aunalua-bay

Fabricius, K. E. (2005). Effects of terrestrial runoff on the ecology of corals and coral reefs:
review and synthesis. Marine Pollution Bulletin, 50(2), 125-156.
https://doi.org/10.1016/j.marpolbul.2004.11.028

Fletcher, C. (2010). Hawai’i’s Changing Climate. School of Ocean and Earth Science and
Technology, University of Hawai'i at Manoa.
https://www.soest.hawaii.edu/coasts/publications/ClimateBrief low.pdf

Giambelluca, T. W., Diaz, H. F., & Luke, M. S. A. (2008). Secular temperature changes
in Hawai‘i. Geophysical Research Letters, 35(12).
https://doi.org/10.1029/2008 GL034377

Hallock, P. & Schlager, W. (1986). Nutrient excess and the demise of coral reefs and carbonate
platforms. PALAIOS, 1(4), 389. https://doi.org/10.2307/3514476

Hawai'i Clean Water Branch, Polluted Runoff Control. (2008). Annual Report Fiscal Year 2008.
Hawai'i State Department of Health.

https://health.hawaii.gov/cwb/files/2013/05/PRC_EndOfYearReport2008.pdf

IPCC, 2021: Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis.
Contribution of Working Group I to the Sixth Assessment Report of the
Intergovernmental Panel on Climate Change [MassonDelmotte, V., P. Zhai, A. Pirani,
S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang,
K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekg¢i, R. Yu,
and B. Zhou (eds.)]. Cambridge University Press. In Press.

Katsifarakis, K.L., Vafeiadis, M., & Theodossiou, N. (2015). Sustainable drainage and urban
landscape upgrading using rain gardens, site selection in Thessaloniki, Greece.
Agriculture and Agricultural Science Procedia, 4, 338-347.

https://www.sciencedirect.com/science/article/pii/S2210784315001011

Kittinger, J. N., Bambico, T. M., Minton, D., Miller, A., Mejia, M., Kalei, N., Wong, B., &
Glazier, E. W. (2016). Restoring ecosystems, restoring community: Socioeconomic and

54



cultural dimensions of a community-based coral reef restoration project. Regional
Environmental Change, 16(2), 301-313. https://doi.org/10.1007/s10113-013-0572-x

Luo, Q.L., Hillock, D., & Holmes, M. (2017). Sustainable landscapes: designing a rain garden
for residential property. Oklahoma State University.
https://extension.okstate.edu/fact-sheets/sustainable-landscapes-designing-a-rain-garden-f
or-residential-property.html

Malama Maunalua. (2006). Maunalua Bay conservation action plan.
https://www.conservationgateway.org/Documents/Maunalua-Bay-CAP.pdf

Malaviya, P., Sharma, R., & Sharma, P.K. (2019). Rain gardens as stormwater management tool.
Sustainable Green Technologies for Environmental Management, 141-166.
https://link.springer.com/chapter/10.1007/978-981-13-2772-8 7

Miller, A., Wilcox, C., Davis, G., Oram, R., Chaston, K., Co, E., Salz, R. (2009). Maunalua Bay
Regional Watershed Strategy: A Community Approach. Malama Maunalua.
http://www.malamamaunalua.org/wp-content/uploads/Maunalua-Regional-Watershed-Str

ategy-2009.pdf

Mueller-Dombois, D. (2007). The Hawaiian Ahupua‘a Land Use System: Its Biological
Resource Zones and the Challenge for Silvicultural Restoration, Bishop Museum
Bulletin in Cultural and Environmental Studies, 3, 23-33.
http://hbs.bishopmuseum.org/pubs-online/strm/04-Mueller-Domboisr.pdf

National Oceanic and Atmospheric Administration (NOAA). (2015). El Nifio and its Impacts on
The Hawaiian Islands.

https://www.pacificrisa.org/wp-content/uploads/2015/11/Pacific-Region-EL.-NINO-Fact-
Sheet Hawaii 2015-FINAL.pdf

Murakami, H., Wang, B., Li, T., & Kitoh, A. (2013). Projected increase in tropical cyclones near
Hawaii. Nature Climate Change, 3(8), 749—754. https://doi.org/10.1038/nclimate1890

National Oceanic and Atmospheric Administration, National Centers for Environmental
Information. 2020. Data Tools: Find a Station — Precipitation 15 Minute.

https://www.ncdc.noaa.gov/cdo-web/datatools/findstation.

National Oceanic and Atmospheric Administration, Office for Coastal Management. (2015).
Green Infrastructure Options to Reduce Flooding

https://coast.noaa.gov/data/digitalcoast/pdf/gi-reduce-flooding.pdf.

National Park Service. What is a Green Roof? (2021).
https://www.nps.gov/tps/sustainability/new-technology/green-roofs/define.htm.

55



Norton, C. W., Chu, P.-S., & Schroeder, T. A. (2011). Projecting changes in future heavy rainfall
events for O‘ahu, Hawaii: A statistical downscaling approach. Journal of Geophysical
Research: Atmospheres, 116(D17). https://doi.org/10.1029/2011JD015641

O’Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., et al.
(2016). The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6.
Geoscientific Model Development, 9(9), 3461-3482.

https://doi.org/10.5194/gmd-9-3461-2016

Ratzlaff, J. R. (1994). Mean Annual Precipitation, Runoff, and Runoff Ratio for Kansas,
1971-1990. Transactions of the Kansas Academy of Science (1903-), 97(3/4), 94-101.
https://doi.org/10.2307/3627776

Rogers, Caroline S. “Responses of Coral Reefs and Reef Organisms to Sedimentation.” Marine
Ecology Progress Series, vol. 62, 1990, pp. 185-202. DOI.org (Crossref),
https://doi.org/10.3354/meps062185.

Sharma, R. & Malaviya, P. (2021). Management of stormwater pollution using green
infrastructure: The role of rain gardens. WIREs Water, 8(2),
https://doi.org/10.1002/wat2.1507.

Sparkman, S.A., Hogan, D.M., Hopkins, K.G., and Loperfido, J.V. (2017). Modeling
watershed-scale impacts of stormwater management with traditional versus low impact
development design. Journal of the American Water Resources Association, 53(8),

http://dx.doi.org/10.1111/1752-1688.12559.

State of Hawai'i Department of Transportation. Sidewalks and walkways.
https://hidot.hawaii.gov/highways/files/2013/07/Pedest-Tbox-Toolbox_4-Sidewalks-and-
Walkways.pdf

Stevens, L., R. Frankson, K. Kunkel, P-S. Shin, and W. Sweet. (2017). Hawaii State Climate
Summary. NOAA Technical Report NESDIS 149-HI, 4 pp.

https://statesummaries.ncics.org/chapter/hi/

Storlazzi, C.D., Presto, M.K., Logan, J.B., and Field, M.E. (2010) Coastal circulation and
sediment dynamics in Maunalua Bay, Oahu, Hawaii; measurements of waves, currents,
temperature, salinity, and turbidity; November 2008-February 2009: U.S. Geological
Survey Open-File Report 2010-1217. http://pubs.usgs.gov/ot/2010/1217/

SUNY College of Environmental Science and Forestry. Runoff calculator page 2: curve number.
Stormwater Management.
https://www.esf.edu/ere/endreny/GICalculator/CurveNumberInstruct.html?0

56



Takesue, R., & Storlazzi, C. (2017). Sources and dispersal of land-based runoff from small
Hawaiian drainages to a coral reef: Insights from geochemical signatures. Estuarine,
Coastal and Shelf Science, 188, 69-80. https://doi.org/10.1016/j.ecss.2017.02.013

US Congress. (2019). Public Law 115-436 Water infrastructure improvement act.
https://www.congress.gov/115/plaws/publ436/PLAW-115publ436.pdf

USDA Natural Resource Conservation Service. (2004). Water Technical Note - No. 12, Final
2004 List of Impaired Waters in Hawaii. USDA.
https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2 036828.pdf.

USDA Natural Resources Conservation Service. Rain garden fact sheet.
https://www.nrcs.usda.gov/wps/portal/nrcs/detail/null/?cid=nrcs142p2 008528

USEPA. NPDES: Stormwater Best Management Practice, Permeable Pavements (2013).
https://www.epa.gov/system/files/documents/2021-11/bmp-permeable-pavements.pdf

USEPA. NPDES: Stormwater Best Management Practice, Bioretention (Rain Gardens) (2013).
https://www.epa.gov/system/files/documents/2021-11/bmp-bioretention-rain-gardens.pdf

USEPA. Reducing Urban Heat Islands: Compendium of Strategies- Green Roofs. (2008).
https://www.epa.gov/sites/default/files/2017-05/documents/reducing urban heat islands

ch 3.pdf.

USEPA 2012 Green Infrastructure Technical Assistance Program. (2014). Addressing green
infrastructure design challenges in the Pittsburgh region. USEPA.
https://www.epa.gov/sites/default/files/2015-10/documents/pittsburgh-united-steep-slopes
-508.pdf

USEPA. Green Infrastructure Design and Implementation. (2017). Green Infrastructure.
https://19january2017snapshot.epa.gov/green-infrastructure/green-infrastructure-design-a

nd-implementation__.html

USEPA. Terminology of Low Impact Development. (2012). LID Barrier Busters Fact Sheet
Series. https://www.epa.gov/sites/default/files/2015-09/documents/bbfs2terms.pdf

USEPA. What is green infrastructure? (2021).
https://www.epa.gov/ereen-infrastructure/what-green-infrastructure

Waters, K. A., & Curran, J. C. (2015). Linking bed morphology changes of two sediment
mixtures to sediment transport predictions in unsteady flows. Water Resources Research,
51(4), 2724-2741. https://doi.org/10.1002/2014WR016083

Watershed/Mauka Watch. (2011). Watershed management, Malama Maunalua., 18 Jan. 2011.

57



Weber, M., Lott, C., & Fabricius, K. E. (2006). Sedimentation stress in a scleractinian coral
exposed to terrestrial and marine sediments with contrasting physical, organic and

geochemical properties. Journal of Experimental Marine Biology and Ecology, 336(1),
18-32. https://doi.org/10.1016/j.jembe.2006.04.007

Webber, J.L., Fletcher, T.D., Cunningham, L., Fu, G., Butler, D., & Burns, M.J. (2019). Is green
infrastructure a viable strategy for managing urban surface water flooding? Urban Water

Journal, 17(7), 598-608. https://doi.org/10.1080/1573062X.2019.1700286

Williams, I.D., et al. Meijia, M., Caldwell, Z.R., Pollock, K.S., & Conklin, E.J., (2009). Nature
Conservancy of Hawaii Maunalua Marine Survey Report. The Nature Conservancy of

Hawaii. http://www.malamamaunalua.org/wp-content/uploads/TNC-2009-1.pdf

Wolanski, E., Martinez, J. A. & Richmond, R. H. (2009). Quantifying the impact of watershed
urbanization on a coral reef: Maunalua Bay, Hawaii. Estuarine, Coastal and Shelf

Science, 84(2), 259-268. https://doi.org/10.1016/j.ecss.2009.06.02

58



Appendices

Appendix A. Stormwater Network Model...... ..o 59
Appendix B. Subcatchment Delineation Methods and Models................c..cooin. 60
Appendix C. Subcatchment Characteristics Methods and Models.....................oo. 63
Appendix D. Subcatchment Characteristics SWMM Inputs.............cooviiiiiiiiiiininnn.. 66
Appendix E. Regional Soil Curve Numbers by Land Cover & Hydrologic Group................ 68
Appendix F. Kuli‘ou‘ou Precipitation Data Analyses............coviiiiiiiiiiiiiiiiiiiinn 69
Appendix G. Parameters for Relevant LID Controls..............coooiiiiiiiiiiiiiiii e 70
Appendix H. Code for CMIP6 Historical and Projected Precipitation..................cooevinnni. 72
Appendix I. Code for Runoff Coefficient and Peak Flow Values with Max and Min MCF...... 73
Appendix J. Wailupe Normalized Peak Discharge................coooiiiiiiii 74
Appendix K. Code for Probability of Extreme Climate Change Events............................. 77

Appendix L. Methods, Models, and Metadata for Optimal GI Placement in Maunalua Bay.... 78

59



Appendix A

Stormwater Network Model
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Appendix B

Subcatchment Delineation Methods and Models

We created an ArcGIS model that did the following. We reprojected all data into WGS 84 (Data
Management Toolbox - Project and Project Raster). From the watershed outlines of the
Maunalua Bay region, we selected only Kuli‘ou‘ou (Select Layer by Attribute). Then, we clipped
the stormwater network and stream data to the Kuli‘ou‘ou watershed (Clip and Clip Raster). We
next connected disconnect lines in the stormwater network by extending the lines to within 15
meters (Extend Line). After, we merged the conduits with the streams, repaired the geometry,
and extended lines again to ensure they were connected (Merge, Repair Geometry, and Extend
Line). We also filled the sinks in the DEM (Fill). We converted the stream and conduit layer to
raster to recondition the DEM (Polyline to Raster). The DEM was reconditioned by the
stormwater network — consisting of pipes, outfalls, and streams (DEM reconditioning). Finally,
we ran the standard delineation tools: generate a flow direction raster (ArcHydro- Flow
Direction), create basins from the flow direction raster (Spatial Analyst - Basins), and create the
watershed boundaries from the basins raster (Raster To Polygon). Then, the subcatchment
boundaries were converted to points with XY coordinates and exported as a .csv suitable for the
SWMM input file.
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Appendix C

Subcatchment Characteristics Methods and Models

We created an ArcGIS model that calculated percent impervious cover and slope for each
subcatchment in the Kuli‘ou‘ou watershed. Percent impervious cover is calculated using data
layers for existing bike lanes, buildings and rooftops, and roads. The spatial layer for roads was
buffered by 6 feet to account for sidewalks (Buffer). All streets were assumed to have sidewalks.
This layer was then unioned with the buildings footprints layer and bike facilities layer to take
into account impervious buildings, rooftops, and bike paths (Union).

The resulting layer was then compared to Google Earth images of Kuli‘ou‘ou watershed to
ensure that no major impervious surfaces were missed, such as parking lots and roads. The few
surfaces that were missed were then drawn manually into the layer. The percent of impervious

cover in each subcatchment was then calculated using the "Tabulate Area Intersection" tool in
ArcGIS.

For slope, the DEM layer for Maunalua Bay was projected into WGS 84 (Data Management
Toolbox - Project and Project Raster). Next, the slope for the whole region was calculated and
then each cell value of the raster was converted to an integer by truncation (Slope; Int). The slope
raster was then converted to a polygon (Raster to Polygon). The percent of slope in each
subcatchment was then calculated using the "Tabulate Area Intersection" tool.
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Appendix D

Subcatchment Characteristics SWMM Inputs

[SUBCATCHMENTS]

; ;Name Rain Gage Outlet Area %Imperv width %S lope

1 R1 J28 24.19730286 0 400 39.1670099
2 R1 J28 28.02701288 © 400 40.03444124
4 R1 J28 61.36141722 © 400 42.26163313
5 R1 6 182.4095206 0 400 35.17776052
6 R1 7 82.54138257 0 400 26.65275257
7 R1 J153 64.59418544 0.65179986 400 26.43150238
9 R1 J204 1.503889658 31.8259591  133.0135518 11.08344224
10 R1 J261 19.44408823 4.704323194 400 24.80948632
11 R1 J212 15.80270455 1.977154214 400 24.55093604
12 R1 J207 20.32994323 0.096263372 400 24.30728808
14 R1 J188 18.62584262 0.022137958 400 25.98126211
18 R1 21 0.254760948 0 16.35438205 8.410732214
19 R1 J191 4.239338295 0.209930589 9.790041963 20.97102443
20 R1 21 0.319184774 0 21.26014693 5.865671419
21 R1 J214 16.07947238 0.631095375 400 24.87200184
27 R1 J153 137.8810382 0.439998296 300 28.18444499
28 R1 J68 0.885211 27.75916462 15.30186809 6.635215605
29 R1 J33 1.467963649 19.87951785 55.89268185 6.212734453
30 R1 J175 1.780428067 31.24775051 200 7.343252298
31 R1 J35 2.6355038 24.81529291 38.32211664 10.20984243
32 R1 J177 184.7741424 13.10253318 400 19.84290028
33 R1 J256 16.80044739 1.593483141 400 26.98650018
37 R1 J218 0.929276535 54.01730979 258.4462782 1.050916937
38 R1 J193 1.914448825 43.41958948 300 1.656374265
39 R1 377 7.581719689 21.82160771 400 12.97960356
40 R1 J26 12.04433663 0 400 29.34109871
41 R1 J41 15.6252043 20.35907081 400 17.79208429
42 R1 J271 107.9757733 25.23290066 400 10.04769159
44 R1 J293 3.646546106 4.049436877 200 21.83246032
45 R1 J310 0.868133864 22.53818108 400 7.952872095
50 R1 J295 27.97197097 29.6564504 400 0.042753398
55 R1 J292 13.43872471 27.27890511 400 4.993677116
62 R1 J22 9.398419019 9.857653023 400 13.02126595
97 R1 J85 40.91635444 20.14527434 400 12.07699991
122 R1 J14 9.908515044 2.551149353 400 12.02171351
127 R1 J17 21.98572423 13.80571742 400 2.504237553
136 R1 122 59.10523394 3.829467667 400 14.63815312
139 R1 J3 3.645018968 35.10937671 200 2.372113202
232 R1 Jie 2.680079306 26.01336487 200 0

242 R1 J7 5.048323783 38.02624955 400 2.118329265
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Appendix E

Maunalua Bay Region Soil Curve Numbers by Land Cover and Hydrologic Group

Table E.1 Soil Curve Numbers by Land Cover and Hydrologic Groups found in the Maunalua Bay
Region, O'ahu. Data from Dornan et al., 2020.

Land Cover

Grassland: poor condition
Unconsolidated shore

Bare Land/Bare soil

Open Space Developed- good
Evergreen forest- fair

Scrub Shrub

Open Water

Impervious surface- like shrubland

Palustrine Scrub Shrub wetland
(woody wetland )

Palustrine Forested wetland (woody
wetland)

Palustrine Aquatic Bed
Estuarine Emergent wetland
Palustrine emergent wetland
Pasture/Hay

Unclassified - here: open water

Cultivated Land

Hydrologic
Group A

68

0
77
39
36
36

0
36

86

86

NA
80
80

40

62

Hydrologic
Group B

79

0
86
61
60
42

0
42

86

86

NA
80
80

61

74

Hydrologic
Group C

86

0
91
74
73
55

0
55

86

86

NA
80
80

73

82

Hydrologic
Group D

69

89

0

94

80

79

62

0

62

86

86

NA

80

80

79

86



Appendix F

Kuli‘ou‘ou Precipitation Data Analyses
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Figure F.1 Wailupe Valley School and Paiko Drive NOAA precipitation data comparison for November
12-16, 1996 storm.
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Figure F.2 Wailupe Valley School and Paiko Drive NOAA precipitation data comparison for January
28-31, 2005 storm.

70



Appendix G

Parameters for Relevant LID Controls

The following section lists the parameters used for the relevant LID controls modeled in this
project: Green roofs, permeable pavement, and rain gardens. Each LID control is associated with
a different combination of layers.

*layer is optional and was not included in LID design

GREEN ROOF:

SURFACE LAYER

e Berm Height =2

e Vegetation Volume Fraction = (0.2

e Surface Roughness =0.19

e Surface Slope = 1
SOIL LAYER

e Thickness =6
Porosity = 0.42
Field Capacity = 0.3
Wilting Point = 0.08
Conductivity = 0.5
Conductivity Slope =5
Suction Head = 3
DRAINAGE MAT

e Thickness =1

e Void Fraction = 0.45

e Roughness =0.02

PERMEABLE PAVEMENT:

SURFACE LAYER
e Berm Height =.05
e Vegetation Volume Fraction =0
e Surface Roughness = 0.12
e Surface Slope (percent) = 1.0
PAVEMENT LAYER
Thickness =5
Void Ratio = 0.15
Impervious Surface Fraction = 0
Permeability = 100
Clogging Factor =0
Regeneration Interval = 0
Regeneration Fraction =0
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*SOIL LAYER

Thickness =0

Porosity =n/a

Field capacity = n/a
Wilting Point =n/a
Conductivity = n/a
Conductivity Slope =n/a
Suction Head =n/a

STORAGE LAYER

Thickness = 12
Void Ratio = 0.63
Seepage Rate = 2
Clogging Factor =0

*DRAIN LAYER

Flow Coefficient =0
Flow Exponent = n/a
Offset =n/a

RAIN GARDEN:

SURFACE LAYER

Berm Height = 6

Vegetation Volume Fraction = 0.4
Surface Roughness = 0.2

Surface Slope (percent) = 0.95

SOIL LAYER

Thickness = 25

Porosity = 0.3

Field capacity = 0.2
Wilting Point = 0.1
Conductivity = 0.5
Conductivity Slope = 30
Suction Head = 3.5

*STORAGE LAYER

Thickness =0

Void Ratio = n/a
Seepage Rate =n/a
Clogging Factor = n/a
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Appendix H

Code for CMIP6 Historical and Projected Precipitation

This page was left blank intentionally.
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CNRM Oahu Projection
February 23, 2022

1 Climate Change Exploration: Maunalua Bay, Oahu, Hawai’i

1.1 Fall 2021

1.1.1 Elmera Azadpour

1.1.2 2021-12-08

All scripts and data can be accessed from Aloha Aina Repo
Code derived from CMIP6 PanGeo Gallery

Note: This analysis pulls data from CNRM-ESM2-1 only, you will find two other notebook files
(BCC_Oahu_ Projection.ipynb & IPSL_ Oahu_ Projection.ipynb) that will pull from other climate
model sources (BCC-CSM2-MR & IPSL-CMG6A-LR).

[2]:  ## import libraries:
from matplotlib import pyplot as plt
import numpy as np
import pandas as pd
import xarray as Xr
import zarr
import fsspec
import gcsfs
import s3fs
import kedro
import nc_time_axis
import plotly.express as px
import metpy
from metpy.units import units

Jmatplotlib inline
%config InlineBackend.figure_format = 'retina'
plt.rcParams['figure.figsize']l = 12, 6

[4]: ## CMIP6 Public Data
df = pd.read_csv('https://storage.googleapis.com/cmip6/
—cmip6-zarr-consolidated-stores.csv')
df .head (10)



[4]: activity_id institution_id source_id experiment_id member_id \

0 HighResMIP CMCC CMCC-CM2-HR4 highresSST-present rl1ilpilfl

1 HighResMIP CMCC CMCC-CM2-HR4 highresSST-present ri1ilpilfl

2 HighResMIP CMCC CMCC-CM2-HR4 highresSST-present ri1ilpilfil

3 HighResMIP CMCC CMCC-CM2-HR4 highresSST-present rlilpilfl

4 HighResMIP CMCC CMCC-CM2-HR4 highresSST-present rlilplfl

5 HighResMIP CMCC CMCC-CM2-HR4 highresSST-present ri1ilpilfl

6 HighResMIP CMCC CMCC-CM2-HR4 highresSST-present ri1ilpilfil

7 HighResMIP CMCC CMCC-CM2-HR4 highresSST-present rl1ilpilfl

8 HighResMIP CMCC CMCC-CM2-HR4 highresSST-present ri1ilpilfl

9 HighResMIP CMCC CMCC-CM2-HR4 highresSST-present rl1ilpilfl

table_id variable_id grid_label \

0 Amon ps gn

1 Amon rsds gn

2 Amon rlus gn

3 Amon rlds gn

4 Amon psl gn

5 Amon prw gn

6 Amon hurs gn

7 Amon huss gn

8 Amon hus gn

9 Amon hfss gn

zstore dcpp_init_year version

0 gs://cmip6/CMIP6/HighResMIP/CMCC/CMCC-CM2-HR4/ ... NaN 20170706
1 gs://cmip6/CMIP6/HighResMIP/CMCC/CMCC-CM2-HR4/ ... NaN 20170706
2 gs://cmip6/CMIP6/HighResMIP/CMCC/CMCC-CM2-HR4/... NaN 20170706
3 gs://cmip6/CMIP6/HighResMIP/CMCC/CMCC-CM2-HR4/... NaN 20170706
4 gs://cmip6/CMIP6/HighResMIP/CMCC/CMCC-CM2-HR4/ ... NaN 20170706
5 gs://cmip6/CMIP6/HighResMIP/CMCC/CMCC-CM2-HR4/... NaN 20170706
6 gs://cmip6/CMIP6/HighResMIP/CMCC/CMCC-CM2-HR4/ ... NaN 20170706
7 gs://cmip6/CMIP6/HighResMIP/CMCC/CMCC-CM2-HR4/... NaN 20170706
8 gs://cmip6/CMIP6/HighResMIP/CMCC/CMCC-CM2-HR4/ ... NaN 20170706
9 gs://cmip6/CMIP6/HighResMIP/CMCC/CMCC-CM2-HR4/... NaN 20170706

[5]: | ## Query for projection CMIP6 data
df _3hr_pr = df [(df.table_id == '3hr') & (df.variable_id == 'pr')]
len(df_3hr_pr)

run_counts = df_3hr_pr.groupby(['source_id', 'experiment_id'])['zstore'].count()
run_counts

[5]: source_id experiment_id
BCC-CSM2-MR historical
sspl26
ssp245



CNRM-CM6-1

CNRM-CM6-1-HR
CNRM-ESM2-1

GFDL-CM4

GFDL-CM4C192

GFDL-ESM4

GISS-E2-1-G
HadGEM3-GC31-HM
HadGEM3-GC31-LM
HadGEM3-GC31-MM
IPSL-CM6A-ATM-HR
IPSL-CM6A-LR

MRI-ESM2-0

ssp370

sspb85
highresSST-present
historical

sspl26

ssp245

ssp370

ssp585
highresSST-present
historical

sspl26

ssp245

ssp370

sspb85

1pctC02
abrupt-4xC02

amip

historical
piControl
highresSST-future
highresSST-present
1pctC02
abrupt-4xC02
esm-hist
historical

sspl19

sspl26

ssp370

historical
highresSST-present
highresSST-present
highresSST-present
highresSST-present
highresSST-present
historical
piControl

sspl26

ssp245

ssp370

sspb85

historical

Name: zstore, dtype: int64

Fig.
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Future and historical CO2 emissions scenarios featured

in CMIP6 Source:

https://www.carbonbrief.org/cmip6-the-next-generation-of-climate-models-explained



1.1.3 Pulling CNRM-ESM2-1, ssp2-4.5 Projection

[6]: ## querty for 3hr, precipitaton for ssp 2-4.5 projection from CNRM-ESM2-1
df_3hr_ssp245_CNRM_pr = df[(df.table_id == '3hr') & (df.variable_id == 'pr') &,
— (df .experiment_id== 'ssp245') & (df.source_id== 'CNRM-ESM2-1') ]
len(df_3hr_ssp245_CNRM_pr)
df_3hr_ssp245_CNRM_pr

[6]: activity_id institution_id source_id experiment_id member_id \
68835 ScenarioMIP CNRM-CERFACS CNRM-ESM2-1 ssp245 rililplf2

table_id variable_id grid_label \

68835 3hr pr gr
zstore dcpp_init_year \
68835 gs://cmip6/CMIP6/ScenarioMIP/CNRM-CERFACS/CNRM.. NaN
version

68835 20190328

[7]1: ## pull data
# get the path to a specific zarr store (the first ome from the dataframe above)
zstore = df_3hr_ssp245_CNRM_pr.zstore.values[-1]
print(zstore)

# create a mutable-mapping-style interface to the store
mapper = fsspec.get_mapper(zstore)

# open 1t using zarray and zarr
ds_proj = xr.open_zarr(mapper, consolidated=True)
ds_proj

gs://cmip6/CMIP6/ScenarioMIP/CNRM-CERFACS/CNRM-
ESM2-1/ssp245/r1i1p1£2/3hr/pr/gr/v20190328/

[7]: <xarray.Dataset>

Dimensions: (lat: 128, lon: 256, time: 251288, axis_nbounds: 2)
Coordinates:
* lat (lat) float64 -88.93 -87.54 -86.14 -84.74 .. 86.14 87.54 88.93
* lon (lon) float64 0.0 1.406 2.812 4.219 .. 354.4 355.8 357.2 358.6
* time (time) datetime64[ns] 2015-01-01T01:30:00 .. 2100-12-31T22:..

time bounds (time, axis_nbounds) datetime64[ns]
dask.array<chunksize=(62822, 1), meta=np.ndarray>
Dimensions without coordinates: axis_nbounds
Data variables:

pr (time, lat, lon) float32 dask.array<chunksize=(600, 128, 256),
meta=np.ndarray>
Attributes: (12/55)



CMIP6_CV_version: cv=6.2.3.0-7-g2019642

Conventions: CF-1.7 CMIP-6.2

EXPID: CNRM-ESM2-1_ssp245_r1ilplf2
activity_id: ScenarioMIP

arpege_minor_version: 6.3.2

branch_method: standard

variable_id: pPr

variant_label: rlilplf2

xios_commit: 1442-shuffle

status: 2019-10-25;created; by nhn2@columbia.edu
netcdf_tracking_ids: hd1:21.14100/215d187a-7fa5-41cd-a59b-7fe164306a61..
version_id: v20190328

[8]: ## Plot a map from a specific date: global coverage
ds_proj.pr.sel(time='2100-12-31T16:30:00.000000000") . squeeze () .plot ()

[8]: <matplotlib.collections.QuadMesh at 0x7ff244b0e4f0>

time = 2100-12-31T16:30:00

0.00175

0.00150

0.00125

0.00100

0.00075

Latitude [degrees_north]
Precipitation [kg m-2 s-1]

0.00050

0.00025

0.00000
0 50 100 150 200 250 300 350

Longitude [degrees_east]

[9]: # # Create logical masks for lat and lon variables for oahu
# bouding box: -158.5698,20.9057,-157.406,22.0022
mask_lon = (ds_proj.pr.lon >= 201.43) & (ds_proj.pr.lon <= 202.59)
mask_lat = (ds_proj.pr.lat >= 20.91) & (ds_proj.pr.lat <= 22.00)

[7]1: # Apply lat/lon masks to the field, then calculate averages over the lat and,
—lon dimensions
oahu_pr_proj=ds_proj.pr.where(mask_lon & mask_lat, drop = True)



## remove times associated with leap years (remove feb 29 from all recorded,
—years)

oahu_pr_proj = oahu_pr_proj.sel(time=~((oahu_pr_proj.time.dt.month == 2) &,
— (oahu_pr_proj.time.dt.day == 29)))

oahu_pr_proj

## group by day of year and avg by day

oahu_pr_proj['dayofyear'] = xr.DataArray(oahu_pr_proj.indexes['time'].
—strftime('%Y-%m-%d"'), coords=oahu_pr_proj.time.coords)
oahu_pr_proj_avg = oahu_pr_proj.groupby('dayofyear') .mean('time',
—keep_attrs=True) #retain attributes for metpy conversion in nzt step

oahu_pr_proj_avg

[7]: <xarray.DataArray 'pr' (dayofyear: 31390, lat: 1, lon: 1)>
dask.array<stack, shape=(31390, 1, 1), dtype=float32, chunksize=(1, 1, 1),
chunktype=numpy.ndarray>

Coordinates:
* lat (lat) float64 21.71
* lon (lon) float64 202.5
* dayofyear (dayofyear) object '2015-01-01' '2015-01-02' .. '2100-12-31'
Attributes:
cell measures: area: areacella
cell methods: area: time: mean
description: at surface; includes both liquid and solid phases.
history: none
interval_operation: 900 s
interval_write: 3h
long_name: Precipitation
online_operation: average
standard_name: precipitation_flux
units: kg m-2 s-1

[8]: ## daily sum of precip ssp3-7.0 Projection
oahu_pr_proj_sum_245 = oahu_pr_proj.groupby('dayofyear') .sum('time',
—keep_attrs=True) #retain attributes for metpy conversion in nzt step

oahu_pr_proj_sum_245

[8]: <xarray.DataArray 'pr' (dayofyear: 31390, lat: 1, lon: 1)>
dask.array<stack, shape=(31390, 1, 1), dtype=float32, chunksize=(1, 1, 1),
chunktype=numpy.ndarray>

Coordinates:
* lat (lat) float64 21.71
* lon (lon) float64 202.5
* dayofyear (dayofyear) object '2015-01-01' '2015-01-02' .. '2100-12-31'
Attributes:
cell_measures: area: areacella



[9]:

[9]:

[49] :

[49] :

cell _methods: area: time: mean

description: at surface; includes both liquid and solid phases.
history: none

interval_operation: 900 s

interval_write: 3h

long_name: Precipitation

online_operation: average

standard_name: precipitation_flux

units: kg m-2 s-1

# Make metpy recognize the units
oahu_pr_proj_sum_245 = oahu_pr_proj_sum_245.metpy.quantify()

# convert kg/m2/sec to in/day
density_water = units('kg / m~3') * 1000
oahu_pr_proj_converted_int_ssp245_sum
oahu_pr_proj_converted_int_ssp245_sum
—metpy.convert_units('inches / day')

(oahu_pr_proj_sum_245 / density_water)
oahu_pr_proj_converted_int_ssp245_sum.

oahu_pr_proj_converted_int_ssp245_sum = oahu_pr_proj_converted_int_ssp245_sum.
—mean("lon") .mean("lat")
oahu_pr_proj_converted_int_ssp245_sum

<xarray.DataArray 'pr' (dayofyear: 31390)>
<Quantity(dask.array<mean_agg-aggregate, shape=(31390,), dtype=float32,
chunksize=(1,), chunktype=numpy.ndarray>, 'inch / day')>

Coordinates:
* dayofyear (dayofyear) object '2015-01-01' '2015-01-02' .. '2100-12-31'
Fig. 2: Bouding box coordinates wused for projection analysis Source:

https://boundingbox.klokantech.com/

# Cast our zarray to dataframe —-- daily averages
oahu_pr_proj_df = oahu_pr_proj_converted_int.to_dataframe() .reset_index()
oahu_pr_proj_df .head(20)

dayofyear pr
0 2015-01-01 0.000390
1 2015-01-02 0.001306
2 2015-01-03 0.022132
3 2015-01-04 0.196844
4 2015-01-05 0.441790
5 2015-01-06 0.076026
6 2015-01-07 0.059438
7 2015-01-08 0.060714
8 2015-01-09 0.026974
9 2015-01-10 0.005410
10 2015-01-11 0.001053



11 2015-01-12 0.009215
12 2015-01-13 0.644469
13 2015-01-14 0.055369
14 2015-01-15 0.019334
15 2015-01-16 0.442971
16 2015-01-17 0.001024
17 2015-01-18 0.054217
18 2015-01-19 0.481935
19 2015-01-20 0.000166

[10]: # Cast our zarray to dataframe for daily sums
oahu_pr_proj_converted_int_ssp245_sum_df =,
—oahu_pr_proj_converted_int_ssp245_sum.to_dataframe() .reset_index()
oahu_pr_proj_converted_int_ssp245_sum_df .head(20)

[10]: dayofyear pr
0 2015-01-01 0.003117
1 2015-01-02 0.010450
2 2015-01-03 0.177055
3 2015-01-04 1.574751
4 2015-01-05 3.534323
5 2015-01-06 0.608212
6 2015-01-07 0.475508
7 2015-01-08 0.485709
8 2015-01-09 0.215790
9 2015-01-10 0.043283
10 2015-01-11 0.008423
11 2015-01-12 0.073718
12 2015-01-13 5.155749
13 2015-01-14 0.442954
14 2015-01-15 0.154673
15 2015-01-16 3.543765
16 2015-01-17 0.008195
17 2015-01-18 0.433738
18 2015-01-19 3.855481
19 2015-01-20 0.001325

[66]: ## to export df,daily avg
## oahu_pr_proj_df.to_csv('oahu_ssp245 2015 2100_avg.csv', index = False)

[11]: | ## to ezport df, daily sum
oahu_pr_proj_converted_int_ssp245_sum_df.to_csv('oahu_ssp245_2015_2100_total.
—csv', index = False)



1.1.4 Exploring CNRM-ESM2-1, ssp3-7.0 Projection

[19]: | ## querty for 3hr, precipitaion for ssp 3-7.0 projection from CNRM-ESM2-1
df_3hr_ssp370_CNRM_pr = df[(df.table_id == '3hr') & (df.variable_id == 'pr') &,
— (df .experiment_id== 'ssp370') & (df.source_id== 'CNRM-ESM2-1') ]
len(df_3hr_ssp370_CNRM_pr)
df_3hr_ssp370_CNRM_pr

[19]: activity_id institution_id source_id experiment_id member_id \
69219 ScenarioMIP CNRM-CERFACS CNRM-ESM2-1 ssp370 ri1ilplf2

table_id variable_id grid_label \

69219 3hr pr gr
zstore dcpp_init_year \
69219 gs://cmip6/CMIP6/ScenarioMIP/CNRM-CERFACS/CNRM.. NaN
version

69219 20190328

[20]:  ## pull data
# get the path to a specific zarr store (the first ome from the dataframe above)
zstore2 = df_3hr_ssp370_CNRM_pr.zstore.values[-1]
print(zstore2)

# create a mutable-mapping-style interface to the store
mapper2 = fsspec.get_mapper(zstore2)

# open 1t using zarray and zarr
ds_proj_ssp370 = xr.open_zarr(mapper2, consolidated=True)
ds_proj_ssp370

gs://cmip6/CMIP6/ScenarioMIP/CNRM-CERFACS/CNRM-
ESM2-1/ssp370/r1ilp1£2/3hr/pr/gr/v20190328/

[20] : <xarray.Dataset>

Dimensions: (lat: 128, lon: 256, time: 251288, axis_nbounds: 2)
Coordinates:
* lat (lat) float64 -88.93 -87.54 -86.14 -84.74 .. 86.14 87.54 88.93
* lon (lon) float64 0.0 1.406 2.812 4.219 .. 354.4 355.8 357.2 358.6
* time (time) datetime64[ns] 2015-01-01T01:30:00 .. 2100-12-31T22:..

time bounds (time, axis_nbounds) datetime64[ns]
dask.array<chunksize=(62822, 1), meta=np.ndarray>
Dimensions without coordinates: axis_nbounds
Data variables:

pr (time, lat, lon) float32 dask.array<chunksize=(449, 128, 256),
meta=np.ndarray>
Attributes: (12/55)



[21]:

[21]:

CMIP6_CV_version:
Conventions:
EXPID:
activity_id:

arpege_minor_version:

branch_method:

variable_id:
variant_label:
xios_commit:

status:
netcdf_tracking_ids:

cv=6.2.3.0-7-g2019642
CF-1.7 CMIP-6.2
CNRM-ESM2-1_ssp370_r1ilplf2
ScenarioMIP AerChemMIP
6.3.2

standard

pPr
r1ilplf2

1442-shuffle

2019-11-03;created; by nhn2@columbia.edu
hdl1:21.14100/2a291f7e-b9c9-4c68-b33b-cbfc153a587f..

version_id: v20190328

# Apply lat/lon masks to the field, then calculate averages over the lat andy
—lon dimensions

oahu_pr_proj_ssp370=ds_proj_ssp370.pr.where(mask_lon & mask_lat, drop = True)

## remove times associated with leap years (remove feb 29 from all recorded,
—years)

oahu_pr_proj_ssp370 = oahu_pr_proj_ssp370.sel(time=~((oahu_pr_proj_ssp370.time.
—dt.month == 2) & (oahu_pr_proj_ssp370.time.dt.day == 29)))
oahu_pr_proj_ssp370

## group by day of year and avg by day

oahu_pr_proj_ssp370['dayofyear'] = xr.DataArray(oahu_pr_proj_ssp370.
—indexes['time'] .strftime('%Y-%m-%d'), coords=oahu_pr_proj_ssp370.time.coords)
oahu_pr_proj_ssp370_avg = oahu_pr_proj_ssp370.groupby('dayofyear') .mean('time',
—keep_attrs=True) #retain attributes for metpy conversion in nzt step

oahu_pr_proj_ssp370_avg

<xarray.DataArray 'pr' (dayofyear: 31390, lat: 1, lon: 1)>
dask.array<stack, shape=(31390, 1, 1), dtype=float32, chunksize=(1, 1, 1),
chunktype=numpy .ndarray>

Coordinates:

* lat (lat) float64 21.71

* lon (lon) float64 202.5

* dayofyear (dayofyear) object '2015-01-01' '2015-01-02' .. '2100-12-31'
Attributes:

area: areacella
area: time: mean

cell measures:
cell methods:

description: at surface; includes both liquid and solid phases.
history: none

interval_operation: 900 s

interval_write: 3h

long_name: Precipitation

online_operation: average
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[22]:

[22]:

[23]:

[23]:

standard_name: precipitation_flux
units: kg m-2 s-1

## daily sum of precip ssp3-7.0 projection

oahu_pr_proj_sum_370 = oahu_pr_proj_ssp370.groupby('dayofyear') .sum('time',,
—keep_attrs=True) #retain attributes for metpy conversion in nzt step

oahu_pr_proj_sum_370

<xarray.DataArray 'pr' (dayofyear: 31390, lat: 1, lon: 1)>

dask.array<stack, shape=(31390, 1, 1), dtype=float32, chunksize=(1, 1, 1),

chunktype=numpy.ndarray>

Coordinates:
* lat (lat) float64 21.71
* lon (lon) float64 202.5
* dayofyear (dayofyear) object '2015-01-01' '2015-01-02' .. '2100-12-31'
Attributes:
cell measures: area: areacella
cell methods: area: time: mean
description: at surface; includes both liquid and solid phases.
history: none
interval_operation: 900 s
interval_write: 3h
long_name: Precipitation
online_operation: average
standard_name: precipitation_flux
units: kg m-2 s-1

# Make metpy recognize the units
oahu_pr_proj_ssp370_sum = oahu_pr_proj_sum_370.metpy.quantify()

# convert kg/m2/sec to in/day

density_water = units('kg / m~3') * 1000
oahu_pr_proj_ssp370_converted_int_sum = (oahu_pr_proj_ssp370_sum /|,
—.density_water)

oahu_pr_proj_ssp370_converted_int_sum = oahu_pr_proj_ssp370_converted_int_sum.

—metpy.convert_units('inches / day')

oahu_pr_proj_ssp370_converted_int_sum = oahu_pr_proj_ssp370_converted_int_sum.

—mean("lon") .mean("lat")
oahu_pr_proj_ssp370_converted_int_sum

<xarray.DataArray 'pr' (dayofyear: 31390)>

<Quantity(dask.array<mean_agg-aggregate, shape=(31390,), dtype=float32,

chunksize=(1,), chunktype=numpy.ndarray>, 'inch / day')>
Coordinates:

* dayofyear (dayofyear) object '2015-01-01' '2015-01-02' .. '2100-12-31'

11



[16]: # Cast our zarray to dataframe -- daily avg
oahu_pr_proj_ssp370_df = oahu_pr_proj_ssp370_converted_int.to_dataframe().
—reset_index()

oahu_pr_proj_ssp370_df .head(20)

[16]: dayofyear pr
0 2015-01-01 3.701659e-04
1 2015-01-02 2.282345e-03
2 2015-01-03 1.025546e-02
3 2015-01-04 3.492512e-01
4 2015-01-05 9.594570e-01
5 2015-01-06 2.072181e-01
6 2015-01-07 1.574929e-01
7 2015-01-08 5.034250e-02
8 2015-01-09 4.010621e-02
9 2015-01-10 2.340790e-02
10 2015-01-11 3.337233e-03
11 2015-01-12 5.087506e-03
12 2015-01-13 4.717490e-02
13 2015-01-14 1.209491e+00
14 2015-01-15 9.867913e-03
15 2015-01-16 1.273414e-01
16 2015-01-17 1.849313e+00
17 2015-01-18 4.772992e-03
18 2015-01-19 5.384365e-22
19 2015-01-20 1.341719e-05

[24]: # Cast our zarray to dataframe -- daily sum

oahu_pr_proj_ssp370_df_sum = oahu_pr_proj_ssp370_converted_int_sum.
—to_dataframe() .reset_index()
oahu_pr_proj_ssp370_df_sum.head(20)

[24]: dayofyear pr
0 2015-01-01 2.961327e-03
1 2015-01-02 1.825876e-02
2  2015-01-03 8.204365e-02
3 2015-01-04 2.794009e+00
4 2015-01-05 7.675656e+00
5 2015-01-06 1.657745e+00
6 2015-01-07 1.259943e+00
7 2015-01-08 4.027400e-01
8 2015-01-09 3.208497e-01
9 2015-01-10 1.872632e-01
10 2015-01-11 2.669786e-02
11  2015-01-12 4.070005e-02
12 2015-01-13 3.773992e-01
13 2015-01-14 9.675924e+00
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[23]:

[25] :

[26] :

[26] :

[27]:

14 2015-01-15 7.894330e-02
15 2015-01-16 1.018731e+00
16 2015-01-17 1.479451e+01
17 2015-01-18 3.818394e-02
18 2015-01-19 4.307492e-21

1

19 2015-01-20 .073375e-04

## to export df
# oahu_pr_proj_ssp370_df.to_csv('oahu_ssp370_2015 2100.csv', index = False)

## to ezxzport df, daily total ssp370
oahu_pr_proj_ssp370_df_sum.to_csv('oahu_ssp370_2015_2100_total.csv', index =,
—False)

1.1.5 Exploring CNRM-ESM2-1, ssp5-8.5 Projection

## querty for 3hr, precipitaion for ssp 5-8.5 projection from CNRM-ESM2-1

df _3hr_ssp585_CNRM_pr = df[(df.table_id == '3hr') & (df.variable_id == 'pr') &,
— (df .experiment_id== 'ssp585') & (df.source_id== 'CNRM-ESM2-1') ]
len(df_3hr_ssp585_CNRM_pr)

df_3hr_ssp585_CNRM_pr

activity_id institution_id source_id experiment_id member_id \
69200 ScenarioMIP CNRM-CERFACS CNRM-ESM2-1 sspb85 ri1ilplf2

table_id variable_id grid_label \

69200 3hr pr gr
zstore dcpp_init_year \
69200 gs://cmip6/CMIP6/ScenarioMIP/CNRM-CERFACS/CNRM.. NaN
version

69200 20190328

## pull data

# get the path to a specific zarr store (the first ome from the dataframe above)
zstore3 = df_3hr_ssp585_CNRM_pr.zstore.values[-1]

print(zstore3)

# create a mutable-mapping-style interface to the store
mapper3 = fsspec.get_mapper(zstore3)

# open 1t using zarray and zarr
ds_proj_sspb85 = xr.open_zarr(mapper3, consolidated=True)
ds_proj_ssp585

gs://cmip6/CMIP6/ScenarioMIP/CNRM-CERFACS/CNRM-
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[27]:

[28]:

ESM2-1/ssp585/r1i1p1£2/3hr/pr/gr/v20190328/

<xarray.Dataset>

Dimensions: (lat: 128, lon: 256, time: 251288, axis_nbounds: 2)
Coordinates:
* lat (lat) float64 -88.93 -87.54 -86.14 -84.74 .. 86.14 87.54 88.93
* lon (lon) float64 0.0 1.406 2.812 4.219 .. 354.4 355.8 357.2 358.6
* time (time) datetime64[ns] 2015-01-01T01:30:00 .. 2100-12-31T22:..

time bounds (time, axis _nbounds) datetime64[ns]
dask.array<chunksize=(62822, 1), meta=np.ndarray>
Dimensions without coordinates: axis_nbounds
Data variables:

pr (time, lat, lon) float32 dask.array<chunksize=(600, 128, 256),
meta=np.ndarray>
Attributes: (12/55)

CMIP6_CV_version: cv=6.2.3.0-7-g2019642

Conventions: CF-1.7 CMIP-6.2

EXPID: CNRM-ESM2-1_sspb585_r1ilplf2
activity_id: ScenarioMIP

arpege_minor_version: 6.3.2

branch_method: standard

variable_id: pPr

variant_label: r1ilplf2

xios_commit: 1442-shuffle

status: 2019-08-26;created;by nhn2@columbia.edu
netcdf_tracking_ids: hdl:21.14100/6fb366f9-6ed1-47fe-918c-08fabca8baa3..
version_id: v20190328

# Apply lat/lon masks to the field, then calculate averages over the lat andy
—lon dimensions
oahu_pr_proj_sspb585=ds_proj_sspb85.pr.where(mask_lon & mask_lat, drop = True)

## remove times assoctated with leap years (remove feb 29 from all recorded
—years )

oahu_pr_proj_ssp585 = oahu_pr_proj_ssp585.sel(time=~((oahu_pr_proj_ssp585.time.
—dt.month == 2) & (oahu_pr_proj_sspb85.time.dt.day == 29)))
oahu_pr_proj_ssp585

## group by day of year and avg by day

oahu_pr_proj_sspb585['dayofyear'] = xr.DataArray(oahu_pr_proj_ssp585.
—indexes['time'] .strftime('%Y-%m-%d'), coords=oahu_pr_proj_ssp585.time.coords)
oahu_pr_proj_sspb585_avg = oahu_pr_proj_sspb85.groupby('dayofyear') .mean('time',
—keep_attrs=True) #retain attributes for metpy conversion in nzt step

oahu_pr_proj_sspb85_avg
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[28] : <xarray.DataArray 'pr' (dayofyear: 31390, lat: 1, lon: 1)>
dask.array<stack, shape=(31390, 1, 1), dtype=float32, chunksize=(1, 1, 1),
chunktype=numpy.ndarray>

Coordinates:
* lat (lat) float64 21.71
* lon (lon) float64 202.5
* dayofyear (dayofyear) object '2015-01-01' '2015-01-02' .. '2100-12-31'
Attributes:
cell measures: area: areacella
cell methods: area: time: mean
description: at surface; includes both liquid and solid phases.
history: none
interval_operation: 900 s
interval_write: 3h
long_name: Precipitation
online_operation: average
standard_name: precipitation_flux
units: kg m-2 s-1

[29]:  ## daily sum of precip ssp5-8.5 Projection
oahu_pr_proj_sum_585 = oahu_pr_proj_ssp585.groupby('dayofyear') .sum('time',,
—keep_attrs=True) #retain attributes for metpy conversion in nzt step
oahu_pr_proj_sum_585

[29] : <xarray.DataArray 'pr' (dayofyear: 31390, lat: 1, lon: 1)>
dask.array<stack, shape=(31390, 1, 1), dtype=float32, chunksize=(1, 1, 1),
chunktype=numpy .ndarray>

Coordinates:
* lat (lat) float64 21.71
* lon (lon) float64 202.5
* dayofyear (dayofyear) object '2015-01-01' '2015-01-02' .. '2100-12-31'
Attributes:
cell measures: area: areacella
cell methods: area: time: mean
description: at surface; includes both liquid and solid phases.
history: none
interval_operation: 900 s
interval_write: 3h
long_name: Precipitation
online_operation: average
standard_name: precipitation_flux
units: kg m-2 s-1

[30]: | # Make metpy recognize the units
oahu_pr_proj_ssp585_sum = oahu_pr_proj_sum_585.metpy.quantify()

# convert kg/m2/sec to in/day
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[30]:

[29]:

[29]:

[31]:

density_water = units('kg / m~3') * 1000
oahu_pr_proj_sspb585_converted_int_sum = (oahu_pr_proj_sspb585_sum /|,
—density_water)

oahu_pr_proj_sspb585_converted_int_sum = oahu_pr_proj_ssp585_converted_int_sum.
—metpy.convert_units('inches / day')

oahu_pr_proj_sspb85_converted_int_sum = oahu_pr_proj_ssp585_converted_int_sum.
—mean("lon") .mean("lat")

oahu_pr_proj_sspb585_converted_int_sum

<xarray.DataArray 'pr' (dayofyear: 31390)>
<Quantity(dask.array<mean_agg-aggregate, shape=(31390,), dtype=float32,
chunksize=(1,), chunktype=numpy.ndarray>, 'inch / day')>
Coordinates:

* dayofyear (dayofyear) object '2015-01-01' '2015-01-02' .. '2100-12-31'

# Cast our zarray to dataframe

oahu_pr_proj_ssp585_df = oahu_pr_proj_ssp585_converted_int.to_dataframe().
—reset_index()

oahu_pr_proj_sspb585_df .head(20)

dayofyear pr
0 2015-01-01 0.000311
1 2015-01-02 0.001061
2 2015-01-03 0.019240
3 2015-01-04 0.289843
4 2015-01-05 0.766865
5 2015-01-06 0.173856
6 2015-01-07 0.088689
7 2015-01-08 0.044970
8 2015-01-09 0.023198
9 2015-01-10 0.016240
10 2015-01-11 0.005077
11 2015-01-12 0.207648
12 2015-01-13 0.277482
13 2015-01-14 0.007074
14 2015-01-15 0.011796
15 2015-01-16 0.483247
16 2015-01-17 0.000010
17 2015-01-18 0.009342
18 2015-01-19 0.069012
19 2015-01-20 0.005040

# Cast our zarray to dataframe

oahu_pr_proj_sspb585_df_sum = oahu_pr_proj_sspb85_converted_int_sum.
—to_dataframe() .reset_index()

oahu_pr_proj_ssp585_df_sum.head(20)
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[31]: dayofyear pr

0 2015-01-01 0.002490
1 2015-01-02 0.008486
2 2015-01-03 0.1563917
3 2015-01-04 2.318743
4 2015-01-05 6.134923
5 2015-01-06 1.390850
6 2015-01-07 0.709511
7 2015-01-08 0.359761
8 2015-01-09 0.185582
9 2015-01-10 0.129921
10 2015-01-11 0.040615
11 2015-01-12 1.661184
12 2015-01-13 2.219857
13 2015-01-14 0.056589
14 2015-01-15 0.094369
15 2015-01-16 3.865978
16 2015-01-17 0.000081
17 2015-01-18 0.074732
18 2015-01-19 0.552095
19 2015-01-20 0.040323

[30]: ## to export df
# oahu_pr_proj_sspb85_df.to_csv('oahu_ssp585_2015_2100.csv', index = False)

[32]: | ## to exzport df, daily total ssp585
oahu_pr_proj_ssp585_df_sum.to_csv('oahu_ssp585_2015_2100_total.csv', index =,
—False)

1.1.6 Exploring CNRM-ESM2-1, sspl1-2.6 Projection

[33]: | ## querty for 3hr, precipitaion for ssp 1-2.6 from CNRM-ESM2-1
df_3hr_sspl26_CNRM_pr = df[(df.table_id == '3hr') & (df.variable_id == 'pr') &,
— (df .experiment_id== 'sspl126') & (df.source_id== 'CNRM-ESM2-1') ]
len(df_3hr_sspl26_CNRM_pr)
df _3hr_sspl126_CNRM_pr

[33]: activity_id institution_id source_id experiment_id member_id \
69045 ScenarioMIP  CNRM-CERFACS CNRM-ESM2-1 sspl26 rlilplf2

table_id variable_id grid_label \

69045 3hr pr gr
zstore dcpp_init_year \
69045 gs://cmip6/CMIP6/ScenarioMIP/CNRM-CERFACS/CNRM... NaN
version
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69045 20190328

[34]:  ## pull data
# get the path to a specific zarr store (the first one from the dataframe above)
zstored4 = df_3hr_sspl26_CNRM_pr.zstore.values[-1]
print (zstore4)

# create a mutable-mapping-style interface to the store
mapper4 = fsspec.get_mapper(zstore4)

# open it using zarray and zarr
ds_proj_sspl26 = xr.open_zarr(mapper4, consolidated=True)
ds_proj_sspl26

gs://cmip6/CMIP6/ScenarioMIP/CNRM-CERFACS/CNRM-
ESM2-1/ssp126/r1ilp1£2/3hr/pr/gr/v20190328/

[34] : <xarray.Dataset>

Dimensions: (lat: 128, lon: 256, time: 251288, axis_nbounds: 2)
Coordinates:
* lat (lat) float64 -88.93 -87.54 -86.14 -84.74 .. 86.14 87.54 88.93
* lon (lon) float64 0.0 1.406 2.812 4.219 .. 354.4 355.8 357.2 358.6
* time (time) datetime64[ns] 2015-01-01T01:30:00 .. 2100-12-31T22:..

time _bounds (time, axis_nbounds) datetime64[ns]
dask.array<chunksize=(62822, 1), meta=np.ndarray>
Dimensions without coordinates: axis_nbounds
Data variables:

pr (time, lat, lon) float32 dask.array<chunksize=(449, 128, 256),
meta=np.ndarray>
Attributes: (12/55)

CMIP6_CV_version: cv=6.2.3.0-7-g2019642

Conventions: CF-1.7 CMIP-6.2

EXPID: CNRM-ESM2-1_sspl126_r1ilplf2
activity_id: ScenarioMIP

arpege_minor_version: 6.3.2

branch_method: standard

variable_id: pr

variant_label: r1ilplf2

xios_commit: 1442-shuffle

status: 2019-11-03;created;by nhn2@columbia.edu
netcdf_tracking_ids: hd1:21.14100/6255501d-a196-47b5-be0f-7d61a687ebel...
version_id: v20190328

[35]: | # Apply lat/lon masks to the field, then calculate averages over the lat and,
—lon dimensions
oahu_pr_proj_sspl26=ds_proj_sspl26.pr.where(mask_lon & mask_lat, drop = True)
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[35]:

[36]:

[36]:

## remove times associated with leap years (remove feb 29 from records)
oahu_pr_proj_sspl26 = oahu_pr_proj_sspl26.sel(time=~((oahu_pr_proj_sspl26.time.
—dt.month == 2) & (oahu_pr_proj_sspl26.time.dt.day == 29)))
oahu_pr_proj_sspl26

## group by day of year and avg by day

oahu_pr_proj_sspl26['dayofyear'] = xr.DataArray(oahu_pr_proj_sspl26.
—indexes['time'].strftime('%Y-%m-%d'), coords=oahu_pr_proj_sspl26.time.coords)
oahu_pr_proj_sspl26_avg = oahu_pr_proj_sspl26.groupby('dayofyear') .mean('time',
—keep_attrs=True) #retain attridbutes for metpy conversion in nxt step

oahu_pr_proj_sspl26_avg

<xarray.DataArray 'pr' (dayofyear: 31390, lat: 1, lon: 1)>
dask.array<stack, shape=(31390, 1, 1), dtype=float32, chunksize=(1, 1, 1),
chunktype=numpy.ndarray>

Coordinates:
* lat (lat) float64 21.71
* lon (lon) float64 202.5
* dayofyear (dayofyear) object '2015-01-01' '2015-01-02' .. '2100-12-31'
Attributes:
cell _measures: area: areacella
cell _methods: area: time: mean
description: at surface; includes both liquid and solid phases.
history: none
interval_operation: 900 s
interval _write: 3h
long_name: Precipitation
online_operation: average
standard_name: precipitation_flux
units: kg m-2 s-1

## datly sum of precip sspl26
oahu_pr_proj_sum_126 = oahu_pr_proj_sspl26.groupby('dayofyear') .sum('time',
—keep_attrs=True) #retain attributes for metpy conversion in nzt step

oahu_pr_proj_sum_126

<xarray.DataArray 'pr' (dayofyear: 31390, lat: 1, lon: 1)>
dask.array<stack, shape=(31390, 1, 1), dtype=float32, chunksize=(1, 1, 1),
chunktype=numpy.ndarray>

Coordinates:
* lat (lat) float64 21.71
* lon (lon) float64 202.5
* dayofyear (dayofyear) object '2015-01-01' '2015-01-02' .. '2100-12-31'
Attributes:
cell measures: area: areacella
cell _methods: area: time: mean

19



[37]:

[37]:

[14] :

[14]:

description:
history:

interval_operation:

interval _write:
long_name:
online_operation:
standard_name:
units:

at surface; includes both liquid and solid phases.
none

900 s

3h

Precipitation

average

precipitation_flux

kg m-2 s-1

# Make metpy recognize the units

oahu_pr_proj_sspl26_sum

oahu_pr_proj_sum_126.metpy.quantify()

# convert kg/m2/sec to in/day

density_water =

units('kg / m~3') * 1000
oahu_pr_proj_sspl26_converted_int_sum =

(oahu_pr_proj_sspl26_sum /,,

—density_water)
oahu_pr_proj_sspl26_converted_int_sum =
—metpy.convert_units('inches / day')

oahu_pr_proj_sspl26_converted_int_sum.

oahu_pr_proj_sspl26_converted_int_sum =
—mean("lon") .mean("lat")

oahu_pr_proj_sspl26_converted_int_sum.
oahu_pr_proj_sspl26_converted_int_sum

<xarray.DataArray 'pr' (dayofyear: 31390)>

<Quantity(dask.array<mean_agg-aggregate, shape=(31390,), dtype=float32,

chunksize=(1,), chunktype=numpy.ndarray>, 'inch / day')>

Coordinates:
* dayofyear (dayofyear) object '2015-01-01' '2015-01-02' .. '2100-12-31'

# Cast our zarray to dataframe —-- daily average

oahu_pr_proj_sspl26_df = oahu_pr_proj_sspl26_converted_int.to_dataframe().

—reset_index()

oahu_pr_proj_sspl26_df.head(20)

dayofyear pr
0 2015-01-01 0.001504
1 2015-01-02 0.001572
2 2015-01-03 0.015226
3 2015-01-04 0.296919
4 2015-01-05 0.762305
5 2015-01-06 0.135178
6 2015-01-07 0.150985
7 2015-01-08 0.028382
8 2015-01-09 0.016181
9 2015-01-10 0.011141
10 2015-01-11 0.001719
11 2015-01-12 0.156439
12 2015-01-13 0.533256
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13 2015-01-14 0.029845
14 2015-01-15 0.002761
15 2015-01-16 1.747228
16 2015-01-17 0.000391
17 2015-01-18 0.092346
18 2015-01-19 0.001736
19 2015-01-20 0.000678
[38]: | # Cast our zarray to dataframe -- daily sum

oahu_pr_proj_sspl26_df_sum = oahu_pr_proj_sspl26_converted_int_sum.
—to_dataframe() .reset_index()
oahu_pr_proj_sspl26_df_sum.head(20)

[38]: dayofyear pr
0 2015-01-01 0.012032
1 2015-01-02  0.012579
2 2015-01-03 0.121809
3 2015-01-04 2.375351
4 2015-01-05 6.098441
5 2015-01-06 1.081423
6 2015-01-07 1.207878
7 2015-01-08  0.227057
8 2015-01-09  0.129448
9 2015-01-10 0.089130
10 2015-01-11 0.013749
11 2015-01-12 1.251516
12 2015-01-13 4.266051
13 2015-01-14 0.238757
14 2015-01-15 0.022086
15 2015-01-16 13.977824
16 2015-01-17 0.003131
17 2015-01-18 0.738765
18 2015-01-19 0.013890
19 2015-01-20 0.005426

[15]:  ## to ezport df
#oahu_pr_proj_sspl26_df.to_csv('oahu_sspl126 2015 2100.csv', index = False)

[39]: ## to export df, daily total sspl-2.6 Projection

oahu_pr_proj_sspl26_df_sum.to_csv('oahu_sspl26_2015_2100_total.csv', index =,
—False)
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1.1.7 Exploring CNRM-ESM2-1, historical

[42] : | ## querty for 3hr, precipitaion for historical from CNRM-ESM2-1
df _3hr_historical CNRM_pr = df[(df.table_id == '3hr') & (df.variable_id ==
—'pr') & (df.experiment_id== 'historical') & (df.source_id== 'CNRM-ESM2-1') ]
len(df_3hr_historical_CNRM_pr)
df_3hr_historical_CNRM_pr

[42] : activity_id institution_id source_id experiment_id member_id \
44063 CMIP CNRM-CERFACS CNRM-ESM2-1 historical r1lilplf2

table_id variable_id grid_label \

44063 3hr pr gr
zstore dcpp_init_year \
44063 gs://cmip6/CMIP6/CMIP/CNRM-CERFACS/CNRM-ESM2-1.. NaN
version

44063 20181206

[43]: ## pull data
# get the path to a specific zarr store (the first ome from the dataframe above)
zstoreb = df_3hr_historical CNRM_pr.zstore.values[-1]
print(zstoreb)

# create a mutable-mapping-style interface to the store
mapper5 = fsspec.get_mapper(zstoreb)

# open 1t using zarray and zarr
ds_proj_historical = xr.open_zarr(mapper5, consolidated=True)
ds_proj_historical

gs://cmip6/CMIP6/CMIP/CNRM-CERFACS/CNRM-
ESM2-1/historical/r1ilp1£2/3hr/pr/gr/v20181206/

[43]: <xarray.Dataset>

Dimensions: (lat: 128, lon: 256, time: 482120, axis_nbounds: 2)
Coordinates:
* lat (lat) float64 -88.93 -87.54 -86.14 -84.74 .. 86.14 87.54 88.93
* lon (lon) float64 0.0 1.406 2.812 4.219 .. 354.4 355.8 357.2 358.6
* time (time) datetime64[ns] 1850-01-01T01:30:00 .. 2014-12-31T22:..

time bounds (time, axis_nbounds) datetime64[ns]
dask.array<chunksize=(60265, 1), meta=np.ndarray>
Dimensions without coordinates: axis_nbounds
Data variables:

pr (time, lat, lon) float32 dask.array<chunksize=(600, 128, 256),
meta=np.ndarray>
Attributes: (12/55)
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[44] -

[44] :

CMIP6_CV_version:
Conventions:
EXPID:
activity_id:

arpege_minor_version:

branch_method:

variable_id:
variant_label:
xios_commit:

status:
netcdf_tracking_ids:
version_id:

cv=6.2.3.0-7-g2019642

CF-1.7 CMIP-6.2
CNRM-ESM2-1_historical_ri1ilplf2_v2
CMIP

6.3.2

standard

pPr
r1ilplf2

1442-shuffle

2019-10-25;created; by nhn2@columbia.edu
hd1:21.14100/f1e5c10f-c895-46b1-a771-05e33c7947b6...
v20181206

# Apply lat/lon masks to the field, then calculate averages over the lat andy
—lon dimensions

oahu_pr_proj_historical=ds_proj_historical.pr.where(mask_lon & mask_lat, drop =,
—True)

## remove times associated with leap years (remove feb 29 from records)
oahu_pr_proj_historical = oahu_pr_proj_historical.
—sel(time=~((oahu_pr_proj_historical.time.dt.month == 2) &,

— (oahu_pr_proj_historical.time.dt.day == 29)))
oahu_pr_proj_historical

## group by day of year and avg by day

oahu_pr_proj_historical['dayofyear'] = xr.DataArray(oahu_pr_proj_historical.
—indexes['time'].strftime('%Y-%m-%d'), coords=oahu_pr_proj_historical.time.
—-coords)

oahu_pr_proj_historical_avg = oahu_pr_proj_historical.groupby('dayofyear').
—mean('time', keep_attrs=True) #retain attributes for metpy conversion in nzty
—step

oahu_pr_proj_historical_avg

<xarray.DataArray 'pr' (dayofyear: 60225, lat: 1, lon: 1)>
dask.array<stack, shape=(60225, 1, 1), dtype=float32, chunksize=(1, 1, 1),
chunktype=numpy.ndarray>

Coordinates:

* lat (lat) float64 21.71

* lon (lon) float64 202.5

* dayofyear (dayofyear) object '1850-01-01' '1850-01-02' .. '2014-12-31'
Attributes:

cell _measures: area: areacella

cell methods: area: time: mean

description: at surface; includes both liquid and solid phases.
history: none
interval_operation: 900 s
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interval_write: 3h

long_name: Precipitation
online_operation: average
standard_name: precipitation_flux
units: kg m-2 s-1

[45]:  ## datily sum of precip historical
oahu_pr_proj_sum_historical = oahu_pr_proj_historical.groupby('dayofyear').
—sum('time', keep_attrs=True) #retain attributes for metpy conversion in nzt,
—~step
oahu_pr_proj_sum_historical

[45]: <xarray.DataArray 'pr' (dayofyear: 60225, lat: 1, lon: 1)>
dask.array<stack, shape=(60225, 1, 1), dtype=float32, chunksize=(1, 1, 1),
chunktype=numpy.ndarray>

Coordinates:
* lat (lat) float64 21.71
* lon (lon) float64 202.5
* dayofyear (dayofyear) object '1850-01-01' '1850-01-02' .. '2014-12-31'
Attributes:
cell _measures: area: areacella
cell _methods: area: time: mean
description: at surface; includes both liquid and solid phases.
history: none
interval_operation: 900 s
interval_write: 3h
long_name: Precipitation
online_operation: average
standard_name: precipitation_flux
units: kg m-2 s-1

[47]:  # Make metpy recognize the units
oahu_pr_proj_historical_sum = oahu_pr_proj_sum_historical.metpy.quantify()

# convert kg/m2/sec to in/day

density_water = units('kg / m~3') * 1000

oahu_pr_proj_historical_converted_int_sum = (oahu_pr_proj_historical_sum /|,
—density_water)

oahu_pr_proj_historical_converted_int_sum =
—oahu_pr_proj_historical_converted_int_sum.metpy.convert_units('inches / day')
oahu_pr_proj_historical_converted_int_sum =
—oahu_pr_proj_historical_converted_int_sum.mean("lon") .mean("lat")
oahu_pr_proj_historical_converted_int_sum

[47]: <xarray.DataArray 'pr' (dayofyear: 60225)>

<Quantity(dask.array<mean_agg-aggregate, shape=(60225,), dtype=float32,
chunksize=(1,), chunktype=numpy.ndarray>, 'inch / day')>
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Coordinates:

* dayofyear (dayofyear) object '1850-01-01' '1850-01-02' .. '2014-12-31'
[22]: | # Cast our zarray to dataframe -- daily avg
oahu_pr_proj_historical_df = oahu_pr_proj_historical_converted_int.
—to_dataframe() .reset_index()
oahu_pr_proj_historical_df.head(20)
[22]: dayofyear pr
0 1850-01-01 7.431174e-04
1 1850-01-02 5.950664e-02
2 1850-01-03 3.129180e-01
3 1850-01-04 4.294988e-04
4 1850-01-05 1.384215e-03
5 1850-01-06 4.975918e-03
6 1850-01-07 9.406500e-05
7 1850-01-08 9.380140e-23
8 1850-01-09 2.022306e-05
9 1850-01-10 2.199838e-22
10 1850-01-11 5.801964e-04
11 1850-01-12 1.061206e-01
12 1850-01-13 4.339770e-02
13 1850-01-14 2.547624e-02
14 1850-01-15 2.540510e-01
15 1850-01-16 1.818833e-05
16 1850-01-17 2.309185e-03
17 1850-01-18 1.173254e-01
18 1850-01-19 1.011662e-01
19 1850-01-20 7.681608e-05
[48]: # Cast our zarray to dataframe -- daily sum historical
oahu_pr_proj_historical_df_sum = oahu_pr_proj_historical_converted_int_sum.
—to_dataframe() .reset_index()
oahu_pr_proj_historical_df_sum.head(20)
[48] : dayofyear pr
0 1850-01-01 5.944939e-03
1 1850-01-02 4.760531e-01
2 1850-01-03 2.503344e+00
3 1850-01-04 3.435990e-03
4 1850-01-05 1.107372e-02
5 1850-01-06 3.980734e-02
6 1850-01-07 7.525200e-04
7 1850-01-08 7.504112e-22
8 1850-01-09 1.617845e-04
9 1850-01-10 1.759870e-21
10 1850-01-11 4.641572e-03
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11 1850-01-12 8.489646e-01
12 1850-01-13 3.471816e-01
13 1850-01-14 2.038099e-01
14 1850-01-15 2.032408e+00
15 1850-01-16 1.455066e-04
16 1850-01-17 1.847348e-02
17 1850-01-18 9.386032e-01
18 1850-01-19 8.093297e-01
19 1850-01-20 6.145286e-04

[23]:  ## to ezport df
#oahu_pr_proj_historical_df.to_csv('oahu_historical_2015_2100.csv’', index =,
—False)

[49]: ## to exzport df, daily total historical

oahu_pr_proj_historical_df_sum.to_csv('oahu_historical_1850_2014_total.csv',,

—index = False)
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Appendix I

Code for Runoff Coefficient and Peak Flow Values with Maximum and Minimum
MCF Applied

This page was left blank intentionally.
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Graphs of Climate Change SWMM Results

This is code to analyze the climate change scaled results from SWMM and create figures

Elmera Azadpour
1/24/2022
NOTE: Figures will be be hidden from knitted markdown.

Analysis of simulated vs observed runoff

#Graph observed vs simulated runoff for Maz Multiplicative Change Factor (MCF)

observed<- read.csv(here("climate_change_data","SWMM_results", "Marl4_observed.csv"))
simulated_max_marchl4 <- read.csv(here("climate_change_data","SWMM_results", "MCF_max_Marl4_simulated.c
simulated_min_marchl4 <- read.csv(here("climate_change_data","SWMM_results", "MCF_min_Marl4_simulated.c

# merge MCF maz with observed
discharge_MCF_max<- merge(observed, simulated_max_marchl4, "time_step")

#merge MCF min with observed
discharge_MCF_min<- merge(observed, simulated_min_marchi4, "time_step")
summary (discharge_MCF_max)

graph_max<- ggplot(discharge_MCF_max, aes(x=discharge_obs_cfs, simulated_flow_cfs))+
geom_point ()

graph_max

graph_min<- ggplot(discharge_ MCF_min, aes(x=discharge_obs_cfs, simulated_flow_cfs))+
geom_point ()

graph_min

calibrate_graph_max<- discharge_ MCF_max %>%

gegplot O+

geom_line(aes(x=time_step, discharge_obs_cfs), "#000000", 2.5)+
geom_line(aes(x=time_step, simulated_flow_cfs), "#009E73", 2.5)+
theme_classic()+

labs(x="Time (hours)", "Discharge (cfs)")+

scale_y_continuous( c(0,850), seq(0,850, 100), c(0,0))+
scale_x_continuous( c(0,12), seq (0,12, 2), c(0,0))+
annotate("text", "Observed", 10.5, 85, 8)+

annotate("text", "Simulated", 10.5, 300, 8) +

theme ( element_text ( 22))



calibrate_graph_max

calibrate_graph_min<- discharge_MCF_min %>%
geplot )+
geom_line(aes(x=time_step, y=discharge_obs_cfs), color="#000000", size =2.5) +
geom_line(aes(x=time_step, y=simulated_flow_cfs), color= "#009E73", size =2.5)+
theme_classic()+
labs(x="Time (hours)", y="Discharge (cfs)")+
scale_y_continuous(limits= c(0,400), breaks= seq(0,350, by= 50),expand= c(0,0))+
scale_x_continuous(limits= c(0,12), breaks= seq(0,12, by= 2),expand= c(0,0))+
annotate("text", label= "Simulated", x=10.5, y=45, size=8)+
annotate("text", label= "Observed", x=10.5, y=185, size=8) +

theme (text = element_text(size=22))

calibrate_graph_min

# save graphs
# ggsave('discharge_marlj_maz_MCF.png', calibrate_graph_maz, width = 16, height = 9, units = "in")

# ggsave('discharge_marl/_min_MCF.png', calibrate_graph_min, width = 16, height = 9, units = "in")

## combine all three lines onto one graph for easabilty

calibrate_graph <- ggplot()+
geom_line(data = discharge MCF_min, aes(x=time_step, y=discharge_obs_cfs), color="#000000", size =2.5
geom_line(data= discharge_MCF_min, aes(x=time_step, y=simulated_flow_cfs), color= "#009E73", size =2.
geom_line(data= discharge MCF_max, aes(x=time_step, y=simulated_flow_cfs), color= "#D55E00", size = 2
theme_classic()+
labs(x="Time (hours)", y="Discharge (cfs)")+
scale_y_continuous(limits= c¢(0,850), breaks= seq(0,850, by= 100),expand= c(0,0))+
scale_x_continuous(limits= c(0,12), breaks= seq(0,12, by= 2),expand= c(0,0))+
annotate("text", label= "Observed", x=10.5, y=200, size=8)+
annotate("text", label= "Max MCF Simulated", x=10.5, y=655, size=8) +
annotate("text", label= "Min MCF Simulated", x=10.5, y=55, size=8) +
theme (text = element_text(size=22))

calibrate_graph

# ggsave('discharge_marlj_MCF.png', calibrate_graph, width = 16, height = 9, units = "in")

Analysis of MCF max storm results

subcatch_max_mcf<- read_csv("subcatchments_all.csv") %>%
mutate(subcatchment= OBJECTID_1) %>%
select (subcatchment, Curve_Number, Slope, percent_imp, Area_sqft)

swm_results_max_mcf<-read_csv("Wailupe MCF_Max_ Marl4d.csv")

#Characterize results by urbanization level
results_max_mcf<- merge(subcatch_max_mcf, swm_results_max_mcf, by = "subcatchment") %>%
mutate(runoff normalized=
total_runoff_in/Area_sqft) %>%



mutate(Urbanization_level=
case_when(
percent_imp <15 |percent_imp == 15 ~ "Natural (less than 15 % Impervious)",
percent_imp >15 & percent_imp <45 ~ "Urbanized (Between 15 and 45 J Impervious)",
percent_imp >44.9999 ~ "Very urbanized (More than 45 % Impervious)"

)

write.csv(results_max_mcf, file = "results_max_mcf.csv") ##Export as .csv for use with graph maps

## normalize peak discharge (cfs) for max MCF by dividing by subcatchment area
results_max_mcf_normalized <- results_max_mcf %>%
mutate(peak runoff cfs norm = peak_runoff_cfs/Area_sqft)

results_maxmcf_peakflow_table <- results_max_mcf %>%
select (subcatchment, peak_runoff_cfs, Curve_Number, Slope, percent_imp, Area_sqft) %>%
filter (!subcatchment %in% c(1, 2,94,3,38, 24)) %>%
arrange (desc(peak_runoff_cfs)) %>%
top_n(20,peak_runoff_cfs) %>%
kable(col.names=c("Subcatchment","Peak Runoff (cfs), Max MCF",
"Curve Number", "Slope",
"Percent Impervious", "Area (sqft)")) %>%

kable_styling(bootstrap_options = "striped")
results_maxmcf_peakflow_table

results_maxmcf_peakflow_table_normalized <- results_max_mcf_normalized %>%
select (subcatchment, peak_runoff_cfs, Curve_Number, Slope, percent_imp, Area_sqft,peak_runoff_cfs_nor:
filter(!subcatchment %in% c(1, 2,94,3,38, 24)) %>%
arrange (desc(peak_runoff_cfs_norm)) %>%
top_n(20,peak_runoff_cfs_norm) %>%
kable(col.names=c("Subcatchment","Peak Runoff (cfs), Max MCF",
"Curve Number", "Slope",
"Percent Impervious", "Area (sqft)", "Normalized Peak Runoff (cfs/sqft)

kable_styling(bootstrap_options = "striped")
results_maxmcf_peakflow_table_normalized

results_maxmcf_runoffcoef_table <- results_max_mcf %>%
select (subcatchment, runoff_coeff, Curve_Number, Slope, percent_imp, Area_sqft) %>%
filter (!subcatchment %in% c(1, 2,94,3,38, 24)) %>%
arrange (desc (runoff_coeff)) %>
top_n(20,runoff_coeff) %>%
kable(col.names=c("Subcatchment","Runoff Coefficient, Max MCF",

"Curve Number", "Slope",
"Percent Impervious", "Area (sqft)")) %>%
kable_styling(bootstrap_options = "striped")

results_maxmcf_runoffcoef_table

#Perform a linear regression for the SWMM maxz MCF storm results
results_max_mcf_regression<- 1lm(total_runoff_in ~Curve_Number + Slope + percent_imp +
Area_sqft, data = results_max_mcf)



#Graph the relationship bw simulated runoff and impervious cover by urbanization level
runoff_imp_graph_max_mcf<- results_max_mcf ¥>%
ggplot (aes(x=percent_imp, y=total_runoff_in))+
geom_point (aes(color=Urbanization_level))+
labs(x= "Percent Impervious of Subcatchment", y= "Total Simulated Runoff (inches)")+
scale_y_continuous(limits= c(0,8), breaks= seq(0,8, by= 1),expand= c(0,0.08))+
scale_x_continuous(limits= c(0,80), breaks= seq(0,80, by= 10),expand= c(0,0))+
scale_color_manual (name= "Urbanization Level", values= c("darkgreen", "darkseagreen",
"darkgoldenrodl") )+
theme_classic()

runoff_imp_graph_max_mcf

#Save runoff vs. tmpervious graph
# ggsave("runoff_imp_maz_mcf.pdf", width = 8, height =4)
# ggsave("runoff_imp_maz_mcf.png"”, width = 8, height =4)

#Create a table for the regresstion results for max mcf storm
regress_table_max_mcf<- stargazer(results_max_mcf_regression, type ="html", digits= 2,
dep.var.labels = "Total Runoff (Inches)",
covariate.labels = c("Curve Number", "Slope", "Percent Impervious",
"Area (sqft)", "Y-Intercept"),
omit.stat = c("rsq"))
regress_table_max_mcf

Analysis of MCF min storm results

subcatch_min_mcf<- read_csv("subcatchments_all.csv") %>%
mutate (subcatchment= 0BJECTID_1) %>%
select (subcatchment, Curve_Number, Slope, percent_imp, Area_sqft)

swm_results_min_mcf<-read_csv("Wailupe MCF_Min_Mari4.csv")

#Characterize results by urbantization level
results_min_mcf<- merge(subcatch_min_mcf, swm_results_min_mcf, by = "subcatchment") ¥%>%
mutate (runoff_normalized=
total_runoff_in/Area_sqft) %>%
mutate(Urbanization level=
case_when(
percent_imp <15 |percent_imp == 15 ~ "Natural (less than 15 % Impervious)",
percent_imp >15 & percent_imp <45 ~ "Urbanized (Between 15 and 45 % Impervious)",
percent_imp >44.9999 ~ "Very urbanized (More than 45 J Impervious)"
)

write.csv(results_min_mcf, file = "results_min_mcf.csv") ##Export as .csv for use with graph maps

## normalize peak discharge (cfs) for min MCF by dividing by subcatchment area
results_min_mcf_normalized <- results_min_mcf %>%
mutate(peak runoff cfs norm = peak_runoff_cfs/Area_sqft)

results_minmcf_peakflow_table <- results_min_mcf %>%



select (subcatchment, peak_runoff_cfs, Curve_Number, Slope, percent_imp, Area_sqft) %>%
filter(!subcatchment %inj c(1, 2,94,3,38, 24)) %>%

arrange (desc(peak_runoff_cfs)) %>%

top_n(20,peak_runoff_cfs) %>%

kable(col.names=c("Subcatchment","Peak Runoff (cfs), Min MCF",

"Curve Number", "Slope",
"Percent Impervious", "Area (sqft)")) %>%
kable_styling(bootstrap_options = "striped")

results_minmcf_peakflow_table

results_minmcf_peakflow_normalized_table <- results_min_mcf_normalized %>%
select (subcatchment, peak_runoff_cfs, Curve_Number, Slope, percent_imp, Area_sqft,peak_runoff_cfs_nor:
filter(!subcatchment %in% c(1, 2,94,3,38, 24)) %>%
arrange (desc(peak_runoff_cfs_norm)) %>%
top_n(20,peak_runoff_cfs_norm) %>/
kable(col.names=c("Subcatchment","Peak Runoff (cfs), Min MCF",

"Curve Number", "Slope",
"Percent Impervious", "Area (sqft)", "Normalized Peak Runoff (cfs/sqft)
kable_styling(bootstrap_options = "striped")

results_minmcf_peakflow_normalized_table

results_minmcf_runoffcoef_table <- results_min_mcf %>%
select (subcatchment, runoff_coeff, Curve_Number, Slope, percent_imp, Area_sqft) %>%
filter(!subcatchment %in% c(1, 2,94,3,38, 24)) %>%
arrange (desc (runoff_coeff)) %>
top_n(20,runoff_coeff) %>%
kable(col.names=c("Subcatchment","Runoff Coefficient, Min MCF",

"Curve Number", "Slope",
"Percent Impervious", "Area (sqft)")) %>%
kable_styling(bootstrap_options = "striped")

results_minmcf_runoffcoef_table

#Perform a linear regression for the SWMM maxz MCF storm results
results_min_mcf_regression<- 1lm(total_runoff_in ~Curve_Number + Slope + percent_imp +
Area_sqft, data = results_min_mcf)

#Graph the relationship bw simulated runoff and impervious cover by urbanization level
runoff_imp_graph_min_mcf<- results_min_mcf %>%
ggplot (aes(x=percent_imp, y=total_runoff_in))+
geom_point (aes(color=Urbanization_level))+
labs(x= "Percent Impervious of Subcatchment", y= "Total Simulated Runoff (inches)")+
scale_y_continuous(limits= c(0,7), breaks= seq(0,7, by= 1),expand= c(0,0.08))+
scale_x_continuous(limits= ¢(0,80), breaks= seq(0,80, by= 10),expand= c(0,0))+
scale_color_manual (name= "Urbanization Level", values= c("darkgreen", "darkseagreen",
"darkgoldenrodl"))+
theme_classic()

runoff_imp_graph_min_mcf



#Save runoff vs. tmpervious graph
# ggsave("runoff_imp_min_mcf.pdf", width = 8, height =4)
# ggsave("runoff_imp_min_mcf.png", width = 8, height =4)

#Create a table for the regression results
regress_table_min_mcf<- stargazer(results_min_mcf_regression, type ="html", digits= 2,
dep.var.labels = "Total Runoff (Inches)",

covariate.labels = c("Curve Number", "Slope", "Percent Impervious",

"Area (sqft)", "Y-Intercept"),
omit.stat = c("rsq"))
regress_table_min_mcf

Maps of SWMM Results
Maps for MCF max storm hotspots

results_max_mcf<- read_csv("results_max_mcf.csv") ##read in file from code above

#Combine subcatchments outline with wet storm results

subcatch_max <- read_sf(dsn = here("climate_change_data", "SWMM_results","shapefiles"), layer

st_transform(st_crs(4326)) %>%
clean_names() %>%

select(subcatchment = objectid_1) %>%
merge (results_max_mcf) %>%

filter (subcatchment != "5")

# Total wvolume hotspots

hotspots_max_mcf_total <- tm_basemap("OpenStreetMap.Mapnik") +
tm_shape(subcatch_max, unit = "Miles") +
tm_polygons ("runoff_coeff", alpha = 0.8, palette = "Blues", style = "cont", n=8,

legend.hist = TRUE, title = "Runoff Coefficient") +
tm_layout(title = "March 2009 Max MCF storm", inner.margins=c(.05, .05, 0.1, .53),
legend.position = ¢(.6,.32), legend.title.size = 1.4, legend.text.size =

tm_text ("subcatchment", size = 0.3) +
tm_scale_bar(position = c(.6,.59), breaks = c(0, 0.2, 0.4, 0.6, 0.8,1)) +
tm_compass (position = c¢(.58,.52))

D+

"subcat

# tmap_save (hotspots_maz_mcf_total, here("climate_change_data", "output_maps", "hotspots_mcf_maz.png"))

# Peak flow hotspots
hotspots_max_mcf_peak <- tm_basemap("OpenStreetMap.Mapnik") +
tm_shape (subcatch_max, unit = "Miles") +

tm_polygons ("peak_runoff_cfs", alpha = 0.75, palette = "Greens", style = "cont", n=8,

legend.hist = TRUE, title = "Peak Discharge (cfs)") +
tm_layout(title = "March 2009 Max MCF storm", inner.margins=c(.05, .05, 0.1, .53),
legend.position = c(.6,.27), legend.title.size = 1.4, legend.text.size =
tm_text ("subcatchment", size = 0.3) +
tm_scale_bar(position = c(.6,.54), breaks = ¢(0, 0.2, 0.4, 0.6, 0.8,1)) +
tm_compass (position = c(.58,.47))

1) +

#tmap_save (hotspots_maz_mcf_peak, here("climate_change_data", "output_maps","hotspots_maz_mcf peak.png"

subcatch_max_peak <- subcatch_max %>%



filter (!subcatchment %in% c(1, 2,94,3,38, 24)) %>%
ggplot () +
geom_sf (aes(fill = peak_runoff_cfs)) +
theme_bw() +
scale_fill_gradient(low = "#D1F2EB", high = "#148F77", name = "Peak Discharge (cfs)",
breaks = c(0, 25, 50, 75, 100 )) +
labs(title = "Max MCF") +
geom_sf_text(aes(label = subcatchment), colour = "black", fontface = "bold", size = 1.8) +
# geom_sf_label (aes(label = subcatchment), size = 1.5) +
theme (axis.title.x = element_blank(),
axis.title.y = element_blank()) +
theme (axis.text.x = element_text(angle = 90))+
theme (axis.text.x = element_blank(),
axis.text.y = element_blank(),
axis.ticks = element_blank(),
rect = element_blank(),
panel .border=element_blank()) +
theme_void() # for faculty presentation, remove lines and azis elements

subcatch_max_peak

# ggsave('subcatch_max_peak_removedsubs_themevoid.png', subcatch_maz_peak, width = 5, height = 7, units

subcatch_max_total <- subcatch_max %>%
filter (!subcatchment %in% c(1, 2,94,3,38, 24)) %>%
geplot () +
geom_sf (aes(fill = runoff_coeff)) +
theme_bw() +
scale_fill_gradient(low = "#D6EAF8", high = "#2874A6", name = "Runoff Coefficient",
breaks = ¢(0, 0.2, 0.4, 0.6, 0.8, 1.0),
limits = ¢(0,1.0)) +
labs(title = "Max MCF") +
geom_sf_text(aes(label = subcatchment), colour = "black", fontface = "bold", size = 1.8) +
# geom_sf_label (aes(label = subcatchment), size = 1.5) +
theme(axis.title.x = element_blank(),
axis.title.y = element_blank()) +
theme(axis.text.x = element_text(angle = 90)) +
theme (axis.text.x = element_blank(),
axis.text.y = element_blank(),
axis.ticks = element_blank(),
rect = element_blank(),
panel .border=element_blank()) +
theme_void ()

subcatch_max_total

# ggsave('subcatch_maz_total.png', subcatch_max_total, width = 5, height = 7, units = "in")

Maps for MCF min storm hotspots

results_min_mcf<- read_csv("results_min_mcf.csv") ##read in file from code above

#Combine subcatchments outline with wet storm results



subcatch_min <- read_sf(dsn = here("climate_change_data", "SWMM_results","shapefiles"), layer = "subcat
st_transform(st_crs(4326)) %>%
clean_names () %>%
select(subcatchment = objectid_1) %>%
merge (results_min_mcf) %>%
filter (subcatchment != "5")

# Total wolume hotspots
hotspots_min_mcf_total <- tm_basemap("OpenStreetMap.Mapnik") +
tm_shape(subcatch_min, unit = "Miles") +
tm_polygons ("runoff_coeff", alpha = 0.8, palette = "Blues", style = "cont", n=8,
legend.hist = TRUE, title = "Runoff Coefficient") +
tm_layout(title = "March 2009 Min MCF storm", inner.margins=c(.05, .05, 0.1, .53),
legend.position = ¢(.6,.32), legend.title.size = 1.4, legend.text.size = 1) +
tm_text ("subcatchment", size = 0.3) +
tm_scale_bar(position = c(.6,.59), breaks = c(0, 0.2, 0.4, 0.6, 0.8,1)) +
tm_compass (position = c¢(.58,.52))
##tmap_save (hotspots_wet_total, here("5.Results_Maps", "output_maps","hotspots_wet_total.png"))

# Peak flow hotspots
hotspots_min_mcf_peak <- tm_basemap("OpenStreetMap.Mapnik") +
tm_shape(subcatch_min, unit = "Miles") +
tm_polygons ("peak_runoff_cfs", alpha = 0.75, palette = "Greens", style = "cont", n=8,
legend.hist = TRUE, title = "Peak Discharge (cfs)") +
tm_layout(title = "March 2009 Min MCF storm", inner.margins=c(.05, .05, 0.1, .53),
legend.position = c(.6,.27), legend.title.size = 1.4, legend.text.size = 1) +
tm_text ("subcatchment", size = 0.3) +
tm_scale_bar(position = c(.6,.54), breaks = c(0, 0.2, 0.4, 0.6, 0.8,1)) +
tm_compass (position = c(.58,.47))
##tmap_save (hotspots_wet_peak, here("5.Results_Maps", "output_maps","hotspots_wet_peak.png"))

subcatch_min_peak <- subcatch_min %>%
filter (!subcatchment %in% c(1, 2,94,3,38, 24)) %>%
ggplot () +
geom_sf (aes(fill = peak_runoff_cfs)) +
theme_classic()+
scale_fill_gradient(low = "#D1F2EB", high = "#148F77", name = "Peak Discharge (cfs)",
breaks = c(0, 3, 6, 9, 12, 15)) +
labs(title = "Min MCF") +
geom_sf_text(aes(label = subcatchment), colour = "black", fontface = "bold", size = 1.8) +
# geom_sf_label (aes(label = subcatchment), size = 1.5) +
theme (axis.title.x = element_blank(),
axis.title.y = element_blank()) +
theme (axis.text.x = element_text(angle = 90)) +
theme (axis.text.x = element_blank(),
axis.text.y = element_blank(),
axis.ticks = element_blank(),
rect = element_blank(),
panel .border=element_blank()) +
theme_void() # for factily presentation, remove lines and axis elements

subcatch_min_peak



# ggsave('subcatch_min_peak_removedsub_themevoid.png', subcatch_min_peak, width = 5, hetight = 7, units

subcatch_min_total <- subcatch_min %>%
filter(!subcatchment %inj c(1, 2,94,3,38, 24)) %>%
geplot() +
geom_sf (aes(fill = runoff_coeff)) +
theme_bw() +
scale_fill_gradient(low = "#DBEAF8", high = "#2874A6", name = "Runoff Coefficient",
breaks = ¢(0, 0.2, 0.4, 0.6, 0.8, 1.0),
limits = ¢(0,1.0)) +
labs(title = "Min MCF") +
geom_sf_text(aes(label = subcatchment), colour = "black", fontface = "bold", size = 1.8) +
# geom_sf_label (aes(label = subcatchment), size = 1.5) +
theme(axis.title.x = element_blank(),
axis.title.y = element_blank()) +
theme(axis.text.x = element_text(angle = 90)) +
theme (axis.text.x = element_blank(),
axis.text.y = element_blank(),
axis.ticks = element_blank(),
rect = element_blank(),
panel.border=element_blank()) +
theme_void ()

subcatch_min_total

# ggsave('subcatch_min_total.png', subcatch_min_total, width = 5, height = 7, units = "in")

Normalized Peak Discharge Maps

subcatch_max_normalized <- read_sf(dsn = here("climate_change_data", "SWMM_results","shapefiles"), laye
st_transform(st_crs(4326)) %>%
clean_names () %>%
select(subcatchment = objectid_1) %>%
merge (results_max_mcf_normalized) %>%
filter (subcatchment != "5")

## normalized Max MCF Peak Discharge
subcatch_max_peak_normalized <- subcatch_max_normalized %>%
filter(!subcatchment %inj c(1, 2,94,3,38, 24)) %>%
gegplot () +
geom_sf (aes(fill = peak_runoff_cfs_norm)) +
theme_bw() +
scale_fill_gradient(low = "#D1F2EB", high = "#148F77", name = "Normalized Peak Discharge (cfs/sqft)")
labs(title = "Max MCF") +
geom_sf_text(aes(label = subcatchment), colour = "black", fontface = "bold", size = 1.8) +
# geom_sf_label (aes(label = subcatchment), size = 1.5) +
theme(axis.title.x = element_blank(),
axis.title.y = element_blank()) +
theme (axis.text.x = element_text(angle = 90))+
theme (axis.text.x = element_blank(),
axis.text.y = element_blank(),
axis.ticks = element_blank(),
rect = element_blank(),



panel .border=element_blank()) +
theme_void() # for faculty presentation, remove lines and azis elements

subcatch_max_peak_normalized

# ggsave('subcatch_max_peak_removedsubs_themevoid_norm.png', subcatch_max_peak_normalized, width = 5, h

subcatch_min_normalized <- read_sf(dsn = here("climate_change_data", "SWMM_results","shapefiles"), laye
st_transform(st_crs(4326)) %>%
clean_names () %>%
select(subcatchment = objectid_1) %>%
merge (results_min_mcf_normalized) %>%
filter (subcatchment != "5")

## normalized Min MCF Peak Discharge
subcatch_min_peak_normalized <- subcatch_min_normalized %>%
filter(!subcatchment %in% c(1, 2,94,3,38, 24)) %>%
gegplot () +
geom_sf (aes(fill = peak_runoff_cfs_norm)) +
theme_classic()+
scale_fill_gradient(low = "#D1F2EB", high = "#148F77", name = "Normalized Peak Discharge (cfs/sqft)")
labs(title = "Min MCF") +
geom_sf_text(aes(label = subcatchment), colour = "black", fontface = "bold", size = 1.8) +
# geom_sf_ label (aes(label = subcatchment), size = 1.5) +
theme(axis.title.x = element_blank(),
axis.title.y = element_blank()) +
theme(axis.text.x = element_text(angle = 90)) +
theme (axis.text.x = element_blank(),
axis.text.y = element_blank(),
axis.ticks = element_blank(),
rect = element_blank(),
panel.border=element_blank()) +
theme_void() # for facily presentation, remove lines and azis elements

subcatch_min_peak_normalized

# ggsave('subcatch_min_peak_removedsub_themevoid_norm.png', subcatch_min_peak_normalized, width = 5, h

binned runoff coefficient maps for min and max MCF

# View a single RColorBrewer palette by specifying its name
display.brewer.pal(n = 7, name = 'Blues')

# Hexadecimal color specification
brewer.pal(n = 7, name = "Blues")

mycols <- brewer.pal(n = 11, name = "Blues")
mybreaks_max<- ¢(0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9)

subcatch_min_total <- subcatch_min %>%
filter (!subcatchment %in% c(1, 2,94,3,38, 24)) %>%
mutate(runoff coeff cut = cut_number (runoff_coeff, n = 10)) %>%
geplot () +
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geom_sf(aes(fill = runoff_coeff_cut)) +
theme_bw() +
scale_fill_gradientn(colours = mycols,
breaks= mybreaks_max,
super = metR::ScaleDiscretised,
name = "Runoff Coefficient") +
theme (legend.position = "bottom") +
labs(title = "Min MCF") +
geom_sf_text(aes(label = subcatchment), colour = "black", fontface = "bold", size = 3.1) +
# geom_sf_label (aes(label = subcatchment), size = 1.5) +
theme (axis.title.x = element_blank(),
axis.title.y = element_blank()) +
theme (axis.text.x = element_text(angle = 90)) +
theme (axis.text.x = element_blank(),
axis.text.y = element_blank(),
axis.ticks = element_blank(),
rect = element_blank(),
panel .border=element_blank()) +
theme_void ()

subcatch_min_total

# ggsave('subcatch_min_total_binned.png', subcatch_min_total, width = 5, height = 7, untts

mycols <- brewer.pal(n = 11, name = "Blues")
mybreaks_max<- ¢(0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9)

subcatch_max_total <- subcatch_max %>%
filter (!subcatchment %in% c(1, 2,94,3,38, 24)) %>%
mutate(runoff coeff cut = cut_number (runoff_coeff, n = 10)) %>%
geplot () +
geom_sf (aes(fill = runoff_coeff_cut)) +
theme_bw() +
scale_fill_gradientn(colours = mycols,
breaks= mybreaks_max,
super = metR::ScaleDiscretised,
name = "Runoff Coefficient") +
labs(title = "Max MCF") +
geom_sf_text(aes(label = subcatchment), colour = "black", fontface = "bold", size = 3.1) +
# geom_sf_label (aes(label = subcatchment), size = 1.5) +
theme(axis.title.x = element_blank(),
axis.title.y = element_blank()) +
theme(axis.text.x = element_text(angle = 90)) +
theme (axis.text.x = element_blank(),
axis.text.y = element_blank(),
axis.ticks = element_blank(),
rect = element_blank(),
panel .border=element_blank()) +
theme_void ()

subcatch_max_total

# ggsave('subcatch_maz_total_binned.png', subcatch_maz_total, width = 5, height = 7, units
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binned peak flow maps for min and max MCF

mycols2 <- brewer.pal( 11, "Greens")
mybreaks2_min<- c(0.0, 2.0, 4.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0)

subcatch_min_peak <- subcatch_min %>%
filter(!subcatchment %in}% c(1, 2,94,3,38, 24)) %>%

mutate ( cut_number (peak_runoff_cfs, 11)) %%
geplot () +

geom_sft (aes( peak_runoff_cfs_cut)) +

theme_classic()+

scale_fill_gradientn( mycols2,

mybreaks2_min,
metR::ScaleDiscretised,
"Peak Discharge (cfs)") +

labs( "Min MCF") +
geom_sf_text (aes( subcatchment), "black", "bold",
# geom_sf_label (aes(label = subcatchment), size = 1.5) +
theme ( element_blank(),
element_blank()) +
theme ( element_text ( 90)) +
theme ( element_blank(),

element_blank(),
element_blank(),
element_blank(),
element_blank()) +
theme_void() # for facily presentation, remove lines and azis elements

subcatch_min_peak

# ggsave('subcatch_min_peak_removedsub_themevoid_binned.png', subcatch_min_peak, width = 5, height

mycols3 <- brewer.pal( 11, "Greens")
mybreaks3_max<- c(0.0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100)

subcatch_max_peak <- subcatch_max %>%
filter(!subcatchment %in% c(1, 2,94,3,38, 24)) %>k

mutate ( cut_number (peak_runoff_cfs, 11)) W>%
gegplot () +

geom_sft (aes( peak_runoff_cfs_cut)) +

theme_classic()+

scale_fill_gradientn( mycols3,

mybreaks3_max,
metR::ScaleDiscretised,
"Peak Discharge (cfs)") +

labs( "Max MCF") +
geom_sf_text (aes( subcatchment), "black", "bold",
# geom_sf_label (aes(label = subcatchment), size = 1.5) +
theme ( element_blank(),
element_blank()) +
theme ( element_text ( 90))+
theme ( element_blank(),

element_blank(),
element_blank(),
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element_blank(),
element_blank()) +
theme_void() # for faculty presentation, remove lines and azis elements

subcatch_max_peak

# ggsave('subcatch_maz_peak_removedsubs_themevoid_binned.png', subcatch_maz_peak, width = 5, height = 7

combine max and min runoff coefficient results into single table showing the
catchment #, min, and max runoff coefficient, slope, percent impervious, and
area (sqft)

results_min_mcf_rc <- results_min_mcf %>%
select (subcatchment, Slope, percent_imp, Area_sqft, runoff_coeff) %>/
filter(!subcatchment %in% c(1, 2,94,3,38, 24)) ¥%>%
arrange (desc(runoff_coeff)) %>
top_n(20,runoff_coeff)

results_max_mcf_rc <- results_max_mcf %>%
select (subcatchment, Slope, percent_imp, Area_sqft, runoff_coeff) %>/
filter(!subcatchment %in% c(1, 2,94,3,38, 24)) %>%
arrange (desc(runoff_coeff)) %>%
top_n(20,runoff_coeff)

results_runoffcoef_table <- results_min_mcf_rc %>%

full_join(results_max_mcf_rc, c("subcatchment", "Slope", "percent_imp", "Area_sqft")) %>%

kable( c("Subcatchment","Slope", "Percent Impervious", "Area (sqft)", "Runoff Coefficient, M
"Runoff Coefficient, Max MCF")) %>%

kable_styling( "striped")

results_runoffcoef_table

combine max and min peak runoff (cfs) results into single table showing the
catchment #, min, and max peak runoff (cfs)

results_min_mcf_peak <- results_min_mcf %>%
select (subcatchment, Slope, percent_imp, Area_sqft, peak_runoff_cfs) %>%
filter(!subcatchment %in’% c(1, 2,94,3,38, 24)) %>%
arrange (desc(peak_runoff_cfs)) %>%
top_n(20,peak_runoff_cfs)

results_max_mcf_peak <- results_max_mcf %>/
select (subcatchment, Slope, percent_imp, Area_sqft, peak_runoff_cfs) %>%
filter (!subcatchment %in% c(1, 2,94,3,38, 24)) %>%
arrange(desc(peak_runoff_cfs)) %>%
top_n(20,peak_runoff_cfs)

results_peakflow_table <- results_min_mcf_peak %>/

full_join(results_max_mcf_peak, c("subcatchment", "Slope", "percent_imp", "Area_sqft")) %>%

kable( c("Subcatchment","Slope", "Percent Impervious", "Area (sqft)","Peak Runoff (cfs), Min
"Peak Runoff (cfs), Max MCF")) %>%

kable_styling( "striped")

13



results_peakflow_table

comparing historical vs Max MCF runoff coeffiecients from Dornan et al., 2020

## runoff coefficients differences

dornan_results_top20_rc <- read_csv("~/Desktop/Aloha-Aina-Master/climate_change_data/SWMM_results/dorna
select (subcatchment, runoff coeff) # read in dorana et al RC results

results_max_mcf_rc_summary <- results_max_mcf_rc %>% select(subcatchment, runoff_coeff) # select just

combined_rc_results <- dornan_results_top20_rc %>% right_join(results_max_mcf_rc_summary, c("subc

combined_rc_results = combined_rc_results %>% mutate( runoff_coeff.y-runoff_coeff.x) # add c

## peak flow differences

dornan_results_top20_peakflow <- read_csv("~/Desktop/Aloha-Aina-Master/climate_change_data/SWMM_results
select (subcatchment, peak_runoff_cfs) # read in Team Kahuawais peak flow results

results_max_mcf_peak_summary <- results_max_mcf_peak %>% select(subcatchment, peak_runoff_cfs) # selec

combined_peak_results <- dornan_results_top20_peakflow %>}, right_join(results_max_mcf_peak_summary,

combined_peak_results = combined_peak_results %>}, mutate( peak_runoff_cfs.y-peak_runoff_cfs.:

14



Appendix J

Wailupe Normalized Peak Discharge

Normalized Peak Discharge (cfs/sqft)
0.000016

Normalized Peak Discharge (cfs/sqft)
0.000100

0.000012 0.000075
0.000008 0.000050
0.000004 0.000025
0.000000 0.000000

Figure J.1. Modeled Normalized Peak Flow Results for Wailupe Watershed. Left: March 14™, 2009 storm
with the min MCF applied. Right: March 14™, 2009 storm used with the max MCF applied.
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Table J.1. Summary Output Table of Normalized Peak Flow with Max MCF Results and Significant

Parameters

Subcatchment
5
60
68
45
46
47
67
40
4l
14
22
69
65
29
31
59
82
51
54

21

Peak Runoff (cfs), Max
MCF

4.51
13.90
31.68
21.10
21.33
16.51
37.74

7.68
15.57
23.52
10.23
16.14
29.11

5.84
21.49
22.41

5.99
17.68
27.29

7.00

Curve
Number

59.94459

58.26651

64.12348

46.68192

57.85258

4412992

59.21465

46.96258

58.22480

59.93120

52.60335

61.92279

59.79150

46.60531

58.70699

53.74048

52.36590

45.48179

46.30916

41.71682

Slope
4.973908
10.200056
16.778001
10.837372
9.180995
9.017865
13.094514
7.774446
1.229756
10.062202
5.224538
23.710094
12.285943
4.303893
10.270774
9.355130
12.984541
3.205696
11.985041

2.133592

Percent
Impervious

59.22529
66.27512
56.40240
75.81188
59.97949
73.67874
65.31544
65.26444
63.33945
51.97367
57.36459
39.74707
54.98557
63.75090
47.00970
58.61615
50.03241
65.70618
65.90850

64.38962

Area
(saft)

42008.07
130703.86
306366.86
205273.48
209977.29
163180.85
376961.02

78272.63
161251.17
244581.39
106889.43
171176.11
309782.87

62214.52
229731.45
241399.55

65510.58
194382.01
301206.44

78832.74

Normalized Peak Runoff

76

(cfs/sqft)
0.0001074
0.0001063
0.0001034
0.0001028
0.0001016
0.0001012
0.0001001
0.0000981
0.0000966
0.0000962
0.0000957
0.0000943
0.0000940
0.0000939
0.0000935
0.0000928
0.0000914
0.0000910
0.0000906

0.0000888



Table J.2. Summary Output Table of Normalized Peak Flow with Min MCF Results and Significant

Parameters.

Subcatchment
45
47
60
40
51
54
21
67
29
71
49
46
13

5
59
35
22
36
44

68

Peak Runoff (cfs), Min
MCF

3.41
2.66
1.92
1.13
2.80
4.32
1.12
5.35
0.88
2.21
4.29
2.80
2.77
0.55
3.13
211
1.36
1.31
3.09

3.83

Curve
Number

46.68192

4412992

58.26651

46.96258

45.48179

46.30916

41.71682

59.21465

46.60531

58.22480

4495489

57.85258

37.24907

59.94459

53.74048

36.38429

52.60335

36.48504

46.81877

64.12348

Slope
10.837372
9.017865
10.200056
7.774446
3.205696
11.985041
2.133592
13.094514
4.303893
1.229756
11.626618
9.180995
2.801558
4.973908
9.355130
2.502320
5.224538
3.413503
9.792575

16.778001

Percent
Impervious

75.81188
73.67874
66.27512
65.26444
65.70618
65.90850
64.38962
65.31544
63.75090
63.33945
61.33458
59.97949
60.72206
59.22529
58.61615
58.10591
57.36459
57.37835
56.58471

56.40240

Area
(sqft)

205273.48
163180.85
130703.86

78272.63
194382.01
301206.44

78832.74
376961.02

62214.52
161251.17
317060.05
209977.29
210147.80

42008.07
241399.55
163977.29
106889.43
103198.24
246676.73

306366.86

Normalized Peak Runoff

77

(cfs/sqft)
0.0000166
0.0000163
0.0000147
0.0000144
0.0000144
0.0000143
0.0000142
0.0000142
0.0000141
0.0000137
0.0000135
0.0000133
0.0000132
0.0000131
0.0000130
0.0000129
0.0000127
0.0000127
0.0000125

0.0000125



Appendix K

Code for Probability of Extreme Climate Change Events

This page was left blank intentionally.
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Probabilty Distribution Function: Climate Change Analysis
This is code to create probability distribution figure

Elmera Azadpour
1/30/2022

NOTE: Figures will be be hidden from knitted markdown.

## read in wailupe precip data from NOAA
wailupe_77_rain <- read.csv(here("climate_change_data", "probabilty_distribution", "NOAA_WailupeHawaiik

##Use lubridate to clean up the dates and times
wailupe_77_rain$DATE <- ymd(wailupe_77_rain$DATE)

## for wailupe 1977-2014
wailupe_tidy_77 <- wailupe_77_rain %>’
rename(station = STATION, station name = STATION_NAME, elevation = ELEVATION,
lat = LATITUDE, lon = LONGITUDE, date = DATE, time = TIME, qggag = QGAG,
ggag_flag = Measurement.Flag, ggag qual = Quality.Flag, ggag units = Units,
gpcp = QPCP, gpcp_flag = Measurement.Flag.1l, gpcp qual = Quality.Flag.1,
gpcp_units = Units.1) %>% #renames columns
filter(station_name == "WAILUPE VALLEY SCHOOL 723.6 HI US") %>} #filter to Wailupe gauge only
filter(gpcp != "-9999",
gpcp != "999",
gpcp != "999.99",

n n

gpcp_flag !'= "g",
gpcp_flag != "{",
gpcp_flag != "}",
gpcp_flag != "[",
gpcp_flag != "]",
qgag != "-9999.00",
qgag '= "-9999",
qgag_flag !'= "g",
qgag_flag != "V",
qgag_flag != "P",
qgag_flag != "{",
qgag_flag != "}",
qgag_flag != "[",
qgag_flag != "]1") ## removes all flagged data

## daily total precip
wailupe_daily_77 <- wailupe_tidy_77 %>%
group_by(date) %>%
summarize (
daily_pcp = sum(qgpcp),
daily_vol sum(qgag)) ## gives total summed precip data per day. HT is given in inches.



wailupe_daily_77$date <- ymd(wailupe_daily_77$date)
wailupe_tidy_77$date <- ymd(wailupe_tidy_77$date)

PDF with the scaled march 14, 2009 storm (PDF code sourced from: https://
rstudio-pubs-static.s3.amazonaws.com/100906_ 8e3a32dd11c14b839468db756cee7400.

html)
z=wailupe_daily_77$daily_pcp

dStandardNormal <- data.frame(daily pcp=z,
Density=dnorm(z, mean=0.3498252, sd=0.5167536),
Distribution=pnorm(z, mean=0.3498252, sd=0.5167536),

Quantile = gnorm(z, mean=0.3498252, sd=0.5167536))
## add color pallete

cbp2 <- c("#000000", "#009E73",
"#D55E00")

## take average of March 14, 2009
wailupe_tidy_77_marchl4 <- wailupe_tidy_77 %>%
filter(date >= as.Date("2009-03-14") & date <= as.Date("2009-03-14"))

mean(wailupe_tidy_77_march14$qpcp) # mean of March 14, 2009 storm = 0.2

## plot demnsity distribution plot

pdf_plot_density <- ggplot(data=dStandardNormal, aes(x=daily_pcp, y= Density)) +
geom_line(size=1.5) +
theme_classic() +
labs(x= "Daily Precipitation (in)") +

geom_vline(xintercept = 0.44, linetype="solid", ## 2.20 (Max MCF) * 0.2 = 0.44
color = "#D5BEO0", size=1.5) +
geom_vline(xintercept = 0.08, linetype="solid", ## 0.40 (Min MCF) * 0.2 = 0.08
color = "#009E73", size=1.5) +
# annotate("text", T = 4.75, y = 0.75, label = "Maz MCF * avg pcp", color = "#D55E00",

# annotate("text", = 4.75, y = 0.70, label = "Min MCF * auvg pcp", color
theme (text = element_text(size=22)) +
scale_x_continuous(breaks=seq(0,5,0.5)) +
scale_y_continuous(breaks=seq(0,0.8,0.1))

pdf_plot_density

size =5) +

"#009ET3",stze =b) +

# ggsave('pdf_MCF_marlj.png', pdf plot_density_ corrected2, width = 16, height = 9, units = "in")



Appendix L

Methods, Models, and Metadata for Optimal GI Placement in Maunalua Bay

Site Locator Model

Multiple

Sidewalk ——» BRUCGTICEN 5 Polygon to i >
(Outside Raster Reclassiy
Only)

Figure L.1. This is an example of our Site Locator Model. We added data layers to the map, buffered
them using the Multiple Ring Buffer Tool, intersected them with the slope layer to only include areas with
a grade less than 6%, converted them to raster, and reclassified them so that increasing distance from
them had decreasing value. We used a variation of this methodology for each layer.

The Site Locator Model final output is a raster layer with higher cell values indicating more
suitable areas for rain garden implementation. The following methods are for a raster layer
suitability analysis. In order to utilize the raster calculator tool at the end, each layer needed to
cover the entire region. This is the case because the raster calculator tool will eliminate cells if
one of the layers added does not have data in those cells. For this reason, we added an additional
large buffer of no value to the layers that needed to be expanded. For example, the parks layer
initially only has a couple of small parks within the region. After adding the buffer, the park
raster covers the entire region, with higher values for areas closer to or within parks and no value
everywhere else in the region.

Clip to ROI and Project to WGS 84

Before beginning our analysis, we clipped each layer to the Maunalua Bay region (Extract
Toolbox - Clip) and projected each layer into WGS 84 (Data Management Toolbox - Project).

79



Calculate Slope

In the ArcMap project, we loaded the digital elevation model (DEM) layer for the Bay and then
calculated the slope to give an output measurement in degrees (Analysis Toolbox - Slope). Next,
we used the Extract by Mask tool (Spatial Analyst Toolbox) to mask the slope layer with the
projected Maunalua layer (WGS 84). The slope layer was then reclassified so that values from
0-6% were given a value of 1, and all other values were given a 2 (Analysis Toolbox -
Reclassify). Next, we used Extract by Attributes to extract all rasters where value = 1 and
converted the layer to polygon (Conversion Toolbox - Raster to Polygon), to produce a final
slope polygon layer. This was done because according to the Environmental Protection Agency
(EPA), most green infrastructure types must be implemented on slope grades of 6% or lower
(USEPA, 2014).

Create Roads

In the ArcMap project, we loaded the roads data layer. Since the roads data we downloaded was
line data, we buffered (Analysis Toolbox - Buffer) the roads by 13.5ft to make them polygons the
size of actual roads. We chose to buffer by 13.5ft because the average road size in O‘ahu is about
27ft (measured using Google Earth and ArcMap). We set the dissolve type to “All” to merge the
buffered polygons.

Create Sidewalks

We buffered (Analysis Toolbox - Buffer) the “roads” polygon by 6ft. We chose 6ft because it is
the recommended sidewalk size for O‘ahu (State of Hawai‘i Department of Transportation). We
set the dissolve type to all to merge the buffered polygons.

Create Flood Zones

To only include areas of intense flooding, we loaded the flood zones data layer and used the
"Select Layer by Attribute" tool three times with "Selection type = NEW_SELECTION" for
each one. We selected ZONE SUBTY ='RIVERINE FLOODWAY SHOWN IN COASTAL
ZONE', ZONE SUBTY ='FLOODWAY', and ZONE SUBTY ='0.2 PCT ANNUAL
CHANCE FLOOD HAZARD' (Data Management Toolbox - Select Layer by Attribute). The
“Select Layer by Attribute” tool does not create a new layer, it simply highlights the selection
within the current layer. Therefore, we needed to copy the selected features to layers three
separate times (Data Management Toolbox - Copy Features). These three layers were then
merged so that only one flood zone layer remained that included all three selections of high flood
risk areas (Data Management Toolbox - Merge).

Create Rasters - Wetlands, Stormwater Drains, Streams, and Flood Zones

The site suitability raster analysis requires creating buffers of increasing distance at decreasing
values. We followed the example of a site suitability analysis performed by the Aburto Lab at the
Scripps Institution of Oceanography (Arcos-Aguilar et al., 2021). In their suitability analysis,
Arcos-Aguilar et al. assigned decreasing values to buffers of increasing distance from desired
locations to create a raster layer where each piece of land had a suitability value associated with
it.
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Multiple Ring Buftfer Layer

We utilized the multiple ring buffer tool to create 10 meter, 20 meter, 30 meter, and 2000
meter buffers around the sidewalks, wetlands, stormwater drains, streams, and flood
zones (Analysis Toolbox - Multiple Ring Buffer). For the wetlands, we clicked “Outside
Only” to include only the buffered area, since rain gardens should not be placed on
pre-existing wetlands to leave wetlands intact (Cullison; Malaviya et al., 2019). For
stormwater drains, streams, and flood zones, we did not click “Outside Only” so that the
inner polygons would be included as suitable locations for rain gardens (Katsifarakis et
al., 2015; Webber et al., 2019).

Slope Less than 6%
We intersected the buffered layers with the slope layer to only include areas with a slope
at or below a 6% grade (Analysis Toolbox - Intersect).

Reclassify Raster

After, we converted the polygons to rasters (Conversion Toolbox - Polygon to Raster) and
reclassified the rasters (Analysis Toolbox - Reclassify), so that areas within 10 meters of
the desired locations have a value of 3, areas between 10 meters and 20 meters have a
value of 2, and areas between 20 meters and 30 meters have a value of 1. Areas that were
greater than 30 meters away from the desired location were given a value of 0.

Create Parks Raster

We loaded the parks data and utilized the multiple ring buffer tool to create 5 meter and 2000
meter buffers around the parks (Analysis Toolbox - Multiple Ring Buffer). We included the parks
by not clicking “Outside Only” on the “Multiple Ring Buffer Tool” because rain gardens can be
implemented inside of parks (Katsifarakis et al., 2015). We intersected the buftered layer with
the slope layer to only include areas with a slope at or below a 6% grade (Analysis Toolbox -
Intersect). After, we converted the polygon to raster (Conversion Toolbox - Polygon to Raster)
and reclassified the raster (Analysis Toolbox - Reclassify), so that areas within 5 meters of the
park were given a value of 3 and areas between 5 meters and 2000 meters were given value = 0.

Create Sidewalks Raster

We utilized the multiple ring buffer tool to create 1.2m, 10 meter, 20 meter, 30 meter, and 2000
meter buffers around the sidewalks (Analysis Toolbox - Multiple Ring Buffer). We intersected
the buffered layer with the slope layer to only include areas with a slope at or below a 6% grade
(Analysis Toolbox - Intersect). After, we converted the polygons to rasters (Conversion Toolbox
- Polygon to Raster) and reclassified the rasters (Analysis Toolbox - Reclassify), so that areas
within 1.2 meters of the desired location have a value of 0, between 1.2 meters and 10 meters
have a value of 3, areas between 10 meters and 20 meters have a value of 2, areas between 20
meters and 30 meters have a value of 1, and areas greater than 30 meters away have a value of 0.
We gave the areas within 1.2m of sidewalks a value of 0 because rain gardens could harm the
sidewalk if placed too close (Cullison).
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Create Soil Curve Number Raster

We utilized the soil curve numbers produced by the previous Bren group project. They created
the soil curve numbers by intersecting the Soil Hydrologic Group and Land Use data. They then
assigned the curve numbers based on both the types of soil and the types of land use in a
subcatchment. We added the curve number data to ArcMap and converted it from polygon to
raster (Conversion Toolbox - Polygon to Raster). Next, we reclassified the soil curve numbers so
that a 0 curve number had a value of 1 whereas a 91 curve number has a value of 10. Higher
curve numbers indicate more impervious surfaces and rain gardens should be placed near
impervious surfaces (SUNY; USDA).

Raster Calculation - Adding the Layers Together

We used the raster calculator to sum up the raster layers we created, such as sidewalks, parks,
wetlands, streams, stormwater structures, flood zones, and soil curve numbers (Spatial Analyst -
Raster Calculator). This resulted in a raster layer overlay with higher value cells displaying areas
that are better for rain garden implementation. For example, if a cell had a 3 for being near a park
and a 0 value for every other layer, the resultant layer would have a value of 3 for that cell.

Create Buildings Layer

We buffered the buildings layer by 10 feet (Analysis Toolbox - Buffer), as rain gardens should
not be placed within 10 feet of buildings to protect the foundation (Luo et al., 2017). We then
erased the buildings layer from our final raster calculator layer (Analysis Toolbox - Erase). To
use the erase tool, both layers needed to be polygons so we converted our raster calculator layer
to polygon before using the “Erase Tool” (Conversion Toolbox - Raster to Polygon).

Final Output

After erasing the buildings from our suitable areas, we converted the output layer back to a raster
for use in our next model (Conversion Toolbox - Polygon to Raster). We also extracted the upper
quantile of the data to only include the best locations for rain gardens; this included cells with
values from 12-18 (Spatial Analyst Toolbox - Extract by Attributes).

Table L.1. Data layers, parameters, and reasoning used in the Site Locator Model to determine the
suitable locations for rain gardens. The citation is for the reasoning behind each parameter. The data layer
citations can be found in the Metadata in the Appendix.

Layer Parameters Reasoning/Citation for Parameters
Slope 0-6% grade | US EPA 2014
Roads 27ft width | Measured on Google Earth and ArcMap
Sidewalks 6ft width | State of Hawai‘i Department of Transportation
Sidewalk 4ft/1.2m: value = 0 | Rain gardens should be located near
Buffer 10m: value =3 | impervious surfaces like sidewalks (Arlington
20m: value =2 | Echo, 2010; USDA). Rain gardens should not
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30m: value = 1
2000m: value =0

be placed within 4ft/1.2m of sidewalks to
prevent damage to them (Cullison).

Wetland Buffer

Within 10m: value =3
10m - 20m: value =2
20m - 2000m: value =0

Polluted runoff harms wetlands (Malaviya et
al., 2019).

Park Buffer

Within+5m buffer: value =3
5m - 2000m buffer: value = 0

Rain gardens can be implemented within
parks and green spaces (Katsifarakis et al.,
2015).

Stream Buffer

10m: value = 3
20m: value =2
30m: value =1
2000m: value =0

Rain gardens can be implemented within
stream zones (Katsifarakis et al., 2015) and
can decrease the magnitude of pollution
entering waterways (Cullison).

Building Buffer

Not within 10ft, eliminated

Rain gardens should not be placed within 10ft
of buildings, to protect the foundation (Luo et
al., 2017). We buffered by 10ft and then
erased the buildings from our raster layer.

Stormwater
Drain Buffer

10m: value = 3
20m: value =2
30m: value =1
2000m: value =0

Rain gardens can decrease the amount of
water entering storm drains (Alsobroooks).

Flood Zone
Buffer

Within 10m: value =3
20m: value =2
30m: value =1

2000m: value =0

Implementing green infrastructure in multiple
areas within a watershed can decrease flood
risk; it is a desirable method for increasing
resilience in urban areas (Webber et al., 2019).

Soil Curve
Number
Reclassify

0=1
36-40=4
41-50=5
51-60=6
61-70=7
71-80=28
81-90=9
91-100=10

A higher soil curve number indicates that the
soil is less permeable and more runoff occurs
there. Rain gardens can help to lower soil
curve numbers (SUNY).

83




Runoff Hotspot Model

Oahu
Average
Annual
Rainfall

> Fill > Flow Flow e
Direction Accumulation

Figure L.2. This is the Runoff Hotspot model. We filled the DEM and found the flow direction of water
over the surface of the DEM. Then, we found the flow accumulation, weighted by the average annual
rainfall for the state of O’ahu. The output of this tool is our runoff hotspots map. For more detail on our
Runoff model, see our methods in the appendix and the attached ArcMap Project.

Fill Sinks

We loaded the DEM layer for all of O‘ahu. We filled the sinks in the DEM, so that water flow
does not unnaturally stop in one cell where it would in reality flow to the next (Spatial Analysis
Toolbox > Hydrology - Fill).

Flow Direction
We created a flow direction raster, showing the direction that water would flow through the
watersheds based on elevation (Spatial Analysis Toolbox > Hydrology - Flow Direction).

Download Rainfall Data

We downloaded a GIS precipitation data layer in mm (rainfall grids in ESRI Grid Format) from
the Hawaii Rainfall Atlas (Downloads > GIS Layers > ESRI Grid Format >

OahuRFGrids mm.zip). The raster files are available at 250 m resolution (0.00225 x 0.00225
cell size). Files of this type must be saved to the local C Drive (C:) for ArcGIS to access them.

Flow Accumulation

From the flow direction output, we created a flow accumulation raster, determining how much
water would flow into each cell (Spatial Analysis Toolbox > Hydrology - Flow Accumulation).
For the “Flow Accumulation Tool,” we used the precipitation raster layer from the Hawaii
Rainfall Atlas as the input weight raster.
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Final Output

We clipped the output to the Maunalua Bay region (Extract Toolbox - Clip). We decided to do
this at the end of the runoff model instead of clipping the DEM in the beginning, in case the
Maunalua Bay region had water running in or out of it. Next, we extracted the upper quantile of
the data to only include the areas of highest flow accumulation, which was over 30,000mm
(Spatial Analyst Toolbox - Extract by Attributes). Lastly, we converted from raster to polygon
using the “Int Tool” (Conversion Toolbox - Raster to Polygon; Spatial Analyst Toolbox - Int).

Optimal Locations of Rain Gardens Model

Rain Garden Site
Locator Model

Runoff Hotspot
Model

Figure L.3. This is the Optimal Locations for Rain Gardens model. This model combines our Site
Locator Model and our Runoff Hotspot Model. We clipped the runoff hotspots by the suitable locations
for rain gardens to get the optimal locations for rain gardens.

We then created the Optimal Locations of Rain Gardens model by combining the Rain Garden
Site Locator model and the Runoff Hotspot model to determine the optimal locations for rain
gardens, taking into consideration runoft hotspots. Taking the highest quantile from both models,
we clipped the outputs from the Runoff Hotspot model by the Rain Garden Suitable Locations
model, which left us with the optimal locations for rain gardens (Extract Toolbox - Clip). Both
models needed to be polygons to use the “Clip Tool” (Conversion Toolbox - Raster to Polygon).

Data Description and Metadata

To determine optimal rain garden placement locations in the Maunalua Bay region, we created
three ArcGIS models analyzing site suitability for rain gardens and runoff hotspots. The data is
broken down into these different categories below. Click on the links below to go to the specified
data table. We downloaded the data and projected each layer into the coordinate system WGS 84.
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Site Locator Model

Table L..2. Data for the Site Locator Tool, including parks, roads, sidewalks, and parking lots. This
analysis determines the best locations for rain gardens.

Data Data IData[Date Description
Source Type|Created
Elevation |The .shp Raster elevation data for the main 8§ Hawaiian Islands.
(DEM)  [University The datasets were derived from USGS 7.5' DEM Quads,
of Hawai‘i individual DEM quads were converted to a common
Manoa datum and mosaicked in ArcGIS 9.x. The DEM for
Hawaii has a coordinate system of NAD83 UTMSN, the
DEM for Maui, Kahoolawe, Lanai, Molokai, O‘ahu,
Kauai and Niihau have a coordinate system of NAD&3
UTM4N. All rasters have a spatial resolution of 10
meters and are in the ESRI grid format.
More metadata can be found here.
Parks City and .shp [2016-03-23|This layer contains data on parks, open spaces, and
County of outdoor recreational facilities on the island of O‘ahu.
Honolulu Updated: [These are spaces maintained by the City and County of
2021-09-24{Honolulu. The attribute table identifies the different
types of parks and there are 429 records. The park types
include: mini park, neighborhood park, community park,
district park, urban, regional park, beach park,
nature/preserve, botanical garden, zoo, pedestrian mall,
other (airplane field, campground, dog park, senior
citizens center, nursery), golf course, community
park/garden, slide areas. More metadata can be found
here.
Use: Parks are potential locations for green
infrastructure implementation.
Roads — |Hawai‘i .shp [2014-02-27|Streets for the island of O‘ahu in Line format. Includes
C&C of |[Statewide freeways, highways, county arterial, city street, jeep
Honolulu |GIS Updated: [trail, special roads, and other roads. The data is exported
Program 2020-10-31}in NAD 83 coordinates. View more metadata here.
Use: We converted the line data to polygon data (a
requirement for this tool) by buffering the roads by 13.5
feet on each side. We had measured the roads on ArcGIS
and determined that the average road size in the
Maunalua Bay region was 27 feet.
Sidewalks [Hawai‘i .shp |12021-10-12[We created sidewalk data by buffering the roads polygon|
Statewide (created from the roads line data provided by the
Hawai‘i Statewide GIS Program) by 6 feet on each side.
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GIS The minimum sidewalk width suggested for Hawai‘i is 6
Program feet.
Use: Rain gardens should be implemented near
impervious surfaces.
Maunalua |[Hawai‘i .shp [2014-04-09|Watershed boundaries for the Hawaiian Islands.
Bay Statewide Polygonal data projected in UTM NAD 83. For more
Region |GIS Updated: [metadata see here.
Program 2020-10-31
Use: To create the Maunalua Bay region, a previous
Bren group project (Dornan et al., 2020) joined and
dissolved the watersheds that fed into Maunalua Bay.
This layer is used as the region of interest for the study.
Soil Natural .shp To download the data, click on the link and then click on
Hydrologi |Resources “Island of O‘ahu.” Follow the directions on the bottom
c Group |Conservatio of the following page, after clicking on “Start Web Soil
and n Service’s Survey (WSS).” The soil map provides information on
Draining |SSURGO different types of soils in the defined area of interest
Conditions (AO]).
Use: 2020 Bren Group Project (Dornan et al., 2020) used
the Soil Hydrologic Group data along with the land use
data to create the soil curve number data.
Land Use |Hawaii .shp |12016-12-30[As of 1976, polygonal land use and land cover data of
and Land |[Statewide O‘ahu. The data is projected in UTM NAD 83. Land use
Cover GIS Updated: [includes urban, agricultural, rangeland, forest land,
Program 2020-11-02|water, wetland, and barren land. More metadata can be
found here.
Use: The land use data was used by the 2020 Bren
Group Project (Dornan et al., 2020), alongside soil
hydrologic group data, to create the soil curve number
data.
Soil Curve[2020 Bren |[shp [2020-06-06[2020 Bren Group Project (Dornan et al., 2020) created
Numbers |Group the soil curve numbers by intersecting the Soil
Project Hydrologic Group (soil classifications determined by the
(Dornan et Natural Resources Conservation Service's National
al., 2020) Water and Climate Center based on a soil's infiltration

and runoff potential as well as measured rainfall) and
Land Use data. They then assigned the curve numbers
based on both the types of soil and the types of land use
in a subcatchment.

Use: Higher curve numbers indicate more impervious

surfaces and rain gardens should be placed near
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impervious surfaces (SUNY; USDA).

Wetlands |Hawaii .shp [2018-05-01|This layer contains data on the extent, approximate
Statewide location, and type of wetlands and deepwater habitats in
GIS Updated: [Hawaii, delineated as defined by Cowardin et al. (1979).
Program 2020-10-31|Certain habitats were excluded, such as seagrass,
submerged aquatic vegetation found in the intertidal and
sbutidal zones of estuaries and near shore coastal waters,
and some deepwater reef communities. More metadata
can be found here.
Use: Proximity to wetlands is beneficial for green
infrastructure placement to avoid sending large amounts
of polluted runoff into the wetland while also being able
to direct the outflow of some green infrastructure types
to the wetland.
Flood City and  |csv, [2016-03-23|This data layer contains flood zones that were
Zones County of |shp designated by the Federal Emergency Management
Honolulu Updated: [Agency. Special flood hazard areas are those that may
2020-10-26[experience the 100-year flood (1% annual chance flood).
More metadata can be found here.
Use: Areas of known flooding are potential locations for
green infrastructure implementation.
Building |Cityand  |csv, [2016-03-23[The Hawaii Statewide GIS Program created this data
Footprints |County of [shp layer by compiling data from different sources, including
Honolulu Updated: [LIDAR data collected in 2005 and 2009, an aerial data
2020-11-05(collection from 2004, and a pictometry data collection
from 2010, as well as new building plans (maintained by
the City and County of Honolulu). This data includes
polygon data of building location and size. More
metadata can be found here.
Use: Removing buildings from the analysis, as these
green infrastructure types are not compatible with
rooftops.
Stream  [USGS .csv, [2017-01-26|This data layer displays the streams and rivers in Niihau,
Flowline |National .shp Kauai, O‘ahu, Maui, Molokai, Lanai, Kahoolawe, and
Hydrograph Updated: [Hawaii. The data layer contains Point, Line, and
v Dataset 2020-10-31[Polygon features. More metadata can be found here.
Coral Reef|Hawaii .shp |12014-02-07[This data layer shows all of the coral reefs that are
Statewide located in marine waters off the coast of Hawaii. The
GIS Updated: [data is in polygon format. For more metadata, click here.
Program 2020-11-01
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Runoff Hotspots Model

Table L..3. Data for determining the location of runoff hotspots using the ArcHydro Tool.

Data Data [Data|Date Description
Source [Type|Created
O'ahu Hawaii .adf GIS precipitation data layer in mm of the average annual
Annual Rainfall rainfall in O‘ahu in millimeters (rainfall grids in ESRI
Average  [Atlas (ESR| Grid Format) from the Hawaii Rainfall Atlas
Rainfall Grid) (Downloads > GIS Layers > ESRI Grid Format >
OahuRFGrids mm.zip). The raster files are available at
250 m resolution (0.00225 x 0.00225 cell size). Files of
this type must be saved to the local C Drive (C:) for
ArcGIS to access them.
Elevation [The .shp Raster elevation data for the main 8§ Hawaiian Islands.
(DEM) University The datasets were derived from USGS 7.5' DEM Quads,
of Hawai‘i individual DEM quads were converted to a common
Manoa datum and mosaicked in ArcGIS 9.x. The DEM for
Hawaii has a coordinate system of NAD83 UTMS5N, the
DEM for Maui, Kahoolawe, Lanai, Molokai, O‘ahu,
Kauai and Niihau have a coordinate system of NAD&3
UTMA4N. All rasters have a spatial resolution of 10
meters and are in the ESRI grid format.
More metadata can be found here.
Calculations

Table L.4. Discharge/Sediment Data. This data was used to calculate the amount of sediment flowing
through each runoff hotspot. This enabled us to find the reduction in sediment flowing into Maunalua Bay
by implementing rain gardens in major runoff hotspots. This data was also used to calculate the average
annual amount of sediment discharge into the Bay.

Data Data Source |Data [Date Description
Type |Created
Suspended [USGS .CSV This data contains information on streamflow in
sediment National the Wailupe Gulch. There is a dataset for 1958 to
concentration |Water 2009 at Aina Haina and another dataset for 2008
(mg/L) at Information to 2020 at E. Hind Dr. Bridge. At Aina Haina, the
USGS System Hydrologic Unit Code is 20060000, Latitude
16247550 21°17'33.4", Longitude 157°45'19.9". The data is
2009 Annual projected in NADS&3. The drainage area is 2.36
Suspended square miles and the gage datum is 110 feet
Sediment above LMSL. At E. Hind Dr. Bridge, the
Concentration Hydrologic Unit Code is 20060000, Latitude

21°17'07.2", Longitude 157°45'14.6". The data is
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projected in NADS3. The drainage area is 2.84
square miles and the gage datum is 50 feet above
LMSL.

Suspended
sediment
discharge
(short
tons/day) at
USGS
16247550

2009 Annual

Suspended
Sediment

Discharge

.CSV
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