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Abstract  

Fire suppression policies have led to changes in forest structure throughout California, which increases 
the risk of stand-replacing fires. Additionally, vegetation in California is expected to move towards higher 
elevations due to climate change. Understanding these shifts in forest structure is important for future 
resilience. To accomplish this we (1) compared changes in forest structure in yellow pine mixed conifer 
(YPMC) forests in southern California over the last century and (2) created a MaxEnt model to 
understand the range shifts of yellow pines in the Transverse Ranges. We found significant increases in 
tree density, canopy cover, and basal area across southern California YPMC forests. This change is 
primarily due to an increase in large diameter trees (61-91.3cm) and an increase in shade tolerant trees. 
Quercus chrysolepis has particularly increased at lower elevations, while conifer juveniles have decreased 
across these elevations. These results indicate a potential composition shift from conifer forests to oak 
dominated systems. Our MaxEnt model demonstrates that under climate change, suitable habitat for 
yellow pine saplings is shrinking across the Transverse Ranges. Our project will assist the USFS in 
creating targeted management goals in selecting high priority areas for the conservation of southern 
California YPMC forests.  
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1. Significance  
 
The U.S. Forest Service’s (USFS) mission is to sustain the health and diversity of public lands for present 
and future generations (USDA, 2019). In southern California, there are four National Forests (NFs): 
Angeles, Cleveland, Los Padres, and San Bernardino, each of which protects a variety of diverse 
vegetation communities and wildlife species. Southern California NFs provide habitat for numerous 
endangered and threatened species including the California condor (Gymnogyps californianus), California 
red-legged frog (Rana draytonii), and the California spotted owl (Strix occidentalis). Additionally, NFs 
provide a broad range of ecological, economic, and social services. For example, the NFs in southern 
California contribute approximately 540 billion gallons of water to downstream watersheds (Brown et al., 
2016) and store over 75 million metric tons of carbon (USDA, 2019). In southern California, healthy 
ecosystems within NFs play an integral role in delivering resources and ecosystem services to over 22 
million people (CDF, 2018; Mooney et al., 2009).  
 
In southern California NFs, yellow pine mixed conifer (YPMC) forests are an important vegetation 
community and make up approximately 70% of conifer forests (Nigro & Molinari, 2019). Southern 
California YPMC forests are found near the top of their elevation range, which makes them particularly 
important ecological resources (Minnich, 2007; Stephenson & Calcarone, 1999). These forests face many 
risks, which threatens the benefits these forests provide. Climate change models predict higher average 
temperatures, decreased annual snowpack, and variable precipitation (Hayhoe et al., 2004), thereby 
increasing fuel aridity, length of fire season and the number of high fire danger days (Abatzolou and 
Williams, 2016). A century of fire suppression policies have resulted in increased forest density, which 
increases the risk of stand-replacing fires. The long-term anthropogenic impacts experienced by these 
forests requires management intervention to promote the long-term resilience of YPMC forests to threats 
like climate change and fire.  
 
The USFS currently uses the Land Management Plan (LMP) (USDA, 2012; amended in April 2012) for 
forest management guidelines as part of their mission to sustain the health and diversity of public lands. 
Goal 1.2.1 of the LMP lays out the long-term desired conditions for unburned areas of the forest as: 
 

1. Create forests more resistant to the effects of drought, insect and disease outbreaks and stand-
killing crown fires; 

2. Encourage tree recruitment that contain a species mix more like pre-settlement composition; 
3. Recreate stand densities more like those of the pre-suppression era; and 
4. Encourage a stand structure that emphasizes large-diameter trees. 

 
The outlined conditions are largely based on knowledge of forest compositions prior to fire suppression 
and landscape scale alterations to the natural environment such as logging and grazing. Managers need to 
know how much contemporary forest conditions deviated from historic conditions in order to plan 
successful conservation and restoration projects that increase forest resilience.  
 
This project will analyze the changes between historic and contemporary YPMC forest conditions in 
southern California. Our analysis will contribute to the USFS’s work of composing a Natural Range of 
Variation for southern California YPMC forests, of which there is currently no compiled source on 
historic conditions. A report on changes in YPMC forest structure and composition over the past century 
will be an invaluable resource for USFS forest managers to follow and implement management 
requirements set forth by the LMP. We will also model future suitable habitat for yellow pine saplings in 
the Transverse Ranges of southern California to determine long-term trends of these important YPMC 
species. Lastly, we demonstrate one example of how the results of a species distribution model can be 
used by forest managers.  
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2. Objectives 
 
The existence and health of southern California YPMC forests are threatened by increasing fire severity, 
bark beetle mortality, and habitat loss caused by climate change. These forests are “sky islands” that are 
geographically isolated among many different mountain ranges (McCormack et al., 2009). This makes 
these forests sensitive to perturbations because there are no nearby seed sources nor can the forests shift 
upward in latitude to escape or recover from stressors. YPMC forests provide critical ecological services 
such as watershed stability, hydrological function, biodiversity, and carbon storage (Haffey et al., 2018). 
Losing these forests means risking a devaluation of these services. Understanding how much forest 
conditions have changed from a historic baseline is essential information the USFS can utilize to develop 
management goals that promote resilient forests under a changing climate.  
 
Specific objectives of the project include:  
 

1. Analyze changes in historic and contemporary YPMC forest in southern California. Our 
analysis will focus on five components related to forest structure: tree density, tree size class and 
class distribution, basal area, canopy cover, and understory shrub cover.  

2. Conduct a natural range of variation for the topics in Objective 1 by combining our analysis 
with historic literature review (mid 1800s to early 1900s) and contemporary literature. 

3. Model future habitat suitability for yellow pines (P. jeffreyi and P. ponderosa) under various 
climate scenarios in the Transverse Ranges.  

4. Conduct a case study demonstrating how to prioritize YPMC forests for forest health 
projects within SBNF based on feasibility, legal and administrative constraints, ecosystem 
services, and vulnerability to future threats such as high burn severity and climate change. 
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3. Background 
 
3.1 Natural Range of Variation 

The natural range of variation is defined by Forest Service Handbook 1909-12 Chapter 10 as:  

Spatial and temporal variation in ecosystem characteristics under historic disturbance regimes 
during a reference period… The NRV can help identify key structural, functional, compositional, 
and connectivity characteristics, for which plan components may be important for either 
maintenance or restoration of such ecological conditions. 

Similarly, Wiens et al. (2012) defines the natural range of variation as:  

The variation of ecological characteristics and processes over scales of space and time that are 
appropriate for management application 

There are similar definitions of NRV in the literature (Wiens et al., 2012), but the common themes 
include a focus on spatial and temporal variability. Historic ecology is a fundamental part in 
understanding temporal and spatial variability, which serves several purposes to managers including: 

● Identifying thresholds and tipping points for shifts in the steady state, 
● Quantifying how much contemporary conditions have deviated from a baseline, 
● Understanding disturbance history and ecological dynamics such as rates of change, 

consequences of disturbances, and post-disturbance recovery stages, 
● Determining which ecological characteristics contribute to resilience  

NRVs have several applications in management planning. NRVs provide valuable information on 
ecological attributes (Bestelmeyer, 2012) that contribute to resilience so that these attributes can be 
incorporated into future land management planning and decision making. Additionally, understanding 
how ecosystems in the past have responded to disturbances is essential when planning for climate change 
and understanding ecological changes (Veblen et al., 2012). For example, knowing how long it 
historically took an ecosystem to recover after a disturbance and what those recovery stages looked like 
can help managers determine if contemporary ecosystems are following those same, natural patterns and 
determine when management intervention is warranted. NRVs can also be used to determine if there has 
been a regime shift or shift in the steady state (Bestelmeyer, 2012). NRVs can be applied to correct 
shifting baseline syndrome, which is when individuals accept contemporary conditions as “normal” 
(Kirby, 2012). All of these aspects of an NRV can be applied to develop risk management strategies 
(Safford et al., 2012) and be used as a framework to help establish management goals that sustain the 
health and diversity of ecosystems (Shedd et al., 2012).  

Despite the functionality of NRVs, some question their relevance in management planning. Stephenson et 
al. (2010) and Landres et al. (1999) argue that human impacts on forests have altered the landscape to the 
point where restoring historic conditions can be irrelevant or difficult to interpret. Millar et al. (2007) adds 
that attempts to maintain or restore to historic conditions require more effort from managers, and can 
create forests ill adapted to contemporary conditions which can cause ecosystems to be more susceptible 
to undesirable changes. Managers who utilize NRVs reiterate that NRVs do not provide management 
targets, nor are they trying to restore landscapes back to historic conditions (Wiens et al., 2012). 
Supporters acknowledge that, in most cases, returning to past conditions will not be sustainable in the 
long term due to climate change (Romme et al., 2012). Rather, NRVs are used as a framework to better 
understand ecosystem processes and dynamics to ensure future management actions incorporate features 
that contribute to resilient forests.  
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Some also question the relevance of using historic conditions to inform present and future management 
actions when climate change may result in novel ecosystems and unprecedented, rapid changes in the 
environment (Hobbs et al., 2010; Stephenson et al., 2010; Williams et al., 2007). Other critics of NRVs 
question their qualitative nature and emphasize that each point in space and time is unique and changing 
constantly (Stephenson et al., 2010). However, NRVs are more than a snapshot of the past. Historic 
conditions provide invaluable insight into how ecosystems and species will respond to differing 
intensities and frequencies of disturbance events and stressors. Understanding ecological dynamics 
provides a deeper understanding of ecosystem processes and rates of change that can be applied with 
some level of predictability into preparing for climate change (Keane et al., 2009; Swetnam et al., 1999). 
This information is more important now as we enter into an era of unprecedented change (Safford et al. 
2012). Understanding how ecosystems and species will react to severe climate events will allow managers 
to set goals for a dynamic, resilient system that will promote long-term sustainability of the forests. As 
Safford et al. (2012) stated, “plan for the future, not for the past, but do not forget that the past provides 
our only empirical glimpse into the likely course of the future” (p. 325). 

We used Natural Range of Variation for Yellow Pine and Mixed-Conifer Forests in the Sierra Nevada, 
Southern Cascades, and Modoc and Inyo National Forests, California, USA by Safford and Stevens 
(2017) as a template for our NRV analysis. Safford and Stevens (2017) conducted a thorough review of 
ecosystem function, disturbance history, forest structure, and forest composition in YPMC forests in their 
assessment area. They used a “range of means” approach to conduct their NRV, meaning they compared 
measures of central tendency between multiple sources. These sources include historic qualitative and 
quantitative data in addition to contemporary research from the assessment area or reference sites. NRVs 
often use reference sites with similar climate and species assemblages that have experienced little 
disturbance to theorize what contemporary conditions should look like if certain anthropogenic activities, 
such as fire-suppression and logging, had not happened.  
 
We conduct an essential component of a NRV by analyzing changes in historic and contemporary tree 
density, size class and size class distribution, basal area, canopy cover, and shrub cover (see Section 5). 
We combine our results with historic and contemporary literature review from our study area and from 
reference sites (see Section 3.1.1) to conduct a NRV following the range of means approach used by 
Safford and Stevens (2017). Our NRV will be part of a complete NRV analyzing YPMC forests in 
southern California that the USFS will complete in the future.  

3.1.1 Reference sites  

 
NRVs often utilize data from sources outside of the study area to make comparisons; these are known as 
reference sites or analog sites. Reference sites have similar climates, vegetation compositions, and 
disturbance histories to the study area or area of interest which allows for ecological comparisons 
between the two. We utilized reference sites for our analysis because the historic data (i.e., Vegetation 
Type Mapping (VTM) surveys, see Section 4.1) used in this study were collected several decades after 
human influences and approximately 20-30 years after wide-scale fire suppression policies. However, it is 
unlikely that forest composition changed significantly in those first couple of decades after fire 
suppression. Unfortunately, the VTM surveys are the only source of historic, quantitative data available 
for our study area. Our research and other literature in our study area that compare historic and 
contemporary conditions only use VTM data to represent historic conditions. We acknowledge that only 
using a single source to represent historic conditions can introduce a potential source of bias. Therefore, 
utilizing data gathered from reference sites is important to diversify the sources used to draw conclusions 
about historic conditions.  
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The Sierra San Pedro Mártir (SSPM) National Park and Sierra Juarez mountain range in Baja California, 
Mexico (Figure 1) have been identified as the most ideal reference sites for southern California YPMC 
forests. SSPM and Sierra Juarez are at the southern end of the Peninsular Mountain Ranges, 
approximately 150km and 50km south of the U.S.-Mexico border, respectively. SSPM and Sierra Juarez 
fall within the California Floristic Province; they support species also abundant in southern California 
YPMC forests (e.g., P. jeffreyi, P. lambertiana, A. concolor, Q. chrysolepis, and rarely C. decurrens).  
 

 
Figure 1. Approximate locations of the Sierra Juarez and the Sierra San Pedro Mártir (SSPM) reference 
sites in Baja.  

Similar to southern California, Baja also has a Mediterranean climate. Temperatures are similar between 
southern California and Baja, but precipitation varies between these regions (Dunbar-Irwin & Safford, 
2016). 14-21% of Baja’s annual precipitation falls in summer from monsoons, while southern California 
weather stations only report 2-7% of annual rain falling in summer (Dunbar-Irwin & Safford, 2016). 
Additionally, annual precipitation was 33-97% greater in southern California compared to SSPM and 
Sierra Juarez (Dunbar-Irwin & Safford, 2016). Some question whether using Baja as a reference site is 
appropriate given the differences in precipitation (Keeley, 2006). The differences in precipitation suggest 
Baja may not be the best reference site for studies comparing factors strongly influenced by precipitation, 
such as comparing drought impacts or seedling and sapling survivorship; these comparisons are not done 
in this study. However, since we are making landscape scale comparisons on vegetation structure, the 
similarities in temperature, Mediterranean climate regime, fire regime, and vegetation composition 
indicate that it is still appropriate to make broad scale ecological comparisons with southern California 
YPMC forests despite the differences in precipitation.  
 
Baja also has a similar fire regime and disturbance history to pre fire suppression southern California 
(Barbour & Minnich, 2000; Nigro & Molinari, 2019; Rivera-Huerta et al., 2016; Stephens et al., 2003). 
Additionally, there has been essentially no logging in Baja (Stephens et al., 2003; Dunbar-Irwin & 
Safford, 2016; Minnich & Vizcaíno, 1998). The main anthropogenic disturbance in SSPM and Sierra 
Juarez has been grazing. Varying intensities of grazing have been noted in these reference sites for over 
200 years, (Minnich et al., 1997; Minnich & Vizcaíno, 1998) including in modern times (Dunbar-Irwin & 
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Safford, 2016). Thus, Baja provides insight into what southern California’s fire regimes and forest 
densities should be in the absence of logging and over a century of fire suppression.  
 
Estimates of the fire return interval (FRI) in Baja and southern California vary, but are typically similar 
among the two regions. Dendroecology studies by Burk (unpublished data, cited in Minnich et al., 1995) 
estimated the mean FRI to be 24 years in SSPM mixed conifer forests, while mean FRI estimates from 
Stephens et al. (2003) ranged from 6.9-14.5 years. Using aerial photos Minnich et al. (2000) estimated the 
FRI to be 52 years. The mean historic FRI of 12.7 years estimated by Nigro and Molinari (2019) in 
southern California align more with Burk and Stephens et al. (2003). The natural fire regime in both 
SSPM and southern California forests has been described as high frequency, and dominated by low 
intensity fires (Barbour & Minnich, 2000; Rivera-Huerta et al., 2016; Van de Water & Safford, 2011). 
Fires in Baja have been largely free burning for most of recorded history, but limited fire-suppression 
began in the mid 1970s (Stephens et al. 2003). However, researchers have concluded that while a fire 
suppression policy was enacted, it was not effectively practiced for several decades (Freedman, 1984; 
Minnich & Bahre, 1995; Minnich & Chou, 1997). Stephens et al. (2007) claimed suppression activities 
only involved a couple, small hand crews working in the summer and fall. However, there is support that 
suppression tactics in SSPM are becoming more effective as most fires in YPMC forests are now being 
extinguished within 24 hours (Dunbar-Irwin & Safford, 2016). Despite the increase in fire suppression, 
recent research indicates that the fire regime is still dominated by low severity fires (Rivera-Huerta et al., 
2016), which indicates it is still appropriate to use modern studies in Baja as a reference site. This may 
not always be the case as fires within YPMC forests in SSPM may be becoming more severe (Rivera-
Huerta et al., 2016).  
 
Though Baja is the most common reference site used in southern California literature (Minnich et al., 
1995; Nigro & Molinari, 2019; Chou et al., 1993; Keeley & Fotheringham, 2001), there are other 
identified reference sites with YPMC forests that we can draw from including: Illiouette Valley in 
Yosemite National Park, Sugarloaf Valley in Sequoia-Kings Canyon National Park, Grand Canyon 
National Park, and Gila National Forest (H. Safford, personal communication, 2020). We also compared 
climatic water deficit (CWD), which is correlated with broad scale vegetation distribution (Stephenson, 
1990), from YPMC forests in our study area to CWD across California to identify other potential 
reference sites (Figure 2). As a result, parts of Sequoia National Forest and Inyo National Forest had the 
most similar CWD to YPMC forests in our study area and were also included as reference sites if data 
was available. It is important to note that the identified reference sites in California have experienced over 
70 years of fire suppression and forest densification, while reference sites in Arizona experience summer 
precipitation from monsoons. We address potential limitations associated with these reference sites in the 
text when making comparisons. Baja was prioritized as a reference site because it has the most similar 
climate to southern California and has been the least impacted by human disturbances. Other reference 
sites were used only when we did not have abundant qualitative or quantitative data from our study area 
or from reference sites in Baja.  
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Figure 2. Climatic water deficit (CWD) was used to identify sites in California that could serve as 
reference ecosystems for southern California. CWD is used because it has been shown to be an indicator 
for broad vegetation distribution (Stephenson, 1990). General locations of YPMC forests in the study area 
are outlined in red boxes (left image; CWD ranged 266 - 1064mm; mean 714mm). Parts of Inyo NF and 
Sequoia NF have the closest CWD to YPMC forests in southern California and were identified as ideal 
reference sites. CWD layer is available as 30-year climate summaries (1981-2010) from the Basin 
Characterization Model (Flint & Flint, 2014). 

3.2 Yellow Pine Mixed Conifer Forests and Southern California National Forests 
 
Our study area encompasses yellow pine mixed conifer (YPMC) forests within the Transverse and 
Peninsular Ranges in southern California (Figure 3). This region has a Mediterranean climate 
characterized by hot, dry summers and warm, wet winters (Minnich & Everett, 2001; Rundel, 2005). 
Yellow pine mixed conifer forests cover 285,308 acres in southern California, representing 41.3% of all 
coniferous forests in the study area. 94.3% (269,138.3 acres) of YPMC forests are located within the 
boundaries of federally managed National Forests (Table 1). These National Forests include the Angeles 
National Forest (ANF), Cleveland National Forest (CNF), southern Los Padres National Forest (LPNF), 
and San Bernardino National Forest (SBNF) (Figure 3). The northern portion of LPNF along the central 
coast has been excluded from this analysis because it is not located within the Transverse or Peninsular 
Ranges. The southern LPNF, the ANF, and the northern SBNF are all within the Transverse Ranges, 
while southern SBNF and CNF are within the Peninsular Ranges. Though our analysis of YPMC habitat 
is not restricted to administrative boundaries, we often break down results by National Forest because 
most of the YPMC forests are within National Forest boundaries.  
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Figure 3. Yellow pine mixed conifer forests in the four southern California National Forests. LPNF, 
ANF, and northern SBNF fall within the Transverse Ranges. CNF and southern SBNF fall within the 
Peninsular Ranges. YPMC forests cover 285,309 acres in the study area. Map derived using the Jeffrey 
Pine, Ponderosa Pine and Mixed Conifer alliances in CALVEG. 
 
Table 1. Acres of YPMC forests in southern California broken down by forest type and administrative 
boundaries. “Other” indicates forests within State Park boundaries or private land. Acreage was 
calculated from YPMC CALVEG (Classification and Assessment with Landsat of Visible Ecological 
Groupings) polygons. 

 
 

Safford and Stevens (2017) used California Wildlife Habitat Regions (CWHR) to identify YPMC forests 
in Sierra Nevada. After cross referencing CALVEG (Classification and Assessment with Landsat of 
Visible Ecological Groupings) and CWHR polygons on Google Earth, we found that CALVEG better 
classified YPMC while CHWR misclassified a relatively large portion of YPMC in our study area. This 
was particularly evident in recent fire scars in which forests have been type converted to shrublands. We 
used vegetation classifications by CALVEG to identify polygons with yellow pine mixed conifers in our 
study area and to define YPMC species.  
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We defined YPMC species as Abies concolor (White fir), Calocedrus decurrens (Incense cedar), Pinus 
coulteri (Coulter pine), Pinus jeffreyi (Jeffrey pine), Pinus lambertiana (Sugar pine), Pinus ponderosa 
(Ponderosa pine), Pseudotsuga macrocarpa (Bigcone Douglas fir), Quercus chrysolepis (Canyon live 
oak), and Quercus kelloggii (Black oak) (Table 2). Abies concolor, C. decurrens, P. jeffreyi, P. 
lambertiana, P. ponderosa, and Q. kelloggii are dominant species in YPMC forests used in Safford & 
Stevens (2017) and defined by CALVEG. Pseudotsuga menziesii is also considered a common YPMC 
species in Sierra Nevada (Safford & Stevens, 2017), however this species is not found in southern 
California. We included P. macrocarpa in place of P. menziesii because they are in the same genus. 
Additionally, CALVEG listed P. macrocarpa as an occurrent in mixed conifer forests. Pinus coulteri was 
also listed as an occurrent in mixed conifer forests, however it was not included in Safford and Stevens 
(2017) because the species is not found in Sierra Nevada. Safford and Stevens (2017) also did not list Q. 
chrysolepis as a dominant YPMC species despite it being commonly found in Sierra Nevada. A study 
completed by Dolanc et al. (2014) in central and northern Sierra Nevada found that Q. chrysolepis had the 
largest relative increase in frequency when they compared historic and contemporary surveys. Since Q. 
chrysolepis was listed as a codominant in mixed conifer forests by CALVEG, we decided to include this 
species in our analysis. Additionally, we were interested to see if these trends in Q. chrysolepis observed 
by Dolanc et al. (2014) also occurred in southern California.  

 
Table 2. Common conifer and oak species observed in YPMC forests in the study area and their general 
characteristics. Aspects are also listed here: N=north and S=south.   
aSources: Burns and Honkala 1990, Minore 1979, and USDA FS 2013b as cited in Safford and Stevens, 2017; Cope 1993, 
Howard 1992, and Tollefson 2008, as cited in Fire Effects Information System [Online]. 
b Sources: Bonner and Karrfalt 2008, Burns and Honkala 1990, Fowells and Schubert 1956 as cited in Safford and Stevens, 2017; 
Cope 1993, Howard 1992, and Tollefson 2008, as cited in Fire Effects Information System [Online]. 
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To define YPMC forests, we used several CALVEG alliances. Douglas-Fir-Pine, Mixed Conifer-Fir, and 
Mixed Conifer-Pine CALVEG alliances represent mixed conifer forests. Eastside Pine, Jeffrey Pine, 
Ponderosa Pine, and Ponderosa Pine-White Fir CALVEG alliances represent yellow pine forests.  

Yellow pine forests are dominated by P. jeffreyi or P. ponderosa and are occasionally intermixed with a 
few hardwood species like Q. kelloggii and Q. chrysolepis. Mixed conifer forests are comprised of a 
mixture of species (Dieterich, 1983) in which no species is dominant. These forests contain species that 
possess a diverse variety of characteristics (Table 2) which are important for landscape and patch level 
heterogeneity. For example, yellow pines are some of the most fire-resistant conifers in California (J.K. 
Brown & Smith, 2000; Foresters, 1980) which has important implications for composition and long-term 
persistence of conifer forests under a more severe fire regime. However, their non-serotinous cones makes 
them susceptible to long-term eradication after stand-replacing wildfires (Russell et al., 1998). Pinus 
coulteri, on the other hand, has serotinous cones (Borchert, 1985), which enable this species to resprout 
vigorously after severe wildfire while other conifer species, such as yellow pines, may struggle to 
regenerate (Parkinson et al., in prep.; Franklin & Bergman, 2011). Pseudotsuga macrocarpa is able to 
regenerate from epicormic buds, which are buds along branches that resprout after a range of fire 
severities. This is an important adaptation for a moderate-high fire regime (Pausas & Keeley, 2017). 
Quercus chrysolepis and Q. kelloggii are obligate resprouters that can resprout from burls after being top 
killed by wildfires. Oaks tend to resprout vigorously after wildfires due to their established root system 
(Bowen & Pate, 1993). However, regenerating conifers are dependent on several factors for successful 
regeneration including post-fire environmental conditions and distance to seed source (Chmura et al., 
2011; Crotteau et al., 2013; Donato et al., 2009; Franklin & Bergman, 2011; Tappeiner & Helms, 1971; 
Welch et al., 2016). These differences in regenerative processes can have long-term impacts on vegetation 
composition. For example, species composition may shift to more homogenous oak or P. coulteri 
dominant habitats after a severe wildfire, altering contemporary forest structure/composition (Cocking et 
al., 2014; Franklin & Bergman, 2011; McDonald & Tappeiner, 2002). 
 
Additionally, YPMC species have a range of shade and drought tolerances (Table 2). Abies concolor, C. 
decurrens, and Q. chrysolepis are all shade tolerant species. In the absence of fire, they grow in the 
understory and act as ladder fuels. Ladder fuels have the ability to alter fire regimes from low severity, 
ground fires to high severity, crown fires. Shade intolerant species, such as yellow pines and P. 
macrocarpa, tend to be fire tolerant which enables these species to withstand low to moderate-high fire 
severity. Yellow pines are also very drought tolerant (J. K. Brown & Smith, 2000; Foresters, 1980), 
which is an important characteristic to maintain the persistence of conifer forests in the study area as 
droughts are expected to increase in frequency and intensity under climate change (Diffenbaugh et al., 
2015).  
 
In southern California, YPMC forests exist as “sky islands” that are geographically isolated among many 
different mountain ranges (McCormack et al., 2009). This makes YPMC forests sensitive to perturbations 
because there are no nearby seed sources to assist in regeneration after a disturbance, nor can the forests 
shift upward in latitude to escape from stressors. YPMC forests are also limited in their ability to shift 
upward in elevation, with the exception being the San Gabriel mountains, San Bernardino mountains, and 
San Jacinto mountains where higher elevations are currently dominated by subalpine species. YPMC 
species have a variety of adaptations that will be important to maintain the heterogeneity, biodiversity, 
and persistence of these conifer forests in southern California under increased frequency and intensity of 
droughts, wildfires, and climate change.  
 
3.3 Disturbance History 
 
When conducting an NRV, it is important to understand how anthropogenic actions have influenced 
observed changes in forest structure. California has a long history of human caused disturbances 
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including fire suppression, cessation of Native American burning, logging, and grazing. The cessation of 
Native America burning and early 20th century implementation of fire suppression has altered the 
composition and structure of conifer forests across the western United States (Murphy et al., 2007; 
Safford & Stevens, 2017; Stephens et al., 2007). A century of fire suppression has led to an increase in 
forest biomass and an abundance of shade tolerant conifers (Safford & Stevens, 2017; Stephens et al., 
2018), which enhances the vulnerability of YPMC forests to drought, bark beetle attack, and severe 
wildfire (Welch et al., 2016; Young et al., 2017). In southern California, half of all YPMC forests have 
not burned in 109 years, which has resulted in an increase in the proportion of YPMC forests burning at 
high severity (Nigro & Molinari, 2019). The impacts of logging and grazing on YPMC forests in the 
study area is less understood. Knowing the locations and intensities of these activities is an important first 
step in understanding how these activities have impacted YPMC forest structure and composition. Thus, 
we conducted an extensive, though not complete, literature review of logging and grazing in southern 
California YPMC forests.  

Logging  

Though California has a long history of logging, there has been relatively little historic logging in 
southern California conifer forests (Barbour, 2007; Minnich & Vizcaino, 1998). This is primarily due to 
the isolated and rugged topography of the mountains in this area, making accessibility difficult (Barbour, 
2007; U.S. Geological Survey, 1899; Leiberg, 1898; California State Board Forestry, 1886). Although, 
the quality of lumber could have also contributed to minimal logging in southern California. Botanist 
Harvey Monroe Hall referred to timber in San Jacinto as “inferior quality”, while U.S. Geological Survey 
(1899) reported that lumberman claimed the timber is “less valuable than that found further north.” 
 
Historic logging operations and  mills were recorded in all southern California National Forests (Barbour, 
2007; USDA, 1905; Stephenson & Calcarone, 1999; Blakley & Barnette, 1985). See Table 3 for logged 
sites mentioned in the literature. Formal requests for logging in southern California forests date back to 
1839 (Blakley & Barnette, 1985). Some of the first reports of logging in the San Bernardino Mountains 
and the San Jacinto Mountains are estimated around 1865 and the 1880s, respectively (Leiberg, 1898).  
 
In 1902, Harvey Monroe Hall wrote that “the worst enemy the forests have been, not the forest fire, but 
the sawmill. Many a pine-clad slope has been stripped of its best trees in order that they might be 
converted into lumber.” Additionally, the California State Board Forestry (1886) described sawmills in 
San Bernardino and San Jacinto as being “continuously at work.” A few historic sources report that some 
areas were intensely logged. Walcott (1899) wrote:  
 

“A large quantity of the forest fit for merchantable lumber has been logged off. Sawmills have 
been in operation for many years. Some of the cutting dates back twenty-five or thirty years. 
Some is recent, and two sawmills are now running or will soon go into operation. The logged-off 
areas lie along the main range from Seely Flat to Orchard Canyon. There is also a small tract at 
the head of City Creek, around the Highland mill, that has been cut over to the extent of 99 
percent”. 

 
There were no reports of historic logging in San Gabriel Mountains, which are located in ANF and the 
western edge of SBNF; the steepness made accessibility too difficult (McKelvey & Johnston, 1992). 
Plummer and Gowsell (1905) claim approximately 200,000 board meters were logged from 1898 to 1905 
in LPNF. They also described some logging in LPNF as “wasteful”, especially on Frazier Mountain. 
Leiberg (1899) described logging as “extensive” in San Jacinto in comparison to the total amount of 
merchantable timber. However, Barnard (1900, as cited in McKelvey & Johnston, 1992) offers a 
conflicting report in which he claimed there was “not more than 1 square mile” logged in San Jacinto by 
the end of the 1800s. While Leiberg (1899) reported that there were 249,000 acres of merchantable timber 
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in the San Bernardino Mountains, only around 5,000 acres had been logged “in recent times.” More 
research is needed to clarify where intense logging operations occurred in these forests as it can have 
implications when interpreting changes in historic and modern forest structure. 
 

 
Table 3. Broad and specific locations in southern California that historic sources or modern researchers 
reported historic logging operations. Locations of sawmills are not included in the table. 

 
 
  
 
Historic logging in southern California ended in 1910 when the National Forests were established, due to 
public pressure to maintain the ecosystem services of recreation and watershed protection (Lockmann, 
1981, as cited in Barbour, 2007). Logging did resume in SBNF from 1947 and 1990 (Figure 4); 
approximately 362 million board feet was logged (McKelvey & Johnston, 1992). Stephenson and 
Calcerone (1999) speculate that some logging occurred in the San Gabriel Mountains in ANF during this 
time frame, however the amount of logging that occurred in ANF is unknown. There was also a brief 
revitalization of minor logging in LPNF and CNF in the 1960s-1970s (Stephenson & Calcarone, 1999). In 
the late 1980s and 1990s, logging in southern California was primarily done to create local firewood, to 
remove hazard trees, remove burned trees, or for forest health projects (Stephenson & Calcarone, 1999). 
 
In areas where logging did occur, certain conifer species were disproportionately targeted for culling. 
According to Plummer and Gowsell (1905), P. jeffreyi was the most logged timber in LPNF, while P. 
lambertiana and P. ponderosa were lightly logged; A. concolor and C. decurrens were not logged due to 
inaccessibility. In San Bernardino FR and San Jacinto RF, most (>90%) of the timber logged came from 
P. ponderosa (Leiberg, 1898); only small percentages (<5%) of P. lambertiana, C. decurrens, and A. 
concolor were logged because they were at high elevations which were mostly inaccessible (Guthrie, 
1904) or because they did not provide quality timber. There were reports of logging in CNF (Barbour, 
2007; California State Board Forestry, 1886), but no specific details were found on which YPMC species 
were being logged.  
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Figure 4. Logged timber in Los Angeles and San Bernardino counties from 1947-1990 (from McKelvey 
& Johnston, 1992).   

The Sierra Nevada have been logged extensively, and as a result, almost all studies comparing historic 
conditions to modern conditions have found declines in large diameter trees (Safford & Stevens, 2017). 
Compared to the Sierra Nevada, relatively little logging has occurred in southern California. Most logging 
occurred in SBNF, with almost no logging in ANF, and very little logging in LPNF and CNF. 
Additionally, yellow pines were disproportionately logged more than any other YPMC species. Historic 
disturbances like logging can influence modern day forest structure and will be carefully considered when 
interpreting our results.  

Grazing 
Grazing has occurred in the mountains of southern California since the early 1900s (Lockmann, 1981, as 
cited in Barbour, 2007). Most grazing occurred before the establishment of the National Forests (Barbour, 
2007). In his reports, Leiberg (1899a, 1899b) describes grazing in San Bernardino FR and San Jacinto 
FR, but not in San Gabriel FR (note: Leiberg did not conduct any reports for modern day LPNF and 
CNF). There was likely no or very little grazing in ANF due to the steep topography (McKelvey & 
Johnston, 1992; Robinson, 1991).  
 
SBNF was heavily grazed by sheep (Lockmann, 1981, as cited in Stephenson and Calcarone, 1999; 
Minnich, 1988; McKelvey & Johnston, 1992), resulting in what has been described as “extensive 
vegetation and erosion damage” in the montane meadows (Minnich, 1988). There was little grazing 
conducted in Mt. Pinos (Barbour, 2007). Though grazing declined after 1900, grazing still occurs in and 
adjacent to LPNF and CNF, but reportedly not in YPMC forests (Stephenson & Calcarone, 1999).  
 
Intensive grazing can cause a decline in fire frequency by reducing fine fuels (e.g., grasses and herbs) in 
the understory which spread fire across the landscape. (Swetnam & Baisan, 1996; Touchan et al., 1995). 
While historic reports mentioned that grazing was conducted in forests, grazing also occurred in montane 
meadows and lower elevation foothills, grasslands, and savannas (Guthrie, 1904, as cited in USDA, 1905; 
Stephenson & Calcarone, 1999). Thus, it is difficult to determine to what extent YPMC forests sustained 
severe environmental damage due to grazing.  
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3.4 Climate Change  
 
The Intergovernmental Panel on Climate Change (IPCC) estimates a rise in global temperatures of 2.5 to 
10 degrees Fahrenheit over the next century (Shaftel et al., 2021). Throughout California, climate change 
is expected to increase mean average temperatures and the frequency of extreme temperature events 
(Hayhoe et al., 2004). Higher elevations in California are expected to be disproportionately affected by 
the increased temperatures (McCullough et al., 2016). While there is a strong consensus among existing 
literature that temperatures will increase throughout California under climate change, it is uncertain 
whether total precipitation will increase or decrease (Bedsworth et al., 2018). However, climate modeling 
predicts that the precipitation regimes across southern California will be increasingly dominated by rain, 
rather than snow (Berg et al., 2015; Kapnick & Hall, 2012). As a result, historically snow-dominated sites 
will experience increased runoff, thereby decreasing plants’ abilities to capture water long-term across 
these sites (Berg et al., 2015). Vegetation in California is expected to move towards higher elevations by 
the end of the century due to strong climatic influences on vegetation distribution (Davis et al., 2016; 
Loarie et al., 2008; Staudinger et al., 2013). However, southern California YPMC forests already exist at 
or near top elevations in relatively isolated sky islands. This puts them at risk of being severely limited or 
lost indefinitely under climate change as they have limited opportunities to expand to higher elevations.  
 
Severe climatic events, such as drought and wildfire, are increasing under climate change and are further 
threatening YPMC forests (Diffenbaugh et al., 2015; Fried et al., 2004; Liu et al., 2010). In California, 
increasing temperatures and changes in precipitation regimes increase the likelihood of drought. Not only 
is the frequency of droughts expected to increase throughout the state, but drought intensity is expected to 
increase as well (Cook et al., 2015; Ullrich et al., 2018). Ault et al. (2014) predict an 80% chance of 
California experiencing a decade long intense drought this century and a 50% chance of a drought lasting 
as long as 35 years. Prolonged droughts increase susceptibility to bark beetle attacks and result in higher 
pathogen-related mortality (Hilberg et al., 2016). The 2011-2017 drought alone resulted in the death of 
over two million trees in southern California (Moore et al., 2019; Tree Mortality, n.d.), which altered 
forest composition and structure and resulted in more hazardous dead fuels across the landscape. Such 
fuels have been found to increase the burn severity of wildfires throughout the Sierra Nevadas  (Wayman 
& Safford, n.d.). Wildfires are now more severe than ever (Nigro & Molinari, 2019) and are more often 
resulting in larger stand-replaced patches, challenging the persistence of conifer forests (Russell et al,. 
1998; Parkinson et al., in prep.; Franklin & Bergman, 2011). 
 
After stand-replacing disturbance events, environmental conditions are one of the main limitations to 
conifer regeneration (Davis et al., 2019; Fisichelli et al., 2014). Seedlings are extremely sensitive to 
environmental conditions, such as near surface temperature (Davis et al., 2019; Fisichelli et al., 2014). 
Additionally, both precipitation and temperature can affect seedling growth and survival (Brown & Wu, 
2005; Chmura et al., 2011; Legras et al., 2010; Savage et al., 2013). Re-establishment will thus be 
negatively affected by the projected increase in frequency and intensity of droughts (Cook et al., 2015; 
Ullrich et al., 2018). In southern California, researchers have already noted extremely low conifer 
regeneration in forests after high severity wildfires, which are now dominated by shrubs (Parkinson et al. 
in prep.; Franklin & Bergman, 2011; Goforth & Minnich, 2008). 
  
Forest management practices will be largely influenced by changes in forest structure and composition 
caused by climate change (Millar et al., 2007). Therefore, it is necessary to determine the geographic 
extent and intensity of these structural and compositional shifts to inform management decisions. For 
plant species, survival of the early life stages is especially critical to both the contemporary persistence 
and the future expansion of these species (Grubb, 1977; Serra-Diaz et al., 2016; Solbrig & Harper, 1979). 
Thus, mapping the projected distribution of saplings provides invaluable insight into the future range of 
long-lived conifer species.  
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4. Data 
 
4.1 Historic Data - Vegetation Type Mapping (VTM) 
 
From the late 1920’s to 1940, forester Albert Everett Wieslander and his team sampled vegetation 
throughout approximately one-third of California (Thorne et al., 2008). The team of foresters sampled 
vegetation, took photographs, collected specimens, and drew detailed maps. Surveying focused on 
documenting California’s wild areas, excluding desert, and primarily occurred on USFS land. Although, 
some surveys were conducted throughout Lassen, Yosemite, and Sequoia/Kings Canyon National Parks, 
as well as on some private land (Thorne et al., 2008). The data collected by Weislander and his team is 
called the Vegetation Type Mapping collection, or VTM. Some have referred to the VTM project as “the 
most important and comprehensive botanical map of a large area ever undertaken anywhere on the earth’s 
surface” (Jepson et al., 2000). In a joint effort, researchers at UC Berkeley, the Marian Koshland 
Bioscience and Natural Resources Library, and the Information Center for the Environment at UC Davis 
have compiled all the VTM records and made the data digitally available for download 
(http://vtm.berkeley.edu/#/data/).  
 
The VTM dataset offers the most comprehensive information on historic forest conditions in our study 
area. To our knowledge, there are no other studies that systematically recorded southern California forest 
conditions in the early 1900s or before. Starting in the 1800s, General Land Office (GLO) surveys 
recorded notes on vegetation cover, including tree species and tree diameters, as part of a larger project to 
document public lands (Bourdo, 1956). While GLO data has been used to analyze temporal changes in 
forest structure and composition throughout other regions of the country, no such surveys were performed 
in southern California, making comparisons to historic forest conditions with GLO data impossible for 
this area. 
 
While the entire project spanned more than ten years, the majority of vegetation plot data was collected 
between 1929-1935 (Keeley, 2004). This data is available for download from 
http://vtm.berkeley.edu/#/data/ and includes general plot information (aspect, slope, elevation, etc.), as 
well as detailed vegetation measurements. Notable tree data includes information on species composition 
and diameter at breast height (d.b.h.) measurements, while data collected on brush species includes 
species composition and percent cover estimates.  
 
While the VTM collection is the earliest and most robust historic dataset available for our study area, 
there are potential limitations with the dataset. Bouldin (2009) suggested that the VTM collection 
represents a biased survey of California’s vegetation, as the VTM plot selection process is argued to have 
been highly subjective. Bouldin suggests that foresters preferentially selected sites with mature forest 
conditions, although there is no explicit mention of this in the field manual (view field manual at 
https://digitalassets.lib.berkeley.edu/vtm/ucb/text/cubio_vtm_fm.pdf). Bouldin’s claims are backed by 
recent analysis. Unbiased Sierra Nevada plot data from Weeks et al. (1942) was recently compared to 
VTM plot data across the same assessment area. Results of this comparison indicate that the densities of 
large trees (>60cm d.b.h.) were 2.6 times greater in the VTM dataset as compared to trees surveyed under 
Weeks et al. (1942). Similarly, Bouldin found tree densities of large trees from VTM plots to be 2.8 times 
greater than plots collecting timber inventory roughly at the same time in the same regions of the Sierra 
Nevada. A conversation between VTM field worker Daniel Axelrod and Jim Bouldin in 1997 suggested 
that the original intent of the VTM surveys was “not to produce unbiased estimates of landscape scale 
forest structures” (Bouldin, 2009). We acknowledge that this is a likely limitation to our study and we 
consider this limitation when drawing final conclusions. 
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The VTM dataset is further limited by the nature of additional data collection methods. VTM surveyors 
did not record trees <4in d.b.h. See Section 4.3 and Section 5.7 for details on  how we dealt with this in 
our analysis. Additionally, the precise location of VTM plots were not recorded during the original 
surveying. However, Keeley (2004) examined the accuracy of inferring historic changes from VTM plot 
data and concluded that “broad generalizations about historic changes using VTM plots are likely valid.” 
Therefore, we do not believe the lack of precise plot coordinates are a significant limitation to our study.   
 
Finally, it is worth noting that some records from the VTM collection have been lost due to the historic 
nature of this dataset, potentially including some data in our study area. Additionally, the digitization of 
the VTM collection created opportunities for human error (Thorne & Le, 2016). Despite these limitations, 
the VTM collection has been widely used to assess temporal changes in forest conditions all throughout 
California and offers important insight into historic forest conditions (Bouldin, 1999; Keeley, 2004; 
Minnich, 1978; Minnich et al., 1995; Minnich & Dezzani, 1998; Safford & Stevens, 2017). 
 
4.2 Contemporary Data - Forest Inventory Analysis (FIA) 
 
Data used to represent contemporary forest structure were combined from 2 sources: 

1. Forest Inventory and Analysis (FIA) National Program, which is publicly available 
(https://apps.fs.usda.gov/fia/datamart/datamart.html). We will refer to this data as “national FIA 
data.” This dataset includes plots found within National Forests, state parks, and other areas. 

2. USFS data from US Forest Service (USFS) Region 5 Remote Sensing Lab, which is available 
upon request (kkennedy@fs.fed.us). This dataset contains modified national FIA data found only 
within USFS boundaries in addition to data from intensified surveys done within USFS 
boundaries following the protocols established by FIA. We will refer to this data as “USFS 
data.” 

The Forest Inventory and Analysis (FIA) National Program conducts randomly placed and spatially 
unbiased surveys in forests approximately every 6,000 acres across the U.S (O’Connell et al., 2015). The 
purpose of the program is to inventory and monitor attributes of U.S. forests such as density and 
composition over time. Several attributes are collected from plots such as species, tree height, tree 
diameter, slope, elevation, aspect, coarse woody debris, shrub understory, understory percent cover, etc.  

The intensified plots within the USFS data are collected following the same sampling protocol as the 
national FIA program, including random and spatially unbiased plots (K. Kennedy, personal 
communication, 2020). These surveys were done in order to increase the availability of data on forest 
conditions in southern California. The most complete record of USFS data was from 2001-2010, which 
was the time frame selected for our analysis. While national FIA has been collecting data since the 1930s 
(USDA, 2021), data before the 1990s are very sparse and inaccessible (G. Christensen, personal 
communication, October 9, 2020). Only data from 1994-2019 national FIA data was available for our 
study area, however we only used data from 2001-2010 to match with the time frame of the USFS data. 

We combined national FIA data and USFS data into a single data frame. It was necessary to combine both 
datasets to increase the sample size and because the USFS data was only collected inside National Forest 
boundaries. While only approximately six percent of YPMC forests in southern California exist outside of 
National Forests, it is important to recognize that forests do not follow human designated jurisdictions. In 
order to get a complete, representative assessment of contemporary conditions in YPMC forests, all plots 
in YPMC forests need to be included in the analysis. It was acceptable to combine data from the two 
sources for our analysis because the data was collected using the same protocol during the same time 
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frame. For the duration of this report, we will use the phrase “combined FIA data” when referring to the 
two collective datasets that have been combined into a single dataset. 

Since the USFS data contains national FIA data we had to ensure we were not counting the same plot 
twice during our analysis. We removed the plots from the national FIA dataset that were within the USFS 
data. We utilized the raw national FIA data because we noticed some minor differences when comparing 
plot level data between the raw national FIA data to the modified nation FIA data included in the USFS 
dataset. While attributes like slope and aspect were consistently the same between the two sources, 
occasionally there would be additional trees present in the modified national FIA in the USFS plots not 
found in the raw national FIA plot. In a couple cases the plot data for a national FIA plot did not match up 
at all between the datasets. Since we were unable to verify the cause of these discrepancies, we decided to 
use the original, untouched national FIA data to represent those plots instead of the modified version 
found in the USFS data.  

4.3 Data Tidying 
 
We followed the same methods to get the historic VTM data and the contemporary combined FIA data 
into a consistent format for analysis. To obtain the final plots used in our analysis we: 

● Removed plots that did not contain at least one of the nine YPMC species selected for this 
analysis (Table 4).  

● Removed plots that only contained oaks, P. macrocarpa, P. coulteri, P. macrocarpa and oaks, or 
P. coulteri and oaks. This was done when these were the only YPMC species in the plot. While 
these are YPMC species, plots with just these vegetation compositions are considered other 
vegetation types by CALVEG and do not fit the definition of the alliances we chose to define a 
yellow pine or mixed conifer forest (see Section 3.2). 

● We applied a 750m (~0.5mi) buffer around the CALVEG YPMC forests to capture potential 
forested areas that may not have been mapped as YPMC. We only included plots that fell within 
the buffered CALVEG polygons. Occasionally conifer seeds can be transported downstream to 
lower elevations (USDA, 1905), so the buffer was added so we only analyzed plots that fall 
within a coniferous ecotone. Plots below the buffered area are located in different habitat types 
(e.g. scrub oak, chaparral), or represent the species at the extremes of its range limit, which is not 
within a coniferous ecotone (e.g. a couple P. ponderosa plots were in very low elevations below 
the 750m buffer). A 750m buffer was used because the coordinates of the plots in the national 
FIA and USFS datasets are altered by about 0.5 miles to protect the rights of private property 
owners (O’Connell et al., 2015). Additionally, VTM plot coordinates are off by about 200–300m 
(Kelly & Allen-Diaz, 2009; Thorne et al., 2008).  

This resulted in 195 plots from the VTM dataset and 210 plots from the combined FIA dataset (Figure 5). 
See Table 4 for the number of plots in each National Forest and across elevation bands. Plots were 
relatively equally distributed across the study area between the two time periods. Within these final plots 
we conducted some additional tidying: 

● Removed any tree that was not one of our nine selected YPMC species (see Table 4).  

● Removed trees from the combined FIA data with a d.b.h. less than 4in. VTM surveyors did not 
record trees with diameters less than 4in, and therefore, we removed trees with diameters less 
than 4in from the combined FIA data so we could make direct comparisons between the time 
frames. This is a common practice when making comparisons to VTM data (Bouldin, 1999; 
Dolanc et al., 2014; McIntyre et al., 2015; Minnich et al., 1995).  
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● Combined P. jeffreyi and P. ponderosa into a single class called “yellow pines” because we were 
unsure if the VTM surveyors correctly classified the two species. When Minnich et al. (1995) 
compared changes in forest structure between the VTM surveys and contemporary forest 
structure in SBNF they analyzed the species separately. However, we believed the VTM 
surveyors incorrectly classified P. jeffreyi and P. ponderosa since the proportions of these species 
are not reflected in the VTM and combined FIA datasets (VTM: P. ponderosa = 865, P. 
ponderosa ssp. jeffreyi = 444, P. jeffreyi = 97; FIA: P. ponderosa = 95, P. jeffreyi = 1,349). 
Additionally, we expected the proportion of P. ponderosa and P. jeffreyi to be relatively 
unchanged in ANF since this region faced the least amount of impact from human disturbances 
such as logging and grazing (see Section 3.3). However, this was not the case. In the VTM 
dataset, 68% of yellow pines in ANF were recorded as P. ponderosa and 32% were recorded as 
P.  ponderosa ssp. jeffreyi; no trees were recorded as P. jeffreyi. While in the combined FIA 
dataset, 10% of yellow pines in ANF were recorded as P. ponderosa and 90% were recorded as 
P. jeffreyi. Additionally, historic reports will often mention P. jeffreyi, but then only report data 
such as logged board feet as P. ponderosa yet will not report data for P. jeffreyi (Hall, 1902; 
Leiberg, 1898; U.S. Geological Survey, 1902). Historically, P. jeffreyi was considered a variety 
or subspecies of P. ponderosa. The two species are also known to hybridize. Until individuals are 
cone bearing, these species look very similar (H. Safford, personal communication, 2020; 
Franklin & Bergman, 2011). Hall (1902) reported that the “difference is sometimes so slight that 
it is impossible to distinguish them with certainty….young or half- grown specimens are very 
much like those of the variety.” With this uncertainty, we took a precautionary approach and 
grouped the two species into a single classification.  

 
Note: these methods only apply to the data used in the NRV analysis. See Section 6.2.3 for tidying 
methods on the VTM and combined FIA data used for the species distribution model. Additionally, 
national FIA data records both dead and living trees, but only living trees were included in this analysis.  
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Figure 5. (A) Plot locations of VTM plots (n=195) and (B) combined FIA plots (n=210) used in this 
analysis. Plots have been grouped by elevation bands.  
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Table 4. Sample sizes for VTM and FIA plots across elevation bands and in the National Forest 
jurisdictions.  

 

*: One VTM plot did not have a recorded elevation. 
**: Five of the six VTM plots and all three of the combined FIA plots not within federal jurisdictions 
were near CNF, respectively.  
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5. 20th Century Shifts in Forest Composition  
 
5.1 Overview  
 
We conduct a landscape-scale analysis investigating structural changes of YPMC forests in southern 
California over the last century for the following topics: tree density, size class distribution, basal area, 
canopy cover, and shrub cover. Though a complete NRV comprises of many topics related to forest 
structure, function, and disturbance, we chose to focus on these five selected topics because they provide 
valuable information for USFS land managers.  
 
Understanding shifts in tree density and basal area is crucial for limiting high severity wildfires. Increases 
in tree density, biomass, and ladder fuels are one of the primary drivers for high severity fires (Miller et 
al., 2009; Miller & Safford, 2012). Fire suppression has caused the mean historic fire return interval (FRI) 
in southern California to increase from 13 to approximately 78 years (Nigro & Molinari, 2019). With the 
absence of fire, small trees act as ladder fuels and carry ground fires to the canopy or crown. Crown fires 
often result in complete mortality even for fire tolerant trees like P. jeffreyi and P. ponderosa (Barbour & 
Minnich, 2000; Franklin et al., 2006). Additionally, denser forests experience increased competition for 
water resources, making them more prone to mortality from bark beetle attacks during droughts (Minnich 
et al., 2016). Land managers need to examine these changes when making decisions about forest health 
projects such as thinning and prescribed burning. 
 
Shifts toward increased canopy cover also facilitate spread of fire throughout a landscape (Birch et al., 
2015). Closed canopy stands allow fire to travel more easily from crown to crown, increasing tree 
mortality. Additionally, increased canopy cover provides favorable conditions for shade tolerant species 
like A. concolor, C. decurrens, and Q. chrysolepis. Though increased canopy cover facilitates wildfires, 
some wildlife species prefer stands with higher canopy cover or select stands with varying amounts of 
cover (Stephens et al., 2007). The California spotted owl (Strix occidentalis), for example, nest in older 
stands with moderate to high levels of canopy cover (Gutiérrez et al., 2017; LaHaye et al., 1997; Smith et 
al., 2002).  
 
Historic forests likely had relatively low, heterogenous shrub cover (Hall, 1902; Leiberg, 1898; USDA, 
1905). Forests that have not experienced a recent fire often have higher shrub cover, which is likely less 
diverse (Safford & Stevens, 2017). Additionally, shrubs promote hotter fires and have more devastating 
effects on soils (Erickson & White, 2008). In some cases, shrub cover has actually decreased due to large 
increases in tree density and canopy cover (Knapp et al., 2012). Managers will need to find the right 
balance of fire, tree density, and shrub cover to ensure optimal forest health. 
 
To date, our analysis is the most in-depth analysis of changes in YPMC forests in southern California. 
Analyzing compositional shifts allows us to identify how much forests have deviated and in response, 
land managers can develop management strategies accordingly. In addition to comparing means, which is 
a single measure of forest conditions, we also calculated medians, standard error, and 25th and 75th 
quantiles which provide important measures of variability; these tables can be found throughout our 
Appendix. For our NRV analysis, we combined our structural change results with a literature review of 
historic sources (mid 1800s-early 1900s) (Appendix A) and contemporary literature. Our NRV analysis 
will be a subset of a complete NRV that will be published by the USFS in the future. 
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5.2 Tree Density  

5.2.1 Methods 

 
To calculate tree density across the landscape, we summed the number of trees in each plot then divided 
by the slope corrected area of each plot to get tree density (trees/ha). Tree density is underestimated if plot 
sizes were not corrected for the slope gradient (Husch et al., 1982 as cited in Abella et al., 2004). We used 
the equation (original plot size(cosine(arctangent(slope percent as decimal)) from Abella et al. (2004) to 
calculate the slope corrected area of each plot. The original sizes of the VTM and combined FIA plots 
were 0.0809ha and 0.067245ha, respectively.  
 
If a YPMC tree species was not present in a plot, it was assigned a 0 for that plot. This was done to ensure 
we were calculating a landscape average and not just an average of plots where that species was found. 
See Appendix B for an example of our code. We then calculated the average tree density across southern 
California YPMC forests. We further investigated drivers of changes in tree density in the study area by 
analyzing tree density by species, National Forest (including and excluding oaks), shade and fire tolerant 
species (including and excluding oaks), elevation, and functional group lifeform (conifer vs. oak). We 
also analyzed tree density by elevation and aspect, elevation and aspect for conifers, elevation and aspect 
for oaks which are only available in Appendix C.  
 
We performed two significance tests to determine if there was a significant difference between historic 
and contemporary tree density: two-sample t-test and negative binomial regression. Conducting a two-
sample t-test allowed us to perform Cohen’s-D (i.e., effect size) to determine how large of a difference 
exists between the two means. Effect size is an additional valuable measure that can be used in 
conjunction with p-values to draw conclusions (Sullivan & Feinn, 2012) a). We also performed a negative 
binomial regression, which is meant for over dispersed count data, using the calculation from Dolanc et 
al. (2014) who also compared changes in VTM and FIA data: Stems ~ Dataset + offset(log(slope 
corrected area)).  
 
If the two tests resulted in different levels of significance (i.e., significant (p-value < 0.05) or not 
significant (p-value > 0.05)), then we used the results from the negative binomial regression when the 
data was over dispersed. Otherwise, we used the results from the two-sample t-test because of the added 
advantage provided by effect sizes in understanding shifts in tree density. We indicate which test was 
used to draw conclusions from in the results tables. For additional metrics of variance, see Appendix D.  

5.2.2 Results 

 
Our analysis comparing tree density between historic and contemporary YPMC forests show that there 
has been an overall increase in tree density. Tree density in historic plots averaged 242.7 (±13.7 SE) 
trees/ha and 414.6 (±21.5 SE) trees/ha in contemporary plots (Table 5, Figure 6). Overall, tree density has 
increased by approximately 70% (p<0.001, effect size: medium).  
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Table 5. Mean tree density by species, classification, and shade/fire tolerance. Means were calculated 
across the entire landscape (VTM: n = 195; FIA: n = 210), not by the number of plots the species was 
found in, however this information was included in the table below to provide an idea of the frequency of 
the species across the landscape. We used a two-sided t-test for all statistical analysis.

 
 

 
Figure 6. Overall mean tree density in historic (VTM) forests compared to contemporary (FIA) forests. 
VTM had 195 total plots and FIA had 210 total plots. Xs mark the median, black dots mark the mean, and 
the bars represent that standard error.  
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By Species 
 
All conifers, excluding A. concolor, either decreased in tree density or did not increase significantly 
(Table 5, Figures 7). Pinus coulteri was the only conifer to experience a decrease in mean density; 
historic densities averaged 10.2 (±2.7 SE) trees/ha while contemporary densities averaged 7.9 (±2.0 SE) 
trees/ha. Yellow pines increased by 13.4%, though this increase was not statistically significant (p=0.1). 
Pinus lambertiana’s average tree density stayed relatively the same (historic mean = 23.5 trees/ha, 
contemporary mean = 24.2 trees/ha). Of the conifers, A. concolor experienced the largest change in 
density. Historic densities of A. concolor averaged 46.6 (±6.4 SE) trees/ha, but have increased to 87.8 
(±10.6 SE) trees/ha in contemporary forests; a percent change of 88.4% (p<0.001). Though C. decurrens 
experienced the second largest percent change (36.7%), the difference between means was not 
significantly different (p=0.35). 
 
Oaks experienced an overall increase of 223.6% (Table 5, Figure 8). Quercus chrysolepis increased by 
509%, which was the largest percent change/increase in mean density out of all YPMC species (Figure 7). 
Historic densities of Q. chrysolepis averaged 21.2 (±6.1 SE) trees/ha and contemporary densities averaged 
129.3 (±17.6 SE) trees/ha. The average tree density for Q. kelloggii stayed relatively the same between 
historic and contemporary forests.  
 

 
Figure 7. Mean tree density for each YPMC species. Xs mark the median, black dots mark the mean, and 
the bars represent that standard error. 
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Figure 8. Comparison of mean tree density in functional groups (oaks vs conifers). Xs mark the median, 
black dots mark the mean, and the bars represent that standard error.  
 
By Shade and Fire Tolerance 
 
Shade tolerant and fire intolerant species include: A. concolor, C. decurrens, and Q. chrysolepis. Two of 
the YPMC species that experienced the greatest increases in tree density, A. concolor and Q. chrysolepis, 
are shade tolerant and fire intolerant (Table 5, Figure 9). Overall, shade tolerant and fire intolerant YPMC 
species increased by approximately 76% (p<0.001, effect size: medium). On the contrary, shade intolerant 
and fire tolerant species did not experience a significant increase tree density (p=0.22) 
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Figure 9. Mean tree density by shade and fire tolerance. Shade intolerant/fire tolerant species include 
yellow pines (P. jeffreyi and P. ponderosa), P. coulteri, P. lambertiana, P. macrocarpa, and Q. kellogii. 
Shade tolerant/fire intolerant species include  A. concolor, C. decurrens, and Q. chrysolepis. Black dots 
mark the mean and the bars represent that standard error. 
 
By Elevation 
 
Tree density increased significantly across all elevation bands except 1000–1499m (Table 5a, Figure 10). 
Between 1500–1999m, historic density increased from 264.3 (±19.0 SE) trees/ha to 407.8 (±28.7 SE) 
trees/ha; an increase of approximately 54.3% (p<0.001, effect size: medium). Tree density between 2000–
2499m experienced the largest increase out of all elevation bands; historic densities averaged 199.7 
(±16.9 SE) trees/ha while contemporary forests averaged 465.4 (±40.8 SE) trees/ha. Density more than 
doubled and increased by 133%. At elevations greater than 2500m, historic densities averaged 198.8 
(±40.9 SE) trees/ha and increased by 59% to 316.1 (±49.4 SE) trees/ha. 
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Table 5a. Mean tree density by National Forest and elevation. Sample size represents the number of plots 
found in each National Forest and elevation band. We used a two-sided t-test for all statistical analysis.

 
 

 
Figure 10. Mean tree density by elevation. Note, VTM data only had 13 plots in the >2500m elevation 
band while FIA data had 26 plots. Xs mark the median, black dots mark the mean, and the bars represent 
that standard error. 
 
By National Forest 
 
All southern California National Forests experienced a significant increase in tree density (Table 5a, 
Figure 11A). SBNF experienced the greatest increases in tree density; historic forests averaged 245.1 
(±20.9 SE) trees/ha and contemporary forests averaged 451.5 (±31.4 SE) trees/ha. SBNF increased in tree 
density by approximately 84.2% (p<0.001, effect size: medium). ANF and LPNF experienced similar 
increases in tree density; 58% and 56%, respectively.  When oaks were excluded from our analysis, 
average tree density between historic and contemporary forests were less variable (Figure 11B). Out of 
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the three National Forests, only SBNF experienced an increase in tree density; historic forests averaged 
182.2 trees/ha and contemporary forests averaged 294.3 trees/ha.  

 
 
 
Figure 11. Mean tree density by National Forest including oaks (A) and without oaks (B). Xs mark the 
median, black dots mark the mean, and the bars represent that standard error. 
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5.2.3 NRV Analysis 

Historic Observations: Southern California and Sierra San Pedro Mártir (SSPM) 
 
Historic surveys in southern California and SSPM have been used to describe pre-suppression conditions 
of YPMC forests. Numerous historic observations from the early 1900’s describe southern California 
YPMC forests as thin, open, and park-like (Leiberg, 1898; Minnich et al., 2000; Minnich, 1988; Minnich 
& Vizcaino, 1998; Passini et al., 1989; Rundel et al., 1988; Saunders, 1923; USDA, 1905; Wright & 
Bailey, 1982) (Figures 12 & 13). Though most reports describe southern California YPMC forests as 
open and park-like, forests were still spatially heterogeneous. In a collection of field reports from the 
USFS, observers described a stand on Big Pine Mountain in SBNF as “fairly dense, but with openings” 
(USDA, 1905). 
 
Several Spanish Expeditions provide observations of SSPM YPMC forests and describe what forest 
conditions looked like in the mid to late 18th century. The Longinos-Martinez and Arrillaga expeditions, 
for example, noted dominant stands of P. jeffreyi with mixtures of different species (A. concolor, C. 
decurrens, and P. lambertiana), and wrote about the relative openness of the forest (Minnich and 
Vizacaino, 1998). Colonel D.K. Allen, a land inspector for the International Colonization Company, 
performed extensive surveys of SSPM in 1888 (Minnich and Vizacaíno, 1998). Allen’s records provide 
insight on historic SSPM tree densities and overall forest composition. Allen noted there were 
approximately 87 trees/ha in Jeffrey pine dominated forests (62 large and 25 small). Additionally, John 
Leiberg, a timber surveyor with the U.S. Geological Service (USGS), wrote descriptions of the San 
Bernardino, the San Gabriel, and San Jacinto Mountains between 1897 and 1899. Leibergs survey records 
provide insights into historic YPMC forest densities. At all three mountain ranges, Leiberg noted that 
forests were usually “open” indicating that stands of trees were widely spaced. We can use these various 
historic observations of southern California and SSPM YPMC forests as a baseline for historic forest 
densities and to compare how much today’s forests have deviated (Figure 14).  
 
Comparing Contemporary Conditions and Sierra San Pedro Mártir 
 
There have been several studies that have investigated historic and contemporary SSPM forest densities. 
Minnich et al. (2000) reconstructed fire regimes in SSPM by investigating relationships between fires and 
changes in forest composition and structure between 1925 and 1991. Minnich et al. analyzed 256 stands 
in SSPM through aerial photographs of SSPM taken in 1991. Their team also sampled 24 contemporary 
plots in SSPM in which all trees with a d.b.h. of 3cm or greater were recorded. Analyses for both the 
aerial analysis and field sampling were separated into three forest types: Jeffrey pine, mixed Jeffrey pine, 
and mixed white fir. Aerial photographs revealed that tree density was approximately 80 trees/ha across 
all three forest types (Table 6). Field samples found a slightly higher average of approximately 105 
trees/ha across all three forest types. Mixed white fir (A. concolor) forests were the densest in both the 
aerial photographs and ground sampling: 126 trees/ha and 156 trees/ha, respectively. From Minnich et 
al.’s (2000) field sampling in SSPM, they found that Jeffrey pine forest densities averaged 78 trees/ha and 
mixed Jeffrey pine forest densities averaged 82 trees/ha.  
 
A more recent study by Stephens and Gill (2005) set out to quantify forest structure of contemporary 
SSPM YPMC forests that have not been logged and have only experienced a few decades of fire 
suppression. Stephens and Gill (2005) randomly sampled 49 plots in SSPM mixed Jeffrey pine forests on 
a 200m grid. They then compared their results to Minnich et al. (1995), who compared changes in density 
in SBNF between 1930 and 1990. Stephens and Gill recorded trees with a d.b.h. >2.5cm, which is a lower 
threshold than Minnich et al. (1995) who only recorded trees with a d.b.h. >12cm. Stephens and Gill 
found that average tree densities in SSPM mixed Jeffrey pine forests were approximately 145.3 trees/ha 
(±10.4 SE, range 30-320 trees/ha). When Stephens and Gill adjusted their minimum d.b.h. value (>12cm), 
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average tree density was 108 trees/ha. When using a similar minimum d.b.h., Stephens and Gill’s results 
are similar to average density observed in historic SBNF mixed Jeffrey pine forests (93 trees/ha) 
(Minnich et al., 1995) and also similar to SSPM estimates by Minnich et al. (2000) (105 trees/ha) (Table 
6). The results from these two studies are an example of how historic southern California YPMC tree 
densities are similar to contemporary SSPM tree density and how SSPM can serve as a reference site for 
historical conditions in southern California.  
 
Dunbar-Irwin and Safford (2016), also sampled plots in contemporary SSPM forests to determine 
reference conditions for California YPMC forest restoration. Their study measured all trees with a d.b.h.  
>7.6cm, which is closer to the d.b.h. cut-off used by Minnich et al. (1995). Dunbar-Irwin and Safford 
found that mean tree density in SSPM was 187.9 trees/ha (±15.1 SE) (Table 6). They suggested that the 
higher densities they encountered were the result of the high dispersion of their plots around SSPM 
National Park and the inclusion of white fir dominated stands in the sample. Stephens and Gill, however, 
sampled from a much smaller area of relatively homogeneous Jeffrey pine-mixed conifer forest. The 
average tree density reported by Dunbar-Irwin and Safford is similar to the average tree density found by 
Minnich et al. (1995) in mixed white fir forests in historic SBNF plots (174 trees/ha).  
 
Comparing Historic and Contemporary Conditions: Southern California 
 
Overall, our results show an increase in tree density between the early 1900s and 2010. Other 
contemporary studies have also found increases in tree density in southern California (McIntyre et al., 
2015; Minnich et al., 1995; Nigro & Molinari, 2019; Stephenson & Calcarone, 1999) (Table 6).  
 
Minnich et al. (1995) directly measured changes in tree density between historic and contemporary 
YPMC forests by revisiting 68 VTM plots in SBNF approximately 60 years after the VTM surveys were 
conducted. Similarly to Minnich et al. (2000), Minnich et al.’s (1995) study was subdivided by forest type 
(Table 6). The 1932 combined average of all VTM plots was approximately 115 trees/ha (Minnich et al., 
1995). Overall mean tree densities in 1992 were 79% higher, approximately 207 trees/ha (Minnich et al., 
1995). This is due to a 10-fold increase of small and medium A. concolor and C. decurrens (d.b.h. 
<33cm). Mixed white fir forests had the highest density in 1932 (174 trees/ha), and had the second 
highest density in 1992 (246 trees/ha); an increase of approximately 41%. Historic densities in the SBNF 
were lowest in Jeffrey pine forests at 79 trees/ha, which is almost the same density found in contemporary 
SSPM Jeffrey pine stands (78 trees/ha) (Minnich et al., 2000). Both our historic and contemporary tree 
density estimates in SBNF are higher than those calculated by Minnich et al. (1995); 245.1 trees/ha and 
451.5 trees/ha, respectively. This could be due to the fact that Minnich et al. (1995) did not include oak 
species in their analysis. However, when we excluded oaks in our analysis of SBNF tree density, historic 
densities were 182.2 trees/ha and contemporary densities were 294.3 trees/ha; an approximate increase of 
63% (Appendix D). It is likely that our estimated densities would be lower if we separated our analysis by 
forest type like Minnich et al. did. However, similar to Minnich et al. (1995), our analysis did find 
significant increases in shade tolerant A. concolor (88%). Abies concolor is likely experiencing such large 
increases in density because canopy cover has also increased since the early 1900s (see Section 5.5). In 
mixed white fir forests surveyed by Wieslander in the early 1900s (n=16), species were mostly evenly 
distributed; A. concolor was present in this forest type but not as an overwhelmingly dominant species. 
Similar to what our analysis has revealed, Minnich et al. (1995) now considers white fir as the dominant 
species in this forest type. 
 
McIntyre et al. (2015) analyzed the changes in tree density across all of California by comparing the 
VTM dataset from the 1930s with contemporary FIA data from 2001-2010. In the Transverse Ranges, 
McIntyre documented an increase in tree density of approximately 79%, which is similar to our finding of 
a 70% increase in overall tree density. Additionally, McIntyre et al. investigated changes in density of 
Pinus and Quercus species and noted that forests are exhibiting an increased dominance of oaks over 
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pines. This can also be seen in our analysis where we found that average Quercus densities increased by 
223.6% due to a 509.9% increase in Q. chrysolepis (Table 5). Pinus species (P. ponderosa, P. jeffreyi, P. 
lambertiana, P. macrocarpa, and P. coulteri), however, either decreased or showed no statistically 
significant increase in our analysis. These trends demonstrate that YPMC forests in California support 
higher densities of oaks today than at the beginning of the 20th century, and also support the general idea 
that California forests are likely to become more oak dominated as climates continue to warm (Lenihan et 
al., 2008; Safford et al., 2012; McIntyre et al., 2015; Stocker et al., 2013).  

Nigro and Molinari (2019) compared historic and contemporary tree densities in Los Padres NF at Frazier 
Mountain by resurveying 4 VTM plots with contemporary plots. Nigro and Molinari found historic 
densities averaged 160.6 trees/ha, and contemporary densities (n=41) averaged 393 trees/ha; a percent 
change of approximately 144%. Though Nigro and Molinari’s historic tree density average for LPNF was 
less than our calculated average (243.4 trees/ha; n=62), we found similar contemporary densities (380.9 
trees/ha; n=62). The difference in our historic estimates is likely due to Nigro and Molinari’s small 
sample size, which may have also resulted in their percent change to be about three times bigger than ours 
(56.1%) (Figure 15). Nigro and Molinari’s findings were also due to an increase in conifer species while 
our analysis revealed that Q. chrysolepis was the primary driver for increases in tree density. 
Additionally, Nigro and Molinari (2019) looked at one location in LPNF while our analysis encompassed 
all of LPNF. It is possible that there is sub-regional heterogeneity within LPNF and the VTM plots on 
Frazier Mountain captured a denser area of the forest, and that the density increases are being driven by 
different species in different areas of the forest. Furthermore, some historic sources reported logging on 
Frazier Mountain in the late 1800s to early 1900s, before VTM surveys occurred (Blakley & Barnette, 
1985). It is possible that the VTM surveyors had plots in or around these logged areas, which could 
account for the low average tree density captured in Nigro and Molinari’s study.   

Stephenson and Calcerone (1999) compared historic and contemporary mixed conifer forest conditions 
throughout LPNF, ANF, and the San Diego County mountains. Similar to Minnich et al. (1995), 
Stephenson and Calcerone used VTM data (n=32) and resurveyed those plots to estimate changes in 
density. Stephenson and Calcerone’s historic densities were approximately 150 trees/ha and contemporary 
densities averaged 350 trees/ha (Table 6). Though Stephenson and Calcerone also had a relatively small 
sample size, their contemporary averages are similar to our findings; we found that contemporary tree 
densities in ANF (n=26) and LPNF (n=62) were between 351 to 380 trees/ha (Table 5a). However, their 
historic average tree densities were lower than our historic average densities for ANF (222.4 trees/ha) and 
LPNF (243.4 trees/ha).  

Summary 

The observed compositional shifts in YPMC forests is being driven by an increase in density of shade 
tolerant and fire intolerant species. Abies concolor and Q. chrysolepis experienced a significant increase 
in density (88.4% and 509.9%, respectively). Calocedrus decurrens, also a shade tolerant and fire 
intolerant species, was the only one to not have a significant change in density despite its rather high 
percent change (+36.7%). This non-significant change could be due to us filtering out all trees with a 
d.b.h. <10.2cm (see Section 4.3) (Figure 16). It is likely that if all trees were included in our analysis, that 
C. decurrens would have experienced a significant change in density.  

Shade intolerant and fire tolerant species have not experienced the same increase in density. The absence 
of fire in most of these forests for the last century (Nigro & Molinari, 2019) has allowed these species to 
flourish in the understory. Additionally, recruitment of shade tolerant species is likely enhanced by 
increasing canopy cover (Section 5.5) that leads to more forest floor shading, providing optimal habitat. 
Stephenson and Calcerone (1999) also cited that past timber harvesting events could be responsible for 
the increased dominance of A. concolor due to the logging of large yellow pines. 
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Figure 12. Historic YPMC forest structure and density in the San Jacinto Reserve (now known as San 
Bernardino National Forest). Photo taken by John Leiberg in 1897-1899.  
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Figure 13. Historic YPMC forest structure and density in the San Bernardino Reserve (now known as 
San Bernardino National Forest). Photo taken by John Leiberg in 1897-1899. 
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Figure 14. Contemporary image of YPMC forest in SSPM. Top photo source: MSJ Images. Bottom two 
photos source: Scott Stephens.   
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Table 6. Average tree densities for YPMC forests across southern California and reference sites in Baja, 
Mexico. MPP = Mixed Ponderosa Pine, MJP = Mixed Jeffrey Pine, MWF = Mixed White Fir, JP = 
Jeffrey Pine, MC = Mixed Conifer, and YPMC = Yellow Pine Mixed Conifer. 
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Figure 15. Current photo of YPMC forest at Mt. Pinos, Los Padres National Forest. Photo courtesy of 
Nicole Molinari, USFS. 
 

 
Figure 16. Current photo of YPMC forest at Cleveland National Forest showing the recruitment of small-
diameter C. decurrens in the forest understory. These small-diameter trees were likely missed in our 
analysis because we removed trees from our analysis that were less than 10.2cm in diameter. Photo 
courtesy of Anne-Marie Parkinson. 
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5.3 Tree Size Class and Size Class Distribution  

5.3.1 Methods 

 
We calculated tree density across the landscape (see Section 5.2.1) by size class. Size classes are defined 
by the diameter of the tree measured at breast height (i.e., diameter at breast height (d.b.h.)). The VTM 
surveyors did not record the actual d.b.h. of each tree. Instead, they recorded d.b.h. into four size classes: 
4–12in, 12–24in, 24–36in, and greater than 36in. In contrast, the true d.b.h. of trees is recorded in the 
combined FIA data. We used the following size classes from Dolanc et al. (2014), to group the combined 
FIA data into size classes and standardize the size class bins between the two datasets:  
 

o   10.2–30.4 cm (4–12 in) (also referred to as juveniles) 
o   30.5–60.9 cm (12–24 in) 
o   61.0–91.3 cm (24–36 in) 
o   >91.4 cm (>36 in) 

 
We investigated drivers of change in tree density for each size class by analyzing tree density by species, 
National Forest (including and excluding oaks), shade and fire tolerant species (including and excluding 
oaks), elevation, elevation of oaks, elevation of conifers, and functional group (conifer vs. oak). We did 
not analyze change by elevation and aspect as sample sizes were too small. 
 
We performed three significance tests to determine if there was a significant difference between historic 
and contemporary tree density: two-sample t-test, bootstrapped t-test, and negative binomial regression. A 
bootstrapped t-test was used in place of the two-sample t-test if the assumption of normality could not be 
met using the central limit theorem. We used Cohen’s-D (i.e., effect size) in conjunction with two-sample 
t-tests and bootstrapped t-test to determine how large of a difference exists between the two means. Effect 
size is an additional valuable measure that can be used in conjunction with p-values to draw conclusions 
(Sullivan & Feinn, 2012). We also performed a negative binomial regression, which is meant for over 
dispersed count data, using the calculation from Dolanc et al. (2014) who also compared changes in VTM 
and FIA data: Stems ~ Dataset + offset(log(slope corrected area)).  
 
If the p-values from the two-sample t-tests or bootstrapped t-tests resulted in different levels of 
significance (i.e., significant or not significant) compared to the negative binomial regression, then we 
used the results from the negative binomial regression when the data was over dispersed. Otherwise, we 
used the results from the two-sample t-test or bootstrapped t-test because of the added advantage provided 
by effect sizes in understanding shifts in tree density. We indicate which test was used to draw 
conclusions from in the results tables. For additional metrics of variance, see Appendix E. 

5.3.2 Results 

Tree density in all size classes has increased in southern California YPMC forests since the early 1930s 
(Figure 17). However, not all observed changes were significant (Table 7). Overall, changes in mean 
density were greatest in juveniles (10.2-30.4cm d.b.h. class), which were driven by oaks, and 61-91.3cm 
diameter trees, which were primarily driven by conifers. Historic density of juveniles averaged 110.4 
(±11.1 SE), which significantly increased by 82.8% (p <0.001), although the effect size was small, to 
201.9 (±17.1 SE) by 2010. Likewise, density of 61-91.3cm trees more than almost tripled (p<0.001, effect 
size: large) from 42.9 (±3.1 SE) to 103.6 (±6.2 SE) trees/ha in 80 years. 30.5-60.9cm trees had a modest 
24% increase, which was significant (p=0.02) although it had a small effect size. Density of trees over 
91.4cm increased by 17.3%, but did not increase significantly (p=0.18).  
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Figure 17. Comparison of the average tree density by size class across all southern California plots using 
VTM and FIA data. Xs mark the median, black dots mark the mean, and the bars represent that standard 
error. 
 

Table 7. Mean tree density by size class by species, functional group, and shade/fire tolerance. Means 
were calculated across the entire landscape, not by the number of plots the species was found in. We used 
a two-sided t-test for all statistical analysis. 
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By Species 

Density of large diameter (61-91.3cm) conifers increased significantly across all conifer species (Figure 
18, Table 8) with an overall increase of 144.8%. Calocedrus decurrens experienced the largest increase 
(313.1%) in density of large diameter (61-91.3cm) conifers; historic density averaged 1.7 (±0.6 SE) 
trees/ha and contemporary density averaged 6.9 (±1.6 SE) trees/ha. Abies concolor and yellow pines had 
the second and third largest increases in 61-91.3cm diameter trees; 233.9% and 120.1% respectively. 
While all conifers increased in density of 61-91.3cm diameter trees, all conifers but A. concolor decreased 
in density of juveniles by 19.7% to 46%. Although, none of these declines were significant (p-value 
range: 0.055 to 0.39) (Figure 18, Table 8); there were not enough PSMA juveniles to draw robust 
conclusions. This resulted in an overall 7.8% decline in density of juvenile conifers.  

Oak density more than doubled in all size classes, excluding the greater than 91.4cm class as there was 
not enough data to draw robust conclusions (Figure 19). Quercus chrysolepis was the oak species 
responsible for this large increase; juveniles increased by 575.2% and the 30.5-60.9cm diameter trees 
increased by 249.9%. Historic density of Q. chrysolepis juveniles and 30.5-60.9cm diameter trees 
increased from 16.8 (±5.6 SE) trees/ha to 113.5 (±16.5 SE) trees/ha and 3.4 (±1.2SE) to 11.9 (±2.3 SE). 
Comparatively, density of Q. kelloggii juveniles was relatively constant over time (historic: 19.7 (±4.5 
SE) trees/ha, contemporary: 20.1 (± 4.3) trees/ha). 

 
Figure 18. Comparison of the average tree density of each YPMC species by size class across all 
southern California plots using VTM and FIA data. Groupings were removed from analysis when the 
number of plots observed in was less than 10. Xs mark the median, black dots mark the mean, and the 
bars represent that standard error. 
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Figure 19. Comparison of the average tree density of conifers and oaks by size class across all southern 
California plots using VTM and FIA data. Oaks with d.b.h. >91.4cm did not have a large enough sample 
size to make statistical comparisons (VTM: n=21, FIA: n=8). Xs mark the median, black dots mark the 
mean, and the bars represent that standard error.  
 
Table 8. Mean tree density of each YPMC species by size class. Means were calculated across the entire 
landscape, not by the number of plots the species was found in. Significance values from two-sample t-
tests are reported below unless otherwise noted. Some size classes do not have significance values as the 
same size was too small to make robust comparisons.  

 
b P-value is obtained through boot strapped t-test.  
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By Elevation 

Density of YPMC juveniles increased across all elevations except at the lowest elevation (1000–1499m), 
in which density decreased by 1.8% (Figure 20, Table 9). Density significantly increased 61.8% from 
1500–1999m (p=0.007, effect size: small) and 2000–2499m (p<0.001, effect size: medium). Juvenile 
density increased 82.9% above 2500m from 62.7 (±19.6 SE) to 114.6 (±33.6 SE), but this was not 
significant (p=0.19). Density for 30.5-60.9cm and over 91.4cm trees decreased from 10001–499m. Large 
diameter trees increased across all elevation bands; increases were significant in all but the lowest 
elevation band.  

 

Figure 20.  Mean tree density by size class and elevation. Xs mark the median, black dots mark the mean, 
and the bars represent that standard error. 
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Table 9. Mean tree density by size class by elevation. Means were calculated across the entire landscape, 
not by the number of plots the species was found in. Significance values from two-sample t-tests are 
reported below unless otherwise noted.  

 
a P-value is obtained through negative binomial regression.  

By Elevation and Functional Group (Oaks vs Conifers) 

Many of these changes in density across elevations are further explained by analyzing changes by 
functional group. Oaks increased across all elevations up to 2500m (Figure 21A, Table 10). Some of the 
largest increases were observed in juveniles across all elevations (1000–1499m: +135.4%, p=0.002; 
1500–1999m: 164.4%, p<0.001; 2000–2499m: +66%, p<0.001). On the other hand, density of conifer 
juveniles has significantly declined from 1000–1499m (historic: 155.5 (±60.1 SE), contemporary: 53 
(±15.3 SE), p=0.002) and 1500–1999m (78.9 (±12.3 SE), contemporary: 48.3 (±6.4 SE), p=0.03). 
Comparatively, mean conifer density has increased in all size classes above 2000m (Figure 21B, Table 
10), however median density of conifer juveniles at elevations over 2500m has decreased. Density of 
large diameter trees (61-91.3cm) has significantly increased across all elevations; increased density 
ranged from 67% to 223.1%. The largest increase in density occurred from 2000–2499m where density 
increased from a historic average density of 37.4 (±4.3 SE) to a contemporary average density of 120.7 
(±11.6 SE).  
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Figure 21.  Mean tree density by size class, functional group ((A) oaks and (B) conifers), and elevation. 
There was not sufficient sample size (n<10) on certain groupings of oaks (e.g., oaks with >91.4cm 
diameter or oaks above 2500m in elevation), so they were excluded from the graph. Xs mark the median, 
black dots mark the mean, and the bars represent that standard error.  
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Table 10. Mean tree density by size class, elevation, and functional group. Means were calculated across 
the entire landscape, not by the number of plots the species was found in. Significance values from two-
sample t-tests are reported below unless otherwise noted. Some size groupings do not have significance 
values as the same size was too small (n<10) to make robust comparisons, so they were excluded from the 
table.  

 
a P-value is obtained through negative binomial regression.  
 

By National Forest  

Changes in size class distribution were relatively consistent across all southern California National 
Forests (Figure 22, Table 11). Mean tree density of juveniles has increased in all three National Forests. 
However, the median density of trees in the smallest size experienced a slight decrease in ANF. Juvenile 
density increased the most in LPNF (128.6%, p<0.001), however the observed increase was primarily due 
to an increased density of juvenile oaks (Figure 22B). Density of juvenile conifers experienced a decline 
in LPNF and ANF. In SBNF, the overall mean density of juveniles significantly increased by 79.5% 
(p<0.001, effect size: small). SBNF was the only National Forest to have an overall increase in density of 
juveniles when excluding oaks.  
 
Mean density of 61-91.3cm diameter trees significantly increased in all three National Forests (Table 11). 
The largest increase was observed in ANF where mean density increased by 252.6% from 35.2 (± 6.1 SE) 
trees/ha to 124.2 (±15.5 SE) trees/ha. SBNF had the second largest increase (179.5%) followed by LPNF 
(53.3%).  
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Changes in mean density of trees with a diameter greater than 91.4cm differed between the National 
Forests. Density increased significantly (p<0.001, effect size: large) in ANF; historic density averaged 5.5 
(±1.9 SE) trees/ha and increased by 558.5% to 36 (±7.5 SE) trees/ha. Mean density increased in SBNF by 
25.9% from 26.8 (±3.0 SE) trees/ha to 33.7 (±4.51 SE) trees/ha, although this was not significant 
(p=0.17). In LPNF, mean density decreased by 22.3% from 37.6 (±5.0 SE) trees/ha to 29.2 (±4.4 SE) 
trees/ha.  
 
Table 11. Mean tree density by National Forest. Significance values from two-sample t-tests are reported 
below unless otherwise noted.  

 
a P-value is obtained through negative binomial regression.  
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Figure 22. Change in size class distribution of YPMC species in three of the southern California National 
Forests with oaks (A) and without oaks (B). Size class data from CNF was not included due small sample 
sizes (n<10). Xs mark the median, black dots mark the mean, and the bars represent that standard error. 

5.3.3 NRV Analysis 

Historic Observations: Southern California and Sierra San Pedro Mártir 

Early explorers in the mid to late 19th century often noted the grand size of mature conifers in southern 
California forests. Many of these explorers and researchers assessed the largest pines and firs to be greater 
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than 42.7m in height and 152.4 to 182.9cm in diameter. Diaries from lumbermen revealed that old-growth 
forests in western SBNF “consisted of large individuals (2-3m d.b.h.) of all species” (La Fuz, 1971, as 
cited in Minnich et al., 1995). The widest tree recorded in the early 1900s was a C. decurrens in SBNF 
that was a 1.2m high stump over 300 years old with a 213.4cm diameter (Allen Peck, 1904, as cited in 
USDA, 1905).  

In 1888, British land inspector Colonel D.K. Allen surveyed 22ha across mixed conifer forests in SSPM. 
He found that forests were very open with a 0.4ha area of forest containing an average of 62 “large” 
trees/ha and 25 “small” trees/ha. There was an average of 42 “large” P. jeffreyi, 10 “large” P. 
lambertiana, 7 “large” A. concolor, and 3 “large” C. decurrens per hectare. Unfortunately, Allen did not 
report quantitative thresholds to define “large” and “small” trees. Diameters for trees in three plots 
surveyed by Allen were provided by Minnich and Vizcaíno (1998). The average d.b.h. of trees in these 
plots ranged from 87.3-92cm. The smallest diameter tree recorded in the data provided by Minnich and 
Vizcaíno (1998) was 12.7cm, which was the only tree to fall in the smallest VTM d.b.h. size class (10.2-
30.4cm). Overall, the distribution was heavily skewed towards larger diameter trees. Since Allen was 
surveying the land for lumbering potential, it is possible that he ignored measuring small trees. However, 
Minnich et al. (1995) claimed there were few trees with diameters less than 33cm in pre-suppression 
mixed conifer forests in SBNF. Minnich et al. (2000) concluded that surface fires removed sapling and 
pole-size trees from the understory, leaving the surviving saplings scattered across the landscape. 
Therefore, it is likely that of the data shown from a small sample of just three of D.K. Allen’s surveys, the 
plots truly contained few or no pole-sized trees. However, these plots may not be representative of all of 
his surveyed plots, or SSPM YPMC forests in general.  

Several sources have alluded to the heterogeneity of tree size classes in historic southern California 
forests and modern forests in Baja. In 1796, Spanish explorer Arrillaga noted “pine trees of all sizes” 
during a trip into the southern Sierra Juarez (Minnich & Vizcaíno, 1998). Arrillaga documented “the 
increasing size of pine forests from Santa Catarina northward to Laguna Hanson.” 

Comparing Contemporary Conditions and Sierra San Pedro Mártir 
 
Contemporary researchers, Minnich and Vizcaíno (1998), Minnich et al. (1995), and Stephens and Gill 
(2005), have all described the modern size class distribution in SSPM YPMC forests as highly variable 
with a heterogeneous, multi-size structure. Minnich et al. (1995) also refer to historic southern California 
forests as having a heterogeneous age-structure prior to fire-suppression, which others have attributed to 
frequent forest fires (Wright & Bailey, 1982; Rundel et al., 1988).  

In SSPM, Stephens and Gill (2005) surveyed 49 Jeffrey pine mixed conifer plots in a 0.1ha area. They 
recorded trees greater than 2.5cm diameter and 1.37cm in height. All trees had an average d.b.h. of 
32.6cm (range 2.5-112cm). Results from Stephens and Gill (2005) align more with the findings of 
Dunbar-Irwin and Safford (2016), who found a mean d.b.h. of trees in SSPM to be 39.1cm when 
excluding trees with diameter less than 7.5cm, than with D.K. Allen. Mean d.b.h. of trees in our 
assessment area was 43.9cm, but when excluding oaks, the mean d.b.h. was 53.6cm.  

Stephens and Gill reported the number of trees in their plots. We used their total plot size (4.9ha) to 
convert tree count to tree density per hectare. They found that the average tree density was approximately 
71.4 trees/ha in the 10-30cm size class, approximately 49 trees/ha in the 30-60cm size class, and 
approximately 24.5 trees/ha in the 60-90cm size class. Dunbar-Irwin and Safford had very similar results. 
They recorded approximately a mean density of 62 trees/ha, 56 trees/ha, and 29 trees/ha in the same size 
classes, respectively. Our estimates of historic tree density of 10.2-30.4cm diameter trees (110.4 trees/ha) 
in southern California were much higher than Stephens and Gill and Dunbar-Irwin and Safford estimates 
in SSPM. Density of trees in the 61-91.3cm size classes (42.9 tree/ha) were also larger in our study area, 
but density of 30.5-60.9cm diameter trees (42.9 trees/ha) were more similar to SSPM. Density of these 
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three size classes has significantly increased in southern California indicating a large deviation from 
reference site conditions. Oaks were recorded in studies by Stephens and Gill and Dunbar-Irwin and 
Safford, however oaks are not common in SSPM; thus their estimates of density by size class more 
closely align with our historic estimates when excluding oaks (Appendix E).  

Comparing Historic and Contemporary Conditions: Southern California 

Several studies have compared the changes in forest size class distributions across southern California 
(Minnich et al., 1995; McIntyre et al., 2015; Stephenson & Calcarone; 1999; Nigro & Molinari, 2019). 
Minnich et al. (1995) compared changes in forest structure in SBNF 60 years after the VTM surveys were 
conducted by resurveying the approximate locations of 68 VTM plots. Minnich et al. split their results up 
by forest type: mixed conifer (n=16), Jeffrey pine (n=9), and mixed Jeffrey pine (n=11).  

In mixed Jeffrey pine forests, Minnich et al. (1995) found an overall decline of trees >67cm, mostly due 
to decline in P. jeffreyi, and increases in juvenile (d.b.h. <33cm) P. jeffreyi, C. decurrens, A. concolor, 
and P. lambertiana. In Jeffrey pine dominated forests, P. jeffreyi in the largest size class (>100cm) 
decreased in abundance by 66.7% from 30 trees/ha to 10 trees/ha, but density of P. jeffreyi juveniles more 
than tripled from approximately 20 trees/ha to approximately 75 trees/ha. In mixed Jeffrey pine and 
Jeffrey pine dominated forests, Minnch et al. (1995) found declines in density of large (68-100cm) trees. 
In mixed white fir forests, density of A. concolor increased by 70% due to a 300% increase in trees 
<67cm. Overall, trees in the smallest d.b.h. size class (12-33cm) in white fir forests nearly tripled from 54 
to 140 trees/ha, but the density of trees >67cm (26.4in) decreased by half from 76 to 38 trees/ha (Minnich 
et al., 1995). Within mixed white fir forests, density of P. jeffreyi and P. lambertiana only increased in the 
juvenile size class (approximately 25 to 55 trees/ha and 25 to 48 trees/ha, respectively), while density 
declined in the other three size classes. Calocedrus decurrens, another shade tolerant species, declined in 
density across all size classes in white fir forests, except for the 68-100cm size class. We only found a 
slight, non-significant decrease (14.9%) of yellow pines in the largest diameter size class (d.b.h. >91.4cm) 
across all of southern California. Additionally, across the study area we found a decrease in density of all 
conifer species, but the density of large diameter trees (61-91.3cm) in all conifer species significantly 
increased.  

Stephenson and Calcarone (1999) revisited 32 mixed conifer VTM plots in Mount Pinos/Mount Abel 
(LPNF), the San Gabriel Mountains (ANF), and CNF. Nigro and Molinari (2019) resurveyed 4 VTM 
plots in LPNF on Frazier Mountain. Stephenson and Calcarone (1999) and Nigro and Molinari (2019) 
found significant or substantial increases in the average density of trees from the two smallest d.b.h. 
classes (10-29cm and 30-59cm) in their respective study areas. Nigro and Molinari found that increases in 
smaller diameter trees were primarily responsible for the 144% increase in average tree density. Nigro 
and Molinari (2019) and Stephenson and Calcarone (1999) also found no significant change in average 
density of trees in the two largest d.b.h size classes (60-89cm and >91cm), which could be due to their 
small sample sizes.  

McIntyre et al. (2015) compared changes in size class distributions across the Transverse and Peninsular 
Ranges using VTM and 2001-2010 FIA data. McIntyre et al. also found an increase (+82.4%) in density 
of small diameter trees (10.2-30.4cm) (VTM: 165 trees/ha, FIA: 301 trees/ha). Unlike Nigro and Molinari 
(2019) and Stephenson and Calcarone (1999), McIntyre et al. found a slight, but non-significant decline in 
trees in the second smallest d.b.h. class (30.5-60.9; VTM: 60.1 trees/ha, FIA: 52.8 trees/ha) and a 
significant 73.4% decline in trees >61cm (VTM: 40.9 trees/ha, FIA: 10.7 trees/ha).  

While our overall tree density calculations show an increase in density of juveniles, which aligns with 
results from other researchers (Nigro & Molinari, 2019; Stephenson & Calcarone, 1999; McIntyre et al., 
2015; Minnich et al., 1995), a deeper analysis of the data revealed that this is primarily due to a 
significant increase in small diameter oaks. The large increase in juvenile oaks can primarily be attributed 
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to a 541% increase in juvenile Q. chrysolepis; density increased from 15.2 trees/ha to 97.1 trees/ha. 
Density of all juvenile conifers declined except for shade tolerant A. concolor. 

Summary 

Tree density has increased in all size classes since the early 1930s. The most significant changes occurred 
in trees with the smallest diameter (10.2-30.4cm) (Figure 23) and the second largest diameter (61-91.3cm) 
size classes. Across the National Forests, density of juveniles has increased but when excluding oaks from 
the analysis juveniles have actually increased in ANF and LPNF. This demonstrates that overall, density 
of conifer juveniles has decreased and increases in oak juveniles were driving the increased density of 
juvenile trees in the assessment area. 

Increases in oak densities were greatest at elevations between 1000–1999m and were primarily due to an 
increase in oak trees with diameters less than 30cm. Conifers with diameters less than 30cm in this same 
elevation band were decreasing. We believe that the large increase of small diameter oaks and the large 
decrease of small diameter conifers are keeping the overall tree density relatively the same at low 
elevations (see Section 5.2). As the climate warms and oak ranges expand, YPMC forests, especially at 
lower elevations, will likely experience further changes in composition (Fellows & Goulden, 2012).  

Our results showing significant increases in density of all conifers in large diameter trees (61-91.3cm), 
which is evenly distributed across the study area (Figure 24), contrasts with the other researchers 
(Minnich et al., 1995; McIntyre et al., 2015; Stephenson & Calcarone, 1999; Nigro & Molinari, 2019). 
The decline in large diameter trees has been observed in other conifer forests in California (Dolanc et al., 
2014; Dolph et al., 1995; Lutz et al., 2009; Ritchie et al., 2008; Smith et al., 2005; van Mantgem et al., 
2009), except for Collins et al. (2011), yet this is the first reported case of increases in large diameter trees 
in southern California mixed conifer forests. This could be due to the lack of logging that took place in 
the study area compared to other forested regions (e.g., Sierra Nevada) and long (approximately 80-109+ 
year) absence of fire in YPMC forests (Stephenson & Calcarone, 1999; Nigro & Molinari, 2019), which 
could have allowed smaller diameter trees to graduate to the larger class sizes.  

 
Figure 23. Variety of size class trees. Increased density of small diameter shade tolerant species in the 
understory. Photo courtesy of Nicole Molinari, USFS. 
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Figure 24. Spatial distribution of large diameter trees in 1930s (A) and 2001-2010 (B).  
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5.4 Basal Area  

5.4.1 Methods 

 
Typical basal area calculations are relatively straightforward (see 
http://www.ruraltech.org/virtual_cruiser/lessons/lesson_10/Lesson_10_PDF.pdf). Note, slope corrected 
plot size was used to calculate basal area (see Section 5.2.1). For an example of our code, see Appendix F. 
However, because Wieslander (1935) recorded trees into size class bins instead of recording the true 
d.b.h, modifications were made to the general basal area calculations in order to make direct comparisons 
between historic and modern basal area. While there are different methods to calculate basal area for 
binned data (Bouldin, 1999; Fellows & Goulden, 2008; Hagmann et al., 2013; McIntyre et al., 2015), our 
approach was most similar to Bouldin (1999).  

D.b.h.’s for trees in the combined FIA dataset were converted to inches and classified into the same bins 
as the VTM dataset (4-11in, 12-23in, 24-36in, and >36in). We then used the midpoint (i.e., mean) of the 
three smallest d.b.h. bins to calculate basal area (Bouldin, 1999; Hagmann et al., 2013). For example, 
7.5in was used to calculate the basal area for all trees in the 4-11in size class. We then followed the 
equations outlined by RuralTech to calculate basal area for trees below 36in in the VTM and FIA data. 
However, an issue arises when selecting the value to represent the midpoint of the largest size class 
(>36in) as there is no upper limit for the bin like with the other d.b.h. size classes. At this step, we took a 
slightly different approach from Bouldin (1999) when determining the value to represent the end of the 
d.b.h. range for trees in the largest size class.  

Bouldin (1999) used literature and the FIA dataset to determine the maximum d.b.h. for each species. He 
then fit the basal area of the cumulative diameters in a plot using five linear and nonlinear equations. In 
our approach, we only used diameters from trees in the combined FIA plots to determine the maximum 
d.b.h. (Appendix G). The second largest diameter tree for C. decurrens was used to represent the 
maximum d.b.h. of the species since the largest d.b.h. was over 60 inches larger than the tree with the 
second largest d.b.h., which could result in a large source of error (Bouldin, 1999). We then compared 
several different metrics to determine the best value to represent the end range of the largest class size of 
each species before calculating the midpoint. The metrics we assessed were the maximum, maximum - 
10% (Bouldin, 1999), mean + 1 standard deviation, and mean.  

To determine the best metric for each species we plotted the total basal area per plot using the true, 
unbinned FIA d.b.h. of trees over 36in and the total basal area per plot for binned FIA d.b.h. of trees over 
36in (Appendix G). This was done because using midpoints could result in the true basal area being under 
or overrepresented depending on the distribution of trees within the bins. For example, a left skewed 
distribution in which most of the trees are near the high end of the range will result in the basal area being 
underestimated. A one-to-one line was added to each graph to help visually assess bias for each species 
and determine the best metric to represent the end range for each species in the largest d.b.h. size class 
(Appendix G). Visual analysis included selecting the metric that resulted in the basal area estimated being 
closest to the one-to-one line. We used a conservative approach when selecting the best metric, meaning 
we selected the metric that slightly underestimated rather than slightly overestimated basal area if no 
metric best fit the one-to-one line.  

Different metrics provided better fits depending on the species (Appendix G). A conservative approach 
was also taken when selecting the metric for species that had too small of a sample to accurately assess 
for bias: (P. coulteri, Q. chrysolepis, and Q. kelloggii. In this case we selected the mean plus one standard 
deviation. The values used to best represent the midpoint of the largest size class are available in Table 
12. The values used to represent the end of the range for large diameter trees (>91.4cm), which was 
determined using FIA data, were then applied and used to calculate the basal area of large trees in the 
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VTM data. This assumes the large diameter trees in the VTM data have a similar distribution to the FIA 
data. 

Table 12. The different values used to represent the end range of the largest d.b.h class size by species. 
These values were also applied to species in the VTM data. 

 
*: Denotes species with a sample size too small (n=1 or n=2) to compare across the different metrics. A 
conservative approach was taken by using the maximum - 10% to represent the end range for the species.  

We also compared the total basal area of plots in the combined FIA dataset using the true, unbinned d.b.h. 
and the binned d.b.h to check for bias in all plots (Figure 25). Though little bias was observed, bias did 
increase as d.b.h increased. Larger diameter trees will have more variance when using the midpoint than 
smaller diameter trees since basal area calculations require squaring the diameter. Overall, there is little to 
no bias which indicates using binned d.b.h.s is a representative alternative of using the true, unbinned 
d.b.h.s.  

We performed a two-sample t-test to determine if there was a significant change between historic and 
contemporary basal area. We also calculated Cohen’s-D (i.e., effect size) to determine the magnitude of 
the difference between two means when the p-value was less than the chosen significance level (alpha < 
0.05). When the assumption of normality could not be met using the central limit theorem, we used a 
bootstrapped t-test. We indicate which test was used to draw conclusions from in the results tables. For 
additional metrics of variance, see Appendix H. 

 
Figure 25. Comparison of total plot basal area using binned and unbinned d.b.h to calculate basal area. 
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5.4.2 Results 

Our analysis shows that the overall mean basal area increased between historic and contemporary 
conditions. Basal area in historic plots averaged 55.7 (±3.0 SE) m2/ha and 92.8 (±5.0 SE) m2/ha in 
contemporary plots. Overall, the mean basal area throughout the study area increased significantly by 
66.5% (p<0.001; effect size: medium) (Table 13). There are a variety of basal area ranges across VTM 
plots in ANF, LPNF, and SBNF (Figure 26). Contrastingly, a majority of FIA plots with high basal area is 
clustered in northern SBNF (dark blue). For additional graphs and analyses, see Appendix H.  

 

Figure 26. Locations of VTM (A) and combined FIA (B) plots classified by mean basal area. 
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By Functional Group (Oak vs Conifer) 

Mean basal area of oaks increased significantly from 4.5 (±0.7 SE) m2/ha in historic forests to 9.5 (±1.0 
SE) m2/ha in contemporary forests (p<0.001). While historic oak basal area increased more than doubled 
(111.1% increase), the effect size was small (Figure 27, Table 13). Mean basal area of conifers also 
increased significantly from historic to contemporary forests with a greater effect size, although they had 
a smaller increase of 62.6% (p<0.001; effect size: medium) (Table 13).  

 
Figure 27. Average basal area for the conifer and oak functional groups plus the overall basal area. 
Sample sizes were n =195 for historic data and n = 210 for current data. Xs mark the median, black dots 
mark the mean, and the bars represent that standard error. 
 
Table 13. Change in basal area (m2/ha) by total number of plots, species, classification, and shade/fire 
tolerance. Means were calculated across the entire landscape, not the number of plots the species was 
found in. Significance values from two-sample t-tests are reported below unless otherwise noted.  

 
b P-value is obtained through boot strapped t-test.  
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By Species 

Quercus chyrsolepis experienced the greatest increase in mean basal area compared to any other YPMC 
species (364.9%). (Table 13). Historic basal area of Q. chrysolepis averaged 1.5 (±0.5 SE) m2/ha while 
the contemporary basal area averaged 6.9 (±0.9 SE) m2/ha (Table 13). Contrastingly, mean basal area of 
Q. kelloggii experienced a decline (historic mean = 3.0 (±0.5 SE) m2/ha, contemporary mean = 2.6 (±0.5 
SE) m2/ha) (Table 13). 

All conifers, excluding P. coulteri, increased in mean basal area (Figure 28). Of the conifers, A. concolor 
and C. decurrens experienced the largest increases in mean basal area. Mean basal area of A. concolor 
and C. decurrens increased significantly by 121.2% (p<0.001) and 254.9% (p=0.003), respectively. 
Yellow pines increased slightly in basal area (31.5% percent change; p=0.02) ; historic basal area 
averaged 26.2 (±2.2 SE) m2/ha while contemporary basal area averaged 35.0 (±2.8 SE) m2/ha (Table 13). 
Pinus lambertiana experienced a similar increase in basal area by 28.4%, although the increase was not 
statistically significant (p=0.30) (Table 13). The only conifer species to experience a decline in basal area 
wasP. coulteri, which decreased by -1.0%.  

 
Figure 28. Average basal area for each YPMC species. Sample sizes were n=195 for historic data and 
n=210 for contemporary data. Xs mark the median, black dots mark the mean, and the bars represent that 
standard error. 
 
By Shade and Fire Tolerance 

Mean basal area of shade tolerant/fire intolerant species in our study area increased significantly by 
162.9% (p<0.001; effect size: medium); historic basal area averaged 15.0 (±1.7 SE) m2/ha and 
contemporary basal area averaged 39.5 (±3.7 SE) m2/ha (Table 13). Abies concolor, C. decurrens, and Q. 
chrysolepis, are categorized as shade tolerant/fire intolerant species. Mean basal area of shade 
intolerant/fire tolerant species increased slightly by 30.9% (Table 13).  
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By Elevation 

Mean basal area increased across all elevation bands (Figure 29). Mean basal area at elevations greater 
than 2500m increased significantly by 107.2% (p=0.004; effect size: large); historic basal area averaged 
46.2 (±13.2 SE) m2/ha and contemporary basal area averaged 95.7 (±11.0 SE) m2/ha (Figure 29; Table 
14). Mean basal area also increased significantly by 48.0% at elevations between 1500–1999m and by 
93.2% at between 2000–2499m (p<0.001; effect size: medium). While mean basal area increased between 
1000–1499m, this was the only elevation band to not increase significantly; historic basal area averaged 
58.1 (±9.9 SE) m2/ha and contemporary basal area averaged 66.8 (±9.4 SE) m2/ha (Table

 

 
Figure 29. Average basal area by elevation class for all YPMC species (including oaks). Xs mark the 
median, black dots mark the mean, and the bars represent that standard error. 
 
Table 14.  Change in basal area (m2/ha) by National Forest and elevation classes. Means were calculated 
across the entire landscape, not the number of plots the species was found in.  
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By National Forest 
 
Out of the three National Forests we analyzed, ANF had the largest (160.0% percent change) increase in 
mean basal area between historic and contemporary conditions, which was also found to be significant 
(p<0.001; effect size: large) (Table 14, Figure 30). Historic basal area in ANF averaged 38.7 (±4.2 SE) 
m2/ha and contemporary basal area averaged 100.6 (±13.3 SE) m2/ha. Mean basal area in SBNF increased 
significantly by 88.6% (p<0.001; effect size: medium); historic basal area averaged 59.2 (±3.8 SE) m2/ha 
and contemporary basal area averaged 99.8 (±8.0 SE) m2/ha.(Table 14). In contrast, LPNF increased in 
basal area by 14.1%, however this increase was not statistically significant (p=0.16) (Table 14).  

 
 

 
Figure 30. Average basal area by National Forest. Xs mark the median, black dots mark the mean, and 
the bars represent that standard error. 

5.4.3 NRV Analysis 
Contemporary Observations: Sierra San Pedro Mártir 

There is limited qualitative and quantitative data describing the historic basal area (forest biomass) of 
southern California YPMC forests. To address this, we used contemporary data from SSPM as a reference 
for historic conditions. SSPM provides sufficient data on basal area for researchers to simulate historic 
conditions in southern California prior to fire-suppression. Through field sampling, Minnich et al. (2000) 
recorded mean basal areas of 21m2/ha, 27m2/ha, and 34m2/ha in Jeffrey pine, mixed Jeffrey pine, and 
mixed white fir forests, respectively, in a total of 24 plots. Minnich et al. (2000) also recorded higher tree 
density among large diameter (60.1-80cm) trees (~20 trees/ha for Jeffrey pine forests, ~10 trees/ha for 
mixed Jeffrey pine forests, and ~25 trees/ha for mixed white fir forests) compared to the smaller size class 
trees, which led Minnich at al. to conclude that “high basal area reflected high tree density.” Stephens and 
Gill (2005) surveyed 49 plots in SSPM, which consisted of Jeffrey pine mixed conifer forests between 
elevations of 2400 and 2500m, and reported a mean basal area 19.9m²/ha. From the VTM data, we found 
a mean basal area of 58m2/ha from 2000–2499m. Similar to Stephens and Gill, Dunbar-Irwin and Safford 
(2016) surveyed 70 plots of dry YPMC forests in SSPM and found a mean basal area of 22.5m²/ha (±1.5 
SE).  
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The average basal area found in these studies is lower than the average basal area we calculated from the 
VTM dataset. One possible cause may be that we found higher overall tree densities and higher densities 
of large diameter trees (d.b.h. 61.0-91.3cm) compared to the other studies (see Section 5.3.2). Our overall 
historic tree density is 39.9 trees/ha for large diameter trees and 27.4 trees/ha for the largest (d.b.h. 
>91.4cm) size class, which is greater than the tree densities Minnich et al. (2000) reported in their size 
classes. Additionally, Stephens and Gill and Dunbar-Irwin and Safford found lower tree density in SSPM 
than we observed from the historic VTM dataset in southern California.  
 
Comparing Historic and Contemporary Conditions 
 
Overall, our results show an increase in mean basal area between the early 1900s and 2010. Many of the 
trends we saw in our basal area results correlated with the patterns we saw in tree density (see Section 
5.2.2) and tree size class distribution (see Section 5.3.2).  
 
McIntyre et al. (2015) found basal area declines of up to 40% in the Transverse and Peninsular Ranges 
when comparing VTM to FIA data. In their study, basal area of conifers and oaks declined; conifer basal 
area declined by 50%. In our assessment area, McIntyre et al. found that large (>61cm d.b.h.) tree density 
decreased by 30% (40.8 trees/ha to 10.6 trees/ha), while small tree density (10.2-30.4cm d.b.h.) increased 
by over 50% (165 trees/ha to 301 trees/ha). Thus, the significant decline McIntyre et al. found in large 
diameter trees may explain why they did not have an increase in basal area despite an overall increase in 
tree density. In contrast to McIntyre et al., our basal area results increased overall and increased in each 
functional group. This is likely due to a 141.8% increase in density of large diameter (61.0-91.3cm) trees 
and a 500% increase of Q. chrysolepis.  

Previous research did not investigate basal area changes by individual YPMC species as we did in our 
analysis. However, Stephens and Gill (2005) did calculate the overall mean basal area for the whole 
landscape and listed the composition of the total mean basal area by species. They found that P. jeffreyi 
comprised most of the basal area within a plot (67.1%), followed by A. concolor (23.1%), and C. 
decurrens (8.4%). Comparatively, within our study area, P. jeffreyi, A. concolor, and P. lambertiana 
consistently had the highest basal area in the early 1900s and 2000s.  

Summary 

Shade tolerant species Q. chrysolepis, A. concolor, and C. decurrens had the largest increase in mean 
basal area between historic and contemporary forests. Density of C. decurrens did not significantly 
increase, but basal area of the species did. This is likely due to the large increase in C. decurrens with a 
diameter over 91.4cm.  
 
When comparing National Forests, basal area only significantly increased in ANF and SBNF. On 
average, basal area slightly increased in LPNF, but the median basal area in LPNF decreased. This is 
despite the significant increase in tree density in LPNF. This could be because LPNF was the only 
National Forest to have a decrease in density of trees >91.4cm.   
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5.5 Canopy Cover  

5.5.1 Methods 

 
Canopy cover is a measure of the percentage of the ground surface that is shaded by overstory trees 
(Safford & Stevens, 2017). A canopy, which is assumed to be whole, is the perimeter of the edge of the 
foliage. We followed methods outlined in Safford and Stevens (2017), which have been followed by 
many other researchers (Collins et al., 2011; Dolanc et al., 2014; North et al., 2007; Scholl & Taylor, 
2010; Stephens et al., 2015; Taylor, 2004; Taylor et al., 2014; Taylor, 2010). This approach results in 
estimates of relative canopy cover, meaning overlapping canopies are not double counted. This ensures 
that the maximum canopy cover in a plot is 100%. Calculating canopy cover involves applying the d.b.h. 
of each tree in a species-specific equation from the forest vegetation simulator (FVS); species-specific 
constants are provided in table 4.4.2.1 by Keyser and Dixon (2012). Constants and equations used in the 
analysis can be found in Appendix I.   
 
VTM data recorded d.b.h. values into bins instead of recording the actual d.b.h. measurement. Combined 
FIA data does have actual d.b.h. measurements recorded; however, we binned the FIA d.b.h. so that we 
could directly compare our canopy cover estimates to the VTM canopy cover estimates. Therefore, we 
assigned each tree the midpoint value of their d.b.h. class (see Section 5.4.1 for midpoint values). For the 
d.b.h. size class of over 36in, we assigned the minimum size of 36in. Though 36in is not a true midpoint 
value, the greater than 36in size class is open ended and therefore, there is no true midpoint. Though this 
is a different approach taken for our basal area analysis, this method of using 36in as the midpoint was 
used by Safford and Stevens (2017). To check whether or not using binned d.b.h.s over or 
underrepresented true canopy cover within a plot, we compared canopy cover results using actual 
measurements for d.b.h. and midpoint d.b.h. values for combined FIA data (Appendix J). There was no 
significant difference of the calculated average canopy cover between the two methods (p=0.94).   
  
Next, we applied the FVS species-specific equations outlined in Keyser (2010) to calculate the crown-
width. Methods for our calculations can be seen in Appendix I. This gave us the absolute canopy cover. 
Absolute canopy cover does not account for overlapping canopies and can therefore be over 100%.  
 
Lastly, To find the relative canopy cover for each plot, we applied the Crookston and Stage (1999) 
equation to account for overlapping canopies:  (C = 100 [1 – exp ( – .01 C′ )]), where C′ the is percent 
canopy cover without accounting for overlap. We then found the average relative canopy cover across all 
plots. We also calculated the average canopy cover by National Forest and by elevation. Additionally, we 
calculated the canopy cover of conifers by excluding oaks. We were interested to see how results varied 
due to the large increase in density of Q. chrysolepis (see Section 5.2.2). We performed two-sided t-tests 
to determine whether or not there was a significant difference between the average percent canopy cover 
between historic and contemporary forests. For additional metrics of variance, see Appendix K. 

5.5.2 Results   
 
By National Forest 
 
Canopy cover has increased in all three southern California National Forests between the early 1900s and 
2000s. The first part of our analysis of canopy cover included all YPMC species, which includes oak 
species. When oaks were included in our analysis, total canopy cover increased from approximately 
53.4% (±1.7 SE) to 70.2% (±1.7 SE) (Table 15, Figure 31). Increases in canopy cover between all three 
National Forests were relatively similar and ranged between 22% to 52%, though ANF experienced the 
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greatest change between historic and contemporary conditions. All changes in canopy cover were 
statistically significant (Table 15). Average canopy cover for contemporary forests were all relatively 
similar across National Forests (Figure 31) and were between 68–70%. The median canopy cover for all 
three National Forests for contemporary estimates was higher than the mean canopy cover. This is due to 
the FIA data being left skewed toward large d.b.h. trees and therefore, resulting in higher percent canopy 
cover (Appendix L). 
 
Table 15. Total percent change in canopy cover by National Forest between historic (VTM) and 
contemporary (FIA) data when oaks were included in the analysis.  

 
 

 
Figure 31. Percent canopy cover including oak species (Q. chrysolepis and Q. kelloggii). CNF was 
excluded from the analysis due to small sample sizes. Xs mark the median, black dots mark the mean, and 
the bars represent that standard error. 
 
We conducted an additional analysis of canopy cover by excluding oaks from our estimates and only 
included conifer contributions to canopy cover. This allowed us to better estimate how density and 
distribution of conifers has affected canopy cover without these estimates being skewed by these large 
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changes in oak density. Because Q. chrysolepis density increased significantly more than any other 
species, we were concerned that the increase in Q. chrysolepis may be one of the sole drivers behind the 
observed increases in canopy cover estimates. When oaks were excluded, total canopy cover increased 
from 45.2% (±1.7 SE) to 57.1% (±1.9 SE) resulting in a percent increase of 26.3% (Table 16, Figure 32). 
ANF still experienced the largest increase in canopy cover; historic estimates were 43.8% (±3.4 SE) and 
current estimates are 62.5% (±5.8 SE). This represents a percent increase of approximately 43% (p < 
0.01). SBNF also experienced a significant increase (37.7%, p < 0.001) in canopy cover but LPNF did not 
(p=0.85).  
 
Table 16. Total percent change in canopy cover and National Forest between historic (VTM) and 
contemporary (FIA) data when oaks were excluded in the analysis.  

 
 

 
Figure 32. Percent canopy cover excluding oak species (Q. chrysolepis and Q. kelloggii). CNF was 
excluded from the analysis because there were only 2 VTM plots and 4 FIA plots. Xs mark the median, 
black dots mark the mean, and the bars represent that standard error. 
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By Elevation 
 
All elevations classes except the lowest elevation (1000–1499m) experienced a significant increase in 
canopy cover (Table 17, Figure 33). Higher elevations (2000–2500+m) experienced greater changes in 
canopy cover than lower elevations (1000–1999m). The greatest increase in canopy cover occurred at 
elevations greater than 2500m. Historic canopy cover estimates averaged 35.8% (±6.8 SE) while 
contemporary canopy cover estimates averaged 61.4% (±5.0 SE). This resulted in an increase of 
approximately 72%. Though elevations greater than 2500m experienced the greatest increase, this 
elevation class also had the smallest sample size with only 13 plots in the VTM dataset.  
 
Table 17. Average canopy cover by elevation band.  

 
 

 
Figure 33. Historic and current canopy cover averages by elevation band. Xs mark the median, black dots 
mark the mean, and the bars represent that standard error. 
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5.5.3 NRV Analysis 
 
We were unable to find any studies that calculated percent canopy cover using FVS methods for historic 
or contemporary southern California YPMC forests. However, there are studies that have calculated 
percent canopy cover in SSPM using field methods, including ocular estimates (Dunbar-Irwin and 
Safford, 2016; Safford, in prep. as cited in Safford & Stevens, 2017) and site tubes (Stephens et al., 
2007).  
 
Stephens et al. (2007) sampled 121 plots in SSPM and recorded canopy cover using two methods: a sight 
tube and a spherical densiometer. Plots were spaced 5m apart and at each plot, percent canopy cover was 
estimated. With the sight tube, surveyors counted the total number of points under the canopy and divided 
by the total number of points sampled. Stephens et al. (2007) found an average canopy cover of 26.8% 
(±1.1 SE) across all sampled SSPM plots using the sight tube. With the densiometer, measurements of 
canopy cover at each plot center were tallied in each cardinal direction. With this method, the percent 
canopy cover was estimated at 40.1% (±1.6 SE). Our canopy cover estimates using the FVS method 
resulted in estimates that more closely match Stephens et al.’s densiometer results, although our historic 
estimates of canopy cover, with oaks included in the calculations, are still 10 percentage points larger. 
Our historic estimates of canopy cover, excluding oaks from the calculations, is only 5 percentage points 
larger than Stephen et al.’s densiometer results. This suggests that historic canopy cover, both as 
estimated from the VTM dataset (with and without oaks) and estimates from SSPM as a reference site, 
was approximately 41%. Dunbar-Irwin and Safford (2016) found a similar canopy cover estimate to 
Stephens et al.’s (2007) sight tube method. Using an ocular estimate for 86 plots, Dunbar-Irwin and 
Safford found that the average canopy cover in SSPM was 24.9% (±2.4 SE). Our combined historic 
averages for canopy cover – including and excluding oaks – were approximately 23 percentage points 
larger than Stephens et al.’s sight tube estimates and Dunbar-Irwin and Safford’s ocular estimate.  
 
Safford (in prep.) estimated canopy cover in contemporary Jeffrey pine forests in Sierra Juarez, another 
reference site in Baja California. Using an ocular estimate, Safford found an average canopy cover of 
approximately 35.8% (±7.6 SE). In this case, Safford’s results are more similar to Stephens et al.’s 
densiometer method. Though we did not break down our analysis by sub-forests within YPMC, our 
canopy cover estimates of just conifer species was 10 percentage points greater than Safford’s.  
As shown by Stephens et al. (2007), Dunbar-Irwin and Safford (2016), and Safford (in prep., as cited in 
Safford & Stevens, 2017), using different methods to calculate canopy cover can result in very different 
estimates. Different instruments will evaluate different characteristics of canopy cover. Using a variety of 
methods to estimate canopy cover can enhance an NRV by producing multiple average measurements.  
 
Though we are unable to compare our contemporary canopy cover estimates with other studies, we 
believe our contemporary estimates could be underestimating true canopy cover, due to non-YMPC 
species being excluded from our analysis. On average, there were approximately four non-YPMC tree 
species per plot that were not included in our canopy cover analysis. Our results reveal that canopy cover 
is increasing significantly in all National Forests (when oaks are included) and at all elevation bands 
except 1000–1499m. With the increasing threat of more frequent wildfires, southern California YPMC 
are at risk of experiencing stand-replacing crown fires (Weatherspoon et al., 1992). As canopy cover in 
southern California YPMC forests continue to increase, these forests are at risk of being lost indefinitely.  
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5.6 Shrub Cover  

5.6.1 Methods 

 
We explored two datasets for gathering historic shrub data, both obtained from the Wieslander VTM 
project: 1) vegetation maps and 2) plot data. VTM vegetation maps were created in the field by direct 
observation and depicted forest types and associated dominant plant species across the surveyed 
landscape (Kelly et al., 2016; Kelly & Allen-Diaz, 2009). While Thorne et al. (2008) found vegetation 
maps useful to analyze more general patterns in land cover change, we concluded that the VTM 
vegetation maps do not accurately capture historic shrub cover in YPMC forests, and therefore would be 
of little value to the NRV shrub analysis (Section 5.6.3). A consultation with Dr. Frank Davis confirmed 
that these vegetation maps would likely not be the best measure of understory species composition or 
abundance. Shrubs that were not directly exposed to the sky would not have been accounted for due to 
being blocked by taller vegetation. Vegetation surveying for the mapping project took place from vantage 
points at the tops of ridges and peaks, rather than at ground level. Surveyors were only concerned with 
“the dominant vegetation visible externally” (Wieslander, 1935) and understory vegetation was not 
recorded.  
 
In contrast to the vegetation maps, VTM plot data provides us with more robust information on historic 
YPMC shrub composition. Brush and ground cover data at the plot level was collected by recording the 
dominant shrub species present in each of the 100 equal subplots comprising each plot. VTM forested 
plots were roughly 800m2, therefore each subplot was approximately 8m2. A shrub species was recorded 
as dominant for any given subplot if the species covered over 50% of the subplot. The final percent shrub 
cover recorded for each species was the percentage of subplots in which it was dominant. Therefore, 
100% shrub cover in a given plot means that shrub cover was >50% in each of the 100 subplots (Keeley, 
2004). This approximation allows for a significant amount of true bare ground and other vegetation to be 
classified as shrub cover (Keeley, 2004). VTM shrub cover can also be an overestimation. For example, a 
shrub species could have covered only 60% of a subplot but recorded as 100%. Therefore, we concluded 
that the quantitative shrub cover estimates would not be useful to compare shrub cover estimates with 
contemporary shrub cover. Instead, we reported the most dominant shrubs as well as provide the relative 
dominance of that shrub. This was calculated by dividing the total number of subplots dominated by a 
single shrub species by the total number of subplots marked by shrub presence (see Supplemental 
Appendix A).  
 
We obtained information on contemporary shrub cover from the USFS dataset. The FSVEG_VXPT_V 
datasheets provided by the USFS Region 5 Remote Sensing Lab recorded shrub cover to the nearest 1%. 
Shrub cover is defined as the percent of the area occupied by the plant or ground surface cover 
(O’Connell et al., 2015). Shrub cover was recorded as absolute cover and did not account for overlapping 
shrubs, which means a plot could have over 100% cover (Safford & Stevens, 2017). We only used shrub 
data from the USFS dataset instead of from the combined FIA dataset. Shrub records in the national FIA 
data were still in their raw form and we were unable to replicate the methods used by the Remote Sensing 
Lab to calculate shrub cover. Therefore, our sample size for the shrub analysis is smaller than previous 
analyses (Table 18). We summed the total shrub cover by species or genus across the entire YPMC 
landscape, by National Forest, and elevation band. We then divided by the total number of plots (either all 
plots, plots in each NF, and plots per elevation band) to find the average absolute percent cover. Shrub 
species and genera with the highest average absolute cover were generated into a table. The relative 
dominance calculated in the VTM data measures the sum of recorded cover for dominant shrubs, while 
USFS data calculates average shrub cover. Though these results cannot be directly compared between one 
another, they can be used to estimate shrub dominance between the historic VTM data and USFS 
contemporary data.  
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Making statistical comparisons between shrub cover from the VTM and combined FIA datasets was not 
possible due to shrub cover being recorded differently between the two datasets. Instead, we made 
qualitative comparisons on the dominant shrubs over time. Analysis of both historic and contemporary 
shrub cover focused on the overall dominant YPMC shrub species, as well as dominant YPMC shrub 
species by genus, National Forest, and elevation bands. This analysis demonstrates the most dominant 
species and genus across the landscape both in the early 1900s and 2000s.  
 
Table 18.  Only the USFS data had recorded shrub data and therefore, not all plots analyzed in Sections 
3.1-3.4 were analyzed for shrubs. The number of plots in the USFS data represents the number of plots 
with recorded shrub observations.  

  

5.6.2 Results 
 
By Species 
 
In historic YPMC forests, Artemisia tridentata (sagebrush) was the most dominant shrub species followed 
by Ceanothus cordulatus (mountain whitethorn) and Quercus chrysolepis (Canyon live oak) (Table 19). 
Though Q. chrysolepis is also considered a tree and was used in our previous analyses, it can often grow 
as a shrub (Tollefson, 2008), especially after wildfires. Quercus chrysolepis was recorded in both the 
shrub and tree datasheets in the VTM and USFS dataset, however, Q. chrysolepis may have been 
recorded more often as a tree than a shrub in the USFS dataset. In contemporary forests, C.cordulatus, 
Cercocarpus ledifolius (curl-leaf mountain mahogany), and Arctostapyhlos patula (greenleaf manzanita) 
were the three most dominant shrub species (Table 20). Artemisia tridentata was the fourth most 
dominant shrub species. Both datasets recorded A. tridentata and C. cordulatus as two of the top four 
most dominant shrub species.  
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Table 19. Relative dominance of the top 10 shrub species in historic forests.  

 
 
Table 20. Average percent cover of the top 10 shrub species in contemporary forests. Percent cover is the 
cover across all plots (n=124).  
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By Genus 
 
When we analyzed the most dominant shrub genera, we found that Ceanothus had the highest percent 
cover in both time frames. In historic forests (n=195), Ceanothus was recorded in 62 plots and had 
approximately 24.22% relative dominance (Table 21). In contemporary forests (n=124), Ceanothus was 
recorded in 56 plots and averaged approximately 11.4% cover (Table 22). Arctostaphylos was also among 
one of the most dominant shrub genera in both time frames; approximately 7% of the landscape in 
contemporary forests and had a relative dominance of 16.5% in historic forests. This does not mean that 
Arctostaphylos or Ceanothus are decreasing; historic shrub cover records are likely overestimates. 
Artemisia and Quercus were also two genera that were dominant between both time frames.  
 
Table 21. Relative dominance of the top 10 shrub genera in historic forests (n=195). 
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Table 22. Average percent cover for the top 10 shrub genera in contemporary forests (n=124). 

 
  
By National Forest 
 
Though Arctostaphylos and Ceanothus are some of the most dominant shrub genera across the entire 
study area, there was variation in dominant shrub species when we separated the analysis by National 
Forest. In ANF, Chrysolepis sempervirens (bush chinquapin) was the most dominant shrub species in 
both historic and contemporary forests. In historic forests, C. sempervirens had a relative dominance of 
approximately 33% (Table 23) and had an average shrub cover of 10% in contemporary forests (Table 
24). In CNF, both time frames had Eriogonum fasciculatum (California buckwheat) as one of the three 
most dominant shrub species; historic forests had a relative dominance of 4.4% and contemporary forests 
average 18% cover. It is important to note that there were only 2 plots within CNF in both the VTM and 
USFS dataset so the reported measures may be biased. Artemisia tridentata was again one of the most 
dominant shrub species in both historic and contemporary forests in LPNF; historic relative dominance 
was 33.6% and contemporary average shrub cover was 8.63%. Ceanothus cordulatus and A. patula 
continued to be two of the most dominant shrub species in SBNF in both historic and contemporary 
forests.   
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Table 23. Relative dominance for the top three shrub species by National Forest in historic forests. ANF 
has 20 plots, CNF has 2 plots, LPNF has 54 plots, and SBNF has 113 plots.  
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Table 24. Average percent cover for the top three shrub species by National Forest in contemporary 
forests. ANF had a total of 12 plots, CNF had 2 plots, LPNF had 41 plots, and SBNF had 69 plots. The 
percent cover represents the cover of the shrub only in the corresponding National Forest.  

 
 
By Elevation 
 
Similarly, when analyzing shrub cover by elevation, Arctostaphylos and Ceanothus species remained the 
most dominant. In historic forests, C. cordulatus was one of the top three most dominant shrub species in 
elevations between 2000–2499m and greater than 2500m (Table 25). Ceanothus cordulatus was one of 
the top three most dominant shrub species in every elevation class in contemporary forests (Table 26).The 
most dominant shrub genera across each elevation class were largely comprised of Arctostaphylos, 
Ceanothus, Quercus, Artemisia, and Chrysolepis in both historic and contemporary forests (Table 27 and 
Table 28).  
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Table 25. Relative dominance of the top three species by elevation class in historic forests. 1000–1499m 
has 20 plots, 1500–1999m has 84 plots, 2000–2499m has 77 plots, and greater than 2500m has 13 plots.  
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Table 26. Average percent cover for the top three shrub species by elevation class in contemporary 
forests. 1000–1499m has 12 plots, 1500–1999m has 51 plots, 2000–2500m has 48 plots, and >2500m has 
13 plots. Percent cover reflects the cover within each elevation class.  
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Table 27. Relative dominance for the top three genera in historic forests by elevation class. 1000–1499m 
has 20 plots, 1500–1999m has 84 plots, 2000–2499m has 77 plots, and >2500m has 13 plots. 

 
Table 28. Average percent cover for the top three genera in contemporary forests by elevation class. 
1000–1499m has 12 plots, 1500–1999m has 51 plots, 2000–2500m has 48 plots, and >2500m has 13 
plots.  
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5.6.3 NRV Analysis 

 
Historic observations of shrubs in YPMC forests reveal that the composition was relatively open and 
heterogeneous. According to Leiberg (1898), shrub cover was inverse to tree density; areas with greater 
tree density had less shrub cover, and areas with lower tree density had higher shrub cover (Minnich, 
1988). Additionally, lower elevations of YPMC forests had higher shrub cover compared to high 
elevations. At lower elevations of the San Gabriels, Leiberg recorded moderate quantities of scrub oak 
(Quercus berberidifolia), manzanita (Arctostaphylos sp.), mountain mahogany (Cercocarpus sp.), and 
ceanothus. We found similar dominant genera of shrubs at lower elevations in our analysis of historic and 
contemporary forests (Table 27). However, Leiberg reported significantly less, and oftentimes, no shrubs 
at all at higher elevations.  
 
While surveying within SBNF, Leiberg (1898) recorded that brush was “mostly low and scattered.” Early 
1900s observations from Charles Francis Saunders and Harvey Monroe Hall in other National Forests 
were similar. Saunders (1923) noted that LPNF was clear of underbrush. In ANF, Saunders recorded that 
the forest floor was “open to the sun that wild grasses were abundant.” In CNF, the higher elevations were 
generally clear of brush but with annual blooms of violets and buttercups. In a botanical survey of San 
Jacinto Mountain, Hall (1902) noted that shrubs were not of great importance due to forests being largely 
free of underbrush. A compilation of surveys and reports from 1902-1906 (USDA, 1905) yields similar 
observations from Leiberg, Saunders, and Hall. In SBNF, ground cover is described as scant, thin, and 
scattered (USDA, 1905). However, there were observations of abundant patches of sagebrush (A. 
tridentata), ceanothus, mountain mahogany, and manzanitas, suggesting heterogeneity across the 
landscape (USDA, 1905).  
 
Many observations noted that areas with the greatest shrub cover were areas that recently experienced fire 
(Blakley & Barnette, 1985; Leiberg, 1898). When looking at VTM maps and 1938 photographs, Minnich 
(1988) was able to confirm Leiberg’s observations that chaparral understory was most dense in recent 
burn areas. Chaparral shrubs, like ceanothus, generally respond well to fire as they are obligate and 
facultative resprouters (League, 2005; Meyer, 2011), and produce seeds that germinate after fires 
(Cornwell et al., 2012). Additionally, with less canopy cover in historic forests, light was able to reach the 
forest floor and support the regeneration of shrub species.  
 
Analysis of SSPM shrub cover provides an example of what shrub cover looks like in a landscape that has 
experienced a more natural fire regime than southern California. SSPM has been described to have open 
shrub cover (Minnich et al., 2000; Passini et al., 1989). Dunbar-Irwin and Safford (2016) surveyed 
understory shrubs in SSPM in 86 of plots and found that the average percent cover was approximately 
17%. This is considerably lower than what we found in contemporary southern California YPMC forests 
(Table 29). Average shrub cover in our analysis ranged from 40% to 56%. Though CNF had an average 
percent cover of 29%, there were only 2 plots with shrub data. Therefore, our CNF shrub cover results are 
unlikely to be representative of true shrub cover. Additionally, Barbour and Minnich (2000) reported that 
shrub and herb cover in SSPM Ponderosa pine forests was only around 5-10%, even lower than what was 
reported by Dunbar-Irwin and Safford. The lack of frequent fires in southern California YPMC forests 
could be contributing to higher shrub cover and litter accumulation (Minnich et al., 2000).  
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Table 29. Average shrub cover by National Forest in contemporary southern California YPMC forests.  

 
 
Our qualitative analysis of shrub composition in both historic and contemporary southern California 
forests reveals similarities between shrub composition in SSPM. Minnich et al. (2000) noted that SSPM 
mixed Jeffrey pine and white fir forests had Quercus chrysolepis, Arctostapyhlos patula, and Ceanothus 
cordulatus, which are all common species in current and historic southern California YPMC forests. 
Additionally, the dominant genera found in SSPM are similar to those found in southern California: 
Ceanothus, Arctostaphylos, Artemisia, Ericameria, and Salvia (Dunbar-Irwin & Safford, 2016).  
 
There is limited literature available on recent shrub cover estimates in southern California. However, it is 
likely that there are areas in contemporary forests with low shrub cover even in the absence of regular 
fire. A somewhat recent phytogeography of SBNF in 1994 noted that Jeffrey pine forests had an open 
understory, and that understory species were relatively diverse (Krantz, 1994). Shrubs often grow in 
scattered patterns due to their high light requirement (Conrad et al., 1985; Cronemiller, 1959). Areas with 
a heterogenous stand structure and high canopy cover will likely have lower cover of understory shrubs 
because of the limited amount of light able to reach the understory. Conversations with the USFS 
revealed that managers are primarily concerned about increases in shrub cover and their potential to drive 
high severity fires. Though shrub cover may not be high in all areas of contemporary forests, shrubs play 
an integral role in forest health and too much shrub cover can prevent tree regeneration and increase fire 
severity (Knapp et al., 2012). 
 
Due to the large differences in how data was collected, our analysis does not reveal with certainty whether 
average shrub cover has increased significantly between the early 1900s and 2000s. It does appear that 
species composition has remained relatively consistent, and there are clearly some shrub genera and 
species that are more dominant than others throughout both time periods. Some of the most dominant 
shrub species we noted were: Arctostaphylos patula, Ceanothus cordulatus, Artemisia tridentata, 
Amelanchier utahensis, and Cercocarpus ledifolius. 
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5.7 Limitations 
 
There are several limitations to our analysis that are important to address. While VTM data is the only set 
of robust, quantitative data available to represent historic conditions for our study area, there are several 
issues that reveal some shortcomings when using the data to compare to contemporary conditions. The 
main issue is the speculation that surveyors preferentially placed plots in forests that were less dense but 
contained more mature trees (Bouldin, 2009). This suggests that the VTM data will have lower mean 
density than the actual historic density. However, basal area depends on the number of trees and the size 
of the trees, so basal area calculated from the VTM dataset may be larger or smaller than true historic 
conditions depending on these factors. Using data from the mid-1900s, Bouldin (2009) and Weeks (1942) 
found that the density of large trees (>60cm d.b.h.) were 2.8 and 2.6 times greater than estimates found in 
the VTM data, respectively. This indicates that the basal area calculated from the VTM dataset 
overestimated the true landscape scale basal area. Thus, our findings of significant increases in basal area 
and significant increases in large diameter trees are likely larger than observed. Contrastingly, the 
increases in overall tree density and density of trees <61cm is likely lower than we observed.  

While we found over a 500% increase in oak density, it is currently unknown if this significant increase is 
completely the result of increased Q. chrysolepis density or if it is partially the result of differing 
sampling methodologies between the VTM and FIA datasets. It is common for Q. chrysolepis to split into 
more than one branch below diameter at breast height. In this case, it is highly likely that FIA surveyors 
recorded multiple branching stems from one tree as multiple trees instead of as a single tree. While the 
FIA data collection protocol does not explicitly state that this process occurred, other federal surveying 
protocols use this approach (e.g., Common Stand Exams). The VTM data collection protocol also does 
not state how surveyors recorded multiple Q. chrysolepis branches, however we believe that they 
recorded them as a single tree because there were no tmany Q. chrysolepis individuals in a plot. Other 
researchers in California have found increases in Q. chrysolepis (Dolanc et al., 2013; Dolanc et al., 2014, 
Lutz et al., 2009), but they did not address this surveying bias in their methods. This discrepancy in 
methodologies likely resulted in the dramatic increase in Q. chrysolepis. While our understanding of 
ecological systems reinforces that there has likely been a large increase in oak density in southern 
California, especially as the climate warms (Adam & West, 1983; Heusser, 1992), land managers need to 
know the true extent of this change in vegetation composition and structure to make informed 
management decisions. Future research should look into how FIA and VTM surveys recorded Q. 
chrysolepis to determine the true change in density of Q. chrysolepis.  

Additionally, there were some discrepancies between how VTM and FIA surveyors recorded oaks in the 
shrub cover analysis. According to the Natural Resources Conservation Service (NRCS), Q. chrysolepis 
can be classified as both a tree and a shrub. Quercus chrysolepis was frequently recorded by VTM 
surveyors as a shrub although there was no indication into the distinction the surveyors used to classify Q. 
chrysolepis. It may be safe to assume they used 4in. d.b.h. as their threshold, however, there were some 
Q. chrysolepis recorded as shrubs with a height over 10ft and a maximum of 30ft. While Q. chrysolepis 
was also recorded as a shrub by FIA surveyors, we believe surveyors recorded Q. chrysolepis primarily as 
a tree since FIA is a tree inventory program and because Q. chrysolepis was not one of the top 10 
dominant shrub species (see Section 5.6.2) despite a greater than 500% increase in contemporary Q. 
chrysolepis density. We did not remove Q. chrysolepis from the VTM shrub data nor did we count Q. 
chrysolepis in the shrub data above a certain height threshold as a tree when calculating tree density 
because there was no way to verify these assumptions. If Q. chrysolepis was being recorded as a shrub in 
the VTM dataset instead of a tree this also would have underestimated true Q. chrysolepis abundance and 
could have contributed to the large increase in Q. chrysolepis density. Future analysis of shrub cover 
should consider removing Q. chrysolepis from the VTM data when performing a comparative analysis 
with FIA shrub data.  
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Regarding our shrub cover analysis (Section 5.5), we were limited due to the way VTM surveyors 
collected data, which resulted in historic estimates being over or underestimated relative to modern shrub 
cover measurements. VTM surveyors broke down each plot into 100 subplots and only recorded a shrub 
species if it covered 50% or more of that subplot. If a shrub species did cover 50% or more of a subplot, it 
was recorded as having 100% cover for that subplot, or 1% cover of that plot. Recorded shrub cover can 
be overestimated because VTM surveyors recorded a shrub as having 100% cover in a subplot even if the 
shrub only covered 60% of the subplot. Similarly, recorded shrub cover could have been underestimated. 
For example, if a shrub only had 20% cover in a subplot, then it was not recorded at all. Due to this 
limitation, we were unable to conduct a reliable quantitative analysis to determine how much shrub cover 
has changed between historic and contemporary forests. While our analysis captures qualitative 
information on general changes in species composition in the understory, an analysis on quantitative 
changes would have been a more useful analysis for managers.  

In regards to our estimates for density, basal area, and canopy cover analysis, only the nine defined 
YPMC species were used. The purpose of our analysis was to capture YPMC forest density and structure 
and not total forest density. Any tree that was not identified as a YPMC species, as defined by CALVEG 
(see Section 3.2), was removed from the analysis. This method was applied to both datasets so that 
comparisons could still be made between historic and contemporary forests. We calculated the total 
number of non-YPMC tree species in the plots used in our analysis. On average, there were 
approximately four non-YPMC tree species (range 0-49 trees) per plot that were not included in our 
density, basal area, and canopy cover analysis. Therefore, our analysis underestimates the true density, 
basal area, and canopy cover of these areas. Future research should investigate changes in forest structure 
and composition considering all tree species.  

The approach used to calculate basal area of trees binned in the greater than 91.4cm d.b.h. size class could 
have impacted basal area estimates. The values used to represent the end range for trees with a d.b.h. 
greater than 91.4cm was determined from the FIA data, then applied and used to calculate the basal area 
of large trees in the VTM data (see Section 5.4.1). This assumes that large diameter trees in the VTM 
dataset have a similar distribution to those in the FIA data. Since basal area calculations require squaring 
the diameter, large diameter trees affected basal area estimates more than small diameter trees. If the 
distribution of trees in the VTM data is different from the distribution observed in the combined FIA data, 
then the historic basal area could be over or underestimated.  

Lastly, due to data availability, our contemporary conditions were based on data collected between 2001 
and 2010. Forest conditions may have changed substantially in the subsequent decade for several reasons. 
Numerous disturbances could have impacted landscape scale forest structure after 2010. Several large 
fires, which likely had large proportions of area burning at high severity (Nigro & Molinari, 2019), 
occurred in YPMC forests in SBNF (e.g., Cranston, Mountain, and Lake Fires). Additionally, the 2011-
2018 drought resulted in the mortality of over 2 million trees in southern California (Moore et al., 2019); 
LPNF was the most affected in the study area. Mature trees were particularly impacted by the drought 
(Young et al., 2019). Future analyses should use more current data and should analyze plots based on the 
number of times burned (e.g., Dolanc et al., 2014) or burn severity to distinguish between trends that 
could be impacted by different disturbance histories. 
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5.8 Conclusions and Implications  
 
Southern California YPMC forests have increased in tree density, basal area, and canopy cover since the 
early 1900s. Increases in shade tolerant and fire intolerant species, like A. concolor and Q. chrysolepis, 
are largely driving the increase in tree density. With climate change models predicting more frequent and 
severe drought (Berg & Hall, 2017; Diffenbaugh et al., 2015; Hayhoe et al., 2004), more destructive 
wildfires are likely to occur. Increases in tree density and drought can have disastrous consequences as 
denser and drier forests facilitate the spread and severity of wildfire (Miller et al., 2009; Miller & Safford, 
2012). Additionally, a higher density of trees results in an increase in competition for water, and with 
climate change predicting more variable rainfall (Hayhoe et al., 2004), this competition will only be 
exacerbated. Increases in canopy cover have similar consequences; areas with larger canopies can 
facilitate the spread of crown fires (Birch et al., 2015). Crown fires often result in higher tree mortality 
and can devastate the habitat of California spotted owls who seek old-growth stands with moderate to 
high levels of canopy cover for nesting sites (Gutiérrez et al., 2017; LaHaye et al., 1997; Smith et al., 
2002). 

The observed increases in tree density, basal area, and canopy cover varied across the assessment area. 
Mean basal area significantly increased in ANF and SBNF, but median basal area declined in LPNF. 
Differences in logging intensity among the National Forests likely had an impact on these structural 
changes. ANF, which was the least impacted by logging (see Section 3.3), had the largest percent increase 
in the density of trees over 61cm. As a result, ANF had the largest increase in basal area. Conversely, 
while SBNF was the most impacted by logging, density of 61-91.3cm diameter trees more than doubled, 
although there was relatively no change in the density of trees >91.4cm. LPNF had moderate logging 
compared to SBNF, but had the smallest increase in 61-91.3cm diameter trees and was the only National 
Forest to have a decline in trees greater than 91.4cm. Climate change may be driving this trend in LPNF 
more than disturbance history, although more research is needed to verify this as this trend could also be 
the result of several compounding factors such as climate change, drought, fire, and bark beetles 
mortality. 

YPMC forests in LPNF have some of the highest climatic water deficits (CWD) in the assessment area 
(see Section 3.1.1, Figure 2). LPNF also had a decline in median basal area, likely as a result of a net loss 
of the largest diameter trees which contribute the most to basal area. LPNF experienced some of the 
largest increases in CWD in southern California (McIntyre et al., 2015, Figure 3C). McIntyre et al. (2015) 
found a significant correlation (p<0.0001, R2 = 0.11) between CWD and changes between historic (VTM) 
and contemporary (FIA) density of large (>61cm) trees across California. However, the low R2 value 
indicates that there are still other factors that are contributing more to declines in large diameter trees.  

Climate may also be contributing to a more oak dominated forest at lower elevations. We found a 
significant decline in density of juvenile conifers at lower elevations (<1999m), yet density on average 
increased at higher elevations (>2000m). This suggests that when large diameter conifers die at lower 
elevations there will not be sufficient juveniles to replace them. Conversely, the density of oaks has 
increased in all size classes across all elevations where oaks are present, particularly below 1499m. More 
generally, increased dominance of oaks in California is expected (Lenihan et al., 2008; Safford et al., 
2012; McIntyre et al., 2015; Stocker et al., 2013). Palynological records showed that oak and pine 
dominance has historically shifted with climatic changes in the past 150,000 years (Adam & West, 1983; 
Heusser, 1992); oak abundance increased during warmer, drier periods. Thus, our results indicate that 
there will likely be a compositional shift from conifer forests to oak woodlands that will be occurring at 
lower elevations (<1999m) as a result of climate change.  

Fire will likely be the catalyst for this compositional shift because adult conifers can continue to persist 
for a long time in climates no longer suitable for seedlings (Bell et al., 2014). However, severe wildfire, 
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which has become common in southern California (Nigro & Molinari, 2019), has the ability to remove all 
or most of the adult conifers from large patches across the landscape. Non-serotinous conifers, like yellow 
pines, have shown to have poor regeneration after severe wildfires (Franklin & Bergman 2011; Parkinson 
et al., in prep.). Oaks, however, can resprout after their aboveground biomass is killed by fire, thus their 
abundance is reinforced by high severity fire in comparison to conifers (Cocking et al., 2014).  

In addition to a compositional shift from conifer forests to oak woodlands, a compositional shift in 
southern California has also been observed in the density of shade tolerant and fire intolerant species. 
Minnich et al. (1995) noted a compositional shift occurring in SBNF when comparing VTM data to 
contemporary field surveys. In Jeffrey pine dominated forests, Minnich et al. found P. jeffreyi mixed with 
C. decurrens and some A. concolor. However, VTM surveyors only encountered P. jeffreyi in this forest 
type, demonstrating a shift in species composition to now include shade tolerant species in the understory. 
While we did not analyze our data by forest type, we did find a significant increase in density of shade 
tolerant/fire intolerant species. This was primarily due to A. concolor and Q. chrysolepis. It is possible 
that these shade tolerant species are thriving because of increases in large diameter (61-91.3cm) trees that 
likely resulted in a more closed canopy that favored shade tolerant species.  

Another unique observation from our study is the significant increase in large diameter (61-91.3cm) trees. 
We believe these increases in large diameter conifer occurred for two reasons. Firstly, while logging has 
occurred in southern California it was not done nearly as intensely as seen in other parts of the state, 
particularly in Sierra Nevada. In our study area, most logging occurred in SBNF (see Section 3.3), while 
very little occurred in the other National Forests. We also checked VTM surveyors’ records on 
disturbances in the plots they surveyed. Only 13 of the 195 plots used in our analysis were recorded as 
having been influenced by logging, and all 13 plots were in SBNF (Appendix M). However, historical 
literature review revealed that Frazier Mountain was heavily logged (Blakley & Barnette, 1985; Plummer 
& Gowsell, 1905), but there was no mention of logging in VTM plot notes in this area. This suggests that 
the VTM surveys may not have been diligent about recording disturbances in every plot. This could 
explain why Nigro & Molinari (2019) did not find a significant increase in large diameter trees (61-
91.3cm) trees in their study area, which was confined to Frazier Mountain. Yellow pines were the most 
heavily logged conifer in the assessment area. Despite this, we still found a significant increase in density 
of yellow pines in the 61-91.3cm size class. This change could have occurred because these yellow pines 
were too small for harvesting in the early 1900s, but have now graduated to a larger size class. However, 
large diameter trees were disproportionately logged (Stephens et al. 2007), and we did observe a slight 
decline in density of yellow pines with diameters over 91.4cm. There are conflicting reports on the extent 
of historic logging that occurred in the National Forests, especially in SBNF which had the highest 
density of logging. So it is difficult to determine how logging could have impacted modern day forest 
structure. Logging may have occurred in discrete areas across the assessment area, and thus just small 
patches would be influenced by logging. Further research is needed to verify the extent of logging in 
southern California. Secondly, wildfires have been largely absent from interior forests since the early 
1900s to the 2000s (Stephenson & Calcarone, 1999; Nigro & Molinari, 2019). Collins et al. (2011) found 
an increase in density of large diameter (>61.1cm) trees in Yosemite National Park as result of fire 
suppression. Thus, the approximately 80 to 100+ year absence of fire could have been sufficient time for 
small diameter trees to graduate to the larger size class.  

In conclusion, we found significant changes in forest structure over the past century. These changes have 
important consequences for forest resilience, ecosystem services, and fire regimes. Our qualitative and 
quantitative analysis will be a valuable contribution to the USFS’ NRV of southern California YPMC. 
The USFS will be able to integrate our analysis of historic conditions and shifts of forest structure over 
the last century into their forest health planning, as mandated by the LMP. Our analysis will provide a 
framework when making decisions about YPMC forest conservation.   
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6. Species Distribution Model  
 
6.1 Overview 
 
We used the maximum entropy model (MaxEnt) version 3.3.3k (Phillips et al., 2006; Phillips & Dudík, 
2008) species distribution model (SDM) to model the historic, current, and projected habitat suitability of 
P. jeffreyi and P. ponderosa (yellow pines) across the Transverse Ranges. MaxEnt is a popular SDM used 
to estimate the probability of suitable habitat and future species distributions. MaxEnt has been found to 
outperform comparative SDMs on several occasions (Aguirre-Gutiérrez et al., 2013; Elith et al., 2006; 
Giovanelli et al., 2010; Merckx et al., 2011; Wisz et al., 2008).  
 
Researchers have used MaxEnt to estimate suitable habitat for adult conifers (Franklin et al., 2013; 
McKenzie et al., 2003; Qin et al., 2017), but predicting future ranges based on current adult conifer 
distributions has drawbacks. This is an inappropriate approach since the conditions in which adult 
conifers germinated hundreds of years ago are not indicative of today’s climate. Adult conifers can persist 
in areas no longer suitable for new recruits (Bell et al., 2014; Serra-Diaz et al., 2015). Therefore, the 
earlier and more climatically sensitive life stage of a conifer, i.e. seedlings and saplings (Ropert‐Coudert 
et al., 2015), should be used as indicators of range shifts for long-lived, sessile species or as indicators for 
more general changes in forest conditions. Current researchers have already found range shifts between 
the ranges of adult and juveniles of the same species using species distribution models (Lenoir et al., 
2009; Monleon & Lintz, 2015; Serra-Diaz et al., 2016; Zhu et al., 2012, 2014) and common garden 
experiments have also highlighted these shifts (Dingman et al., 2013; Fisichelli et al., 2014). Thus, we 
projected future distributions of yellow pines using presence data of saplings, rather than adults. Modeling 
sapling distributions is a more practical approach since saplings are more representative of how current 
climatic conditions impact landscape scale distribution of a species. To our knowledge, only one other 
researcher has created a SDM or MaxEnt model using only data on conifer saplings. McCann & 
Spasojevic (2020) compared the current distribution of saplings and adults from over two dozen tree 
species. Shirk et al. (2018) modeled Southwestern white pine using all life stages of the species, including 
seedlings and saplings, as presence points, but did not model based on sapling presences separately.  

While seedling germination and survival in the first few years is a critical bottleneck period (Walck et al., 
2011), we instead decided to focus on the continued survival of saplings, which is the next step of conifer 
recruitment after seedling establishment. Researchers have found that 30-year climate averages are poor 
predictors of seedling establishment (Serra‐Diaz et al., 2016). 30-year intervals are marked by high annual 
variability. Seedlings tend to recruit during periods of above average rainfall, which are masked by 30-
year climate averages. While we considered using annual weather data of the year a seedling or sapling 
germinated as climate inputs into our model, this was not feasible for two reasons. One, neither the year 
of germination nor tree age was provided in the presence data. There are no studies linking d.b.h. or 
height of yellow pines, or conifers in general, to an exact or approximate age since growth is highly 
dependent on environmental conditions (Hallin, 1957). However, some researchers have approximated P. 
jeffreyi age from d.b.h., but estimates vary between studies. Minnich et al. (2000) approximated that it 
took around 10 years for a sapling to reach a d.b.h. of 1.2in Jenkinson (1990) noted that it took 11 years 
for P. jeffreyi in plantations, which are managed to have ideal growing conditions, to reach a d.b.h. of 
1.7in and 20 years to reach a d.b.h. of 6.4in, while Oliver (1972) noted it took these trees 30 years to 
reach an average d.b.h. of 6in on another plantation. These studies illustrate strong variation in P. Jeffreyi 
growth rates, and therefore, we could not reliably link d.b.h. measurements to age in our data. Second, 
using annual weather data in our model was not feasible because weather data was only available at 4-km 
resolution, which is too coarse for our study area. Overall, we conclude that it is appropriate to model 
habitat suitability for saplings because yellow pines can persist in the sapling life stage (<5in d.b.h.) for 
several decades and the presence of yellow pine saplings indicate areas where yellow pines can not only 
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germinate and survive the critical first few years, but also where individuals can continue to persist for 
several years or decades.  

Our analysis was split into three parts to compare habitat suitability of yellow pines saplings in the past, 
present, and future. First, we compared current (1981-2010) habitat suitability for yellow pine saplings 
and adults. Second, we modeled historic (1921-1950) yellow pine sapling distributions using current 
sapling presence points to postdict suitable habitat under a historic climate. Third, we projected future 
suitable habitat of yellow pine saplings in 2010-2039 and 2040-2069 under a range of eight likely climate 
change scenarios. Analyzing historic, current, and future suitable habitat of saplings allowed us to 
compare changes in yellow pine distributions across time, while comparing current sapling and adult 
suitable habitat assessed for potential modern-day range mismatches between the two conifer life stages.  

6.2 Methods 

6.2.1 Study Area  

 
We narrowed the geographic extent of our analysis to just the Transverse Ranges, rather than modeling 
suitable habitat of yellow pines across all of southern California. The Transverse Ranges include southern 
LPNF, ANF, and northern SBNF (Figure 34). We chose to model the entirety of the Transverse Ranges as 
this area had the most available data and had the same geographic orientation (east-west). Local species 
adaptations, which may be influenced by geographic orientation, often affect species distributions (W T 
Adams et al., n.d.). Modeling across the same geographic orientation helped ensure that we were 
modeling trees with similar genotypes. In contrast, CNF and southern SBNF, which are located in the 
Peninsular Range, have a north-south orientation, and were lacking presence points. We further 
subdivided the Transverse Ranges into three regions: western, central, and eastern (Figure 35). These 
three regions consist of unique mountain ranges and climates. Comparing trends in habitat suitability 
across these regions may provide insight into how yellow pine saplings will fare under various 
environments.  

 

Figure 34. We analyzed suitable habitat of yellow pines in the Transverse Ranges, which includes the 
southern LPNF, ANF, and northern SBNF. 
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Figure 35. Subdivisions of the Transverse Ranges. The western Transverse Ranges includes LPNF and 
western ANF. The central Transverse Ranges includes eastern ANF, and western SBNF. The eastern 
Transverse Ranges includes central and eastern SBNF.  

6.2.2 Species Selection 
 
We focus our model on yellow pines as they are well adapted to drought (Hilberg et al., 2016) and fire 
(U.S. Forest Service, 2019). These important adaptations make yellow pines critical to the long-term 
persistence of conifer forests under climate change. Additionally, with P. jeffreyi covering over 112,000 
acres (Table 1) it is one of the most abundant conifers in southern California. Pinus ponderosa only 
occupies approximately 12,000 acres (Table 1). While we would have preferred to model P. jeffreyi and 
P. ponderosa separately, these species look very similar at the sapling stage before they are cone bearing 
(H. Safford, personal communication, 2020; Franklin & Bergman, 2011). Since they also occupy the 
same geographic range, modern-day surveyors could have accidentally mistaken the species for one 
another. We thus modelled the joint distributions of these species to account for this potential source of 
bias. 

6.2.3 Data  

6.2.3.1 Environmental Data 

A literature review was conducted to determine which environmental variables influence overall 
vegetation distribution and contribute to the survival and germination of yellow pine seedlings and 
saplings. While we do not model seedlings, saplings first need to germinate and survive the seedling stage 
before becoming a sapling. Thus, it is important to consider factors that can influence seedling 
germination and survival. See Table A for a final list of preliminary variables. 
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Climate data:  

Literature review revealed that summer drought stress and soil water moisture were the biggest factors 
affecting establishment of P. jeffreyi (Alpert & Loik, 2013; Davis et al., 2019; Gucker, n.d.; Haller, 1959). 
Near surface temperature (<0.5cm from the soil surface) was also an important factor (Dingman et al., 
2013). Similarly, P. ponderosa establishment is also largely affected by moisture stress (Davis et al., 
2019). Unfortunately, near surface air temperature layers from NASA Earth Exchange (NEX) 
Downscaled Climate Projections (NEX-DCP30) (Thrasher et al., 2013) are only available at 1km 
resolution. 1km was too coarse to provide reliable estimates in mountainous terrain as local topography 
influences microclimates at scales much smaller than 1km; 270m was deemed a more appropriate scale 
(Franklin et al., 2013). Soil water moisture was also not available at a high enough resolution, nor was it 
available projected under future climate scenarios. However, climatic water deficit (CWD) data were 
available at relatively high resolutions (270m) and also projected under future climate scenarios. This 
single variable is commonly used as an estimate for drought stress on plants as it integrates several 
relevant factors such as solar radiation, evapotranspiration, precipitation, and soil water storage 
(McCullough et al., 2016). CWD is also an indicator for broad vegetation distribution (Stephenson, 1990). 

Historic, current, and projected climate data was obtained as 30-year averages from the Basin 
Characterization Model (BCM) (Flint & Flint, 2014). While we explored other sources of climate data, 
including Cal-Adapt and NASA NEX, the finest resolution climate data for our study area was provided 
by BCM at 270 m resolution. 270 m resolution climate data has been deemed an appropriate resolution to 
provide valid, interpretable results from SDMs (Franklin et al., 2013). 

We obtained several climate variables from BCM (version 2014) that were deemed to be important for the 
germination and survival of yellow pines (Table 30). Summer CWD was manually calculated by 
summing 30-year averages of June, July, and August CWD in ArcGIS. We included the maximum 
temperature of the hottest month. July was found to have the highest average maximum monthly 
temperature when compared against June, August, and September temperatures. 

1921-1950 climate data from the BCM was used to model suitable habitat under a historic climate. 
Current suitable habitat was modeled using 1981-2010 climate data. Future suitable habitat was modeled 
using climate projections from two future time periods: 2010-2039 and 2040 -2069. We do not model 
future suitable habitat under 2070-2099 projected climates as the uncertainty associated with climate 
modeling increases with time (Littell et al., 2011); estimates of future climate in 2070-2099 may not be 
reliable (F. Davis, personal communication, May 19, 2020).  

While BCM includes 18 total climate change projections, we selected a representative sample of 
projections to model: MRI-CGCM3 RCP26, MPI-ESM-LR RCP45, CCSM4 RCP85, CNRM-CM5 
RCP85, MIROC5 RCP26, MIROC-ESM RCP45, MIROC-ESM RCP60, MIROC-ESM RCP85 (Figure 
36). The majority of these projections are well represented in California SDM literature (Davis et al., 
2016; Riordan et al., 2018; Stewart et al., 2016), while MRI-CGCM3 was selected to diversify the range 
of emission scenarios modeled.  These projections represent a range of emission scenarios and future 
climatic conditions. We selected four wet (MIROC5 RCP26, MIROC-ESM RCP45, MIROC-ESM 
RCP60, MIROC-ESM RCP85) and four dry (MRI-CGCM3 RCP26, MPI-ESM-LR RCP45, CCSM4 
RCP85, CNRM-CM5 RCP85) climate projections, because it is uncertain whether total precipitation will 
increase or decrease in the future (Bedsworth et al., 2018). In contrast, there is a strong consensus among 
existing literature that temperature will continue to increase throughout California (Bedsworth et al., 
2018). Therefore, while the selected climate projections display variability in future precipitation, 
temperature is expected to increase under all scenarios (Figure 36). 
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Figure 36. Expected changes in precipitation and temperature from 18 climate projections available from 
the Basin Characterization Model. Climate projections selected for use in our model are highlighted in 
yellow. Average temperatures are expected to increase under all selected climate projections, while 
projected precipitation is variable.  

Topography:  

A 30m (1 arc second) digital elevation model (DEM) was extracted from USGS Earth Explorer (USGS 
2017). The DEM was used to calculate topographic wetness index (TWI) and topographic position Index 
(TPI). TWI is used to estimate soil moisture (Beven & Kirby, 1979). TWI values are determined by the 
slope of a pixel and the upslope area that drains through the pixel (Grabs et al., 2009). TPI represents the 
difference in elevation between a pixel and the surrounding pixels in a predetermined neighborhood 
(Guisan et al., 1999; Jenness 2011). 

We used Topography Tools for ArcGIS 10.3 (Dilts, 2015) to calculate TPI. TPI is scale-dependent and 
determined by a user-defined neighborhood. We chose a neighborhood of 5, 7, 10, and 20 cells to cover a 
range of TPI that still represent topographic variation without over or under-representing topographic 
complexity. We decided to let MaxEnt choose the best predictive TPI layer during preliminary model 
runs. ArcGIS hydrology tools and raster calculator were used to calculate TWI. See Appendix N for how 
TWI was calculated.  

Typically, we would want fine-scale TPI and TWI since topography influences microclimates (Opedal et 
al., 2015) which can affect seedling germination and survival (Dingman et al., 2013). However, MaxEnt 
requires all layers to be in the same resolution, so the 30m TPI was upscaled to the same resolution of the 
climate data, which has 270m resolution. This resulted in missing fine-scale spatial variability, but was 
unavoidable.  
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Soil:  

The success of yellow pine establishment is partially influenced by soil characteristics, (Gucker, n.d.; 
Moore, 2006) and therefore, the preliminary soil variables we selected were soil temperature, texture and 
pH. Soil data was obtained from the Soil Survey Geographic Database (SSURGO). SSURGO is the most 
thorough and complete soils database for our study area and has been incorporated into similar habitat 
suitability studies (Hohmann & Wall, 2016; McComb et al., 2019). Downloaded data included both 
tabular and spatial data files. Tabular attribute data was related to spatial data using the ArcGIS Soil Data 
Viewer Toolbar. SSURGO data is available as polygons, but was converted to rasters with the same 
spatial resolution as the 270m BCM climate data. 

Table 30. Preliminary variables included in the initial model runs. Summer is defined as June, July, and 
August (JJA). Original soil variables were available as polygons and thus did not have a resolution. 
Variables selected for inclusion in the final models are highlighted in green.  

 

Appendix O details how we transformed raw climate and soil data layers into finalized ASCII files for 
input into MaxEnt.  

Variable Correlation: 

All climate variables and elevation were checked for correlation in R using corrtest() (Table 31). With the 
exception of annual average precipitation, all variables exhibited strong correlation (r >0.7) with at least 
one other variable. In contrast, annual average precipitation exhibited very weak (r <0.3), weak (0.3< r 
<0.5) and moderate (0.5< r <0.7) correlations to all other variables (Moore et al., 2013). When selecting 
for the final variables in our models (Section 6.2.5), we reduced the amount of correlated variables as 
much as possible. For instance, elevation was removed from the final model as it was moderately to 
strongly correlated with five out of the six additional variables. 
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Table 31. Correlation of the preliminary climate variables and elevation.

 

6.2.3.2 Presence Data 

Modern data was obtained from three sources: FIA (2001-2010), USFS Region 5 Remote Sensing Lab 
(2001-2010), and Field Sampled Vegetation (FSVeg) (2008-2020) (Figure 37). While FIA and USFS 
plots were only included in the NRV analysis when they fell within a 750m buffer around YPMC 
polygons from CALVEG, all plots within the Transverse Ranges were used for analysis in the SDM.  

FIA conducts randomly placed and spatially unbiased surveys approximately every 6,000 acres across the 
United States (O’Connell et al., 2015). FIA provides ideal data for use in MaxEnt since MaxEnt can be 
sensitive to sampling bias (Elith et al., 2011). The data from the USFS is collected using the same 
protocols as the FIA data, including spatially unbiased samples, making it an acceptable dataset to use in 
addition to the FIA data. FSVeg surveys were unfortunately both biased and spatially clustered (Figure 
37). These surveys typically occurred in forest health projects or in fire scars (N. Molinari, personal 
communication, 2021). While it would have been ideal to only use spatially unbiased data from one or 
two sources, the sample size from using FIA and USFS data was too small for a robust model. Thus, it 
was necessary to seek additional presence data. We address how we accounted for this bias in Section 
6.2.6.   

According to the FIA metadata, a seedling is defined as having d.b.h. <1in, while saplings are defined as 
having d.b.h. >1in and <5in (O’Connell et al., 2015). Adults are considered trees with d.b.h. >5in  
(O’Connell et al., 2015). Some plots from the FSVeg dataset were surveyed after 2010. Since these plots 
were surveyed after the time frame of the climate data used in the model (1971-2010), we took a 
conservative approach and only considered saplings to be trees in surveys conducted after 2010 if the 
d.b.h. was 5-7in. We used a slightly higher d.b.h. threshold to account for the surveys occurring outside of 
the time frame of the data. Setting a higher threshold ensured that we did not accidently classify trees that 
germinated after 2010 as saplings. After combining all three current datasets, there were 1779 adult 
presence points and 377 sapling presence points in our study area. After removing duplicate points per 
lifeform within the same pixel, approximately 1133 adult present points and approximately 374 sapling 
presence points remained as inputs for our models. 

The true coordinates of the FIA plots and the USFS plots are altered by a couple hundred meters to up to 
a half mile to protect the plot’s location (O’Connell et al., 2015). Plot locations are altered along a 
horizontal axis, not a vertical axis. This makes the data suitable to be used in a SDM since environmental 
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variables have a strong correlation with elevation. Gibson et al. (2014) did not find a significant 
difference in SDM results when using the altered FIA plot coordinates compared to the true plot 
coordinates. Additionally, FIA and USFS data only comprises a small fraction of our total presence 
points, so they should not significantly affect our MaxEnt results. Thus, we deemed it appropriate to also 
use data with altered coordinates. 

 

 
Figure 37. Yellow pine presence points from the three contemporary datasets.  

6.2.4 MaxEnt Parameters 

Feature types: MaxEnt allows users to choose between five different methods (threshold, hinge, linear, 
quadratic, and product) of modeling features. Our model consisted of linear and quadratic features only. 
Threshold features are valuable in a MaxEnt model when known environmental thresholds exist for the 
establishment and survival of a species (Merow et al., 2013). Literature review did not reveal any 
evidence for the existence of environmental thresholds specific to the survival of yellow pine saplings, 
and therefore we disabled threshold features from our model. Furthermore, thresholds can often be 
problematic and hard to accurately define (Merow et al., 2013), while quadratic features are considered 
appropriate for modeling a species response to predictors (Austin, 2007; Merow et al., 2013). While we 
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considered enabling product features, we had concerns about overfitting our model. Simpler models with 
fewer feature classes can reduce overfitting of the model (Merow et al., 2013). Similarly, threshold and 
hinge features greatly increase model complexity, which can lead to overfitting (Elith et al., 2011; 
Radosavljevic & Anderson, 2014). 

Replication: Replication allows for multiple model runs of the data for consistency and MaxEnt allows 
for three possible resampling methods (cross-validation, subsampling, and bootstrapping). We used the 
K-fold cross-validation resampling method, as this is the most popular method for resampling in MaxEnt 
models (Merow et al., 2013). Using 5-fold cross-validation (k=5) allowed for all presence data to 
contribute to both model training and validation. During cross-validation, presence data is divided into 
five equal subsets. Then, the model is run five times, each time leaving out one of the subsets to be used 
for validation. Finally, results from all five runs were used to create the final probability model (Merow et 
al., 2013; Stohlgren et al., 2015). 

See Appendix P to view MaxEnt model parameter settings in more detail. 

6.2.5 Final Variable Selection 

We define the most parsimonious model as one with the fewest correlated variables with the highest AUC 
(Qin et al., 2017). We had 15 preliminary variables (Table 30); 6 were highly correlated. We performed 
several preliminary model runs for both models (current sapling suitable habitat and current adult suitable 
habitat) to systematically remove variables that contributed little towards predicting habitat suitability. 
This allowed us to minimize the number of correlated variables. We further reduced correlation by 
selecting the variable with the most consistent highest permutation importance from a group of similar 
variables (e.g. annual CWD or summer CWD). We used knowledge of ecological systems (Yiwen et al., 
2016), jackknifing (Qin et al., 2017), permutation importance, response curves, and AUC (Qin et al., 
2017) to select the final variables. The area under the receiver operating characteristic curve (AUC) is a 
commonly used measure of MaxEnt model fit. AUC values above 0.50 indicate that the model is better 
than random at distinguishing true presence points from background points. Therefore, models with high 
predictive accuracy have AUC values close to 1.0 (R. Pearson, 2010).  

The final variables used in both models included: April snowpack, annual CWD, summer precipitation, 
maximum July temperature, and TPI with a user defined grid of 20 cells (Table 30). These variables were 
selected as final variables from both the models.  

6.2.6 Accounting for Sampling Bias 

The majority of current presence data was collected from non-randomly placed FSVeg surveys. While 
FIA and USFS surveys were spatially unbiased, they contributed very little to the total number of 
presence points. To determine if this biased sampling of the FSVeg surveys would affect the model 
results, we compared the distribution of climate across sampled sites to the distribution of climate across 
20,000 random points from YPMC forests in our study area. We did so by comparing the distributions of 
all final variables across these two regions. 

With the exception of summer precipitation (Figure 38), the distribution of these variables across sampled 
plots is generally representative of the distribution of these variables across the background of interest 
(see Appendix Q). Sampled plots generally fell within areas experiencing either low (<5mm) or high 
(>8.5mm) amounts of summer precipitation. Very few current plots (adults: n=35, saplings: n=2) were 
located in areas experiencing intermediate (5-8.5mm) amounts of summer precipitation. However, much 
of the YPMC forest across our study area does receive intermediate amounts of summer precipitation 
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(Figure 39). These areas mainly occur across ANF and western SBNF (Figure 39). We believe areas with 
intermediate precipitation are underrepresented by the plot data because ANF and western SBNF were 
under sampled compared to LPNF and eastern SBNF.   

 

Figure 38. Distribution of summer precipitation. The distribution of summer precipitation (mm) at 
sampled plots is displayed in yellow and is compared to the distribution of summer precipitation across a 
random background sample taken from YPMC forest in the sample area, as displayed in blue.  
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Figure 39. Distribution of summer precipitation across the Transverse Ranges. Regions with mid-
precipitation mainly occur across the Central Transverse Range. 
 
Out of all variables explored, summer precipitation had the greatest relative contribution to our MaxEnt 
models, and therefore, we felt strongly about including summer precipitation as a predictor variable in our 
models. However, by retaining this variable in our models, we had different levels of confidence in 
projections across different regions of the study area. We account for differences in the model’s reliability 
by classifying the entire study area into two regions: high confidence areas and low confidence areas. 
High confidence areas are regions where we have high confidence in the abilities of our models to 
project habitat suitability. These are typically heavily surveyed areas in LPNF and eastern SBNF where 
the sampled plots represent the distribution of low and high amounts of summer precipitation. Low 
confidence areas are regions with projected intermediate amounts of summer precipitation. We have less 
confidence in the ability of our models to accurately predict suitable habitat in these areas because the 
sampled plots do not accurately represent the true distribution of summer precipitation across these areas. 
Conclusions drawn from low confidence areas should be used with caution. Results are reported for high 
and low confidence areas separately. 

6.2.7 Analysis 

We used the maximum training sensitivity plus specificity logistic threshold (maxSSS) values as the 
threshold values for suitability across our models. Threshold selection based on maxSSS has proven 
effective (C. Liu et al., 2005, 2015) and has been used in similar studies (McComb et al., 2019; Riordan et 
al., 2018). Doing so allowed us to transform outputs from continuous values to binary values by 
designating pixels as either suitable or unsuitable depending on whether they fell above or below the 
threshold maxSSS value. The maxSSS value is unique to each model and works by maximizing the sum 
of the true positive rate and the true negative rate. The true positive rate is the probability that suitable 
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habitat is detected as suitable and the true negative rate is the probability that unsuitable habitat is 
detected as unsuitable.   

In the third part of our analysis, we used an integrated outlook approach (McComb et al., 2019), also 
known as an ensemble, by summing habitat suitability under multiple future climate projections to obtain 
final measures of suitability. This is a more desirable and conservative approach that ensures that we do 
not rely on any single projection to draw conclusions since future climate scenarios are so variable. We 
summed habitat suitability across all eight 2010-2039 climate projections to obtain a final measure of 
2010-2039 habitat suitability, which we refer to as the 2010-2039 summed scenario. Similarly, the 2040-
2069 summed scenario represents 2040-2069 habitat suitability across all eight climate projections. 

Furthermore, we explored the effect of two different precipitation regimes on estimates of habitat 
suitability. The eight selected climate projections were subdivided into two groups: wet projections and 
dry projections (see Section 6.2.3.1). For each future time period, suitable habitat under all four wet 
projections was summed in ArcGIS to obtain a joint measure of habitat suitability under a wet future. We 
will refer to the summed measures of habitat suitability under the wet futures as the 2010-2039 summed 
wet scenario and the 2040-2069 summed wet scenario.  

While we modeled habitat suitability across the entirety of the Transverse Ranges, we believe our models 
performed more reliably across certain areas. We took a conservative approach and analyzed high 
confidence areas and low confidence areas separately (see Section 6.2.6). Regions classified as low and 
high confidence changed depending on which climate projection was utilized in the model. Low 
confidence areas under the current sapling and current adult habitat suitability projections were 
designated as such because these areas experienced intermediate amounts of summer precipitation under 
the current climate. In part three of our analysis, future habitat suitability projections were summed to 
create final summed scenarios. Low confidence areas under the final summed scenarios were designated 
as such if they were projected to have intermediate amounts of summer precipitation under any of the 
future climate projections used to create the given summed scenario.  
 
Each of the three parts of our analysis involved comparing two or more final habitat suitability layers 
(final habitat suitability layers used in analysis included the following: current sapling, current adult, 
2010-2039 summed scenario, 2040-2069 summed scenario, 2010-2039 summed wet scenario, 2010-2039 
summed dry scenario, 2040-2069 summed wet scenario, and 2040-2069 summed dry scenario). For 
comparison purposes, areas were analyzed as low confidence areas if they were projected to have 
intermediate amounts of summer precipitation under any of the layers being compared. For instance, 
when comparing suitable habitat between the current sapling, 2010-2039 summed scenario, and 2040-
2069 summed scenario, cells were assigned as low confidence areas if they had intermediate amounts of 
precipitation under any of the three layers. This may cause some high confidence areas from certain 
layers to be re-classified as low confidence areas for analysis purposes. For this reason, the amount of 
current suitable sapling habitat reported across high confidence areas will vary depending on which layers 
are being compared. We acknowledge that this is a conservative approach towards determining low and 
high confidence areas for analysis. However, doing so allows us to more reliably compare across various 
climate scenarios with high confidence. 
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6.3 Results 

All final model AUC and maxSSS values are displayed below in Table 32.  

Table 32. MaxEnt model summaries. Model AUC and MaxSSS values were consistent across all historic, 
current, and future sapling projections, as all projections were built from the current sapling model.  

 

6.3.1 Current Suitable Habitat of Saplings and Adults 

 
Current suitable habitat for both saplings (AUC=0.953) and adults (AUC=0.915) was concentrated in 
eastern SBNF and central LPNF; notably less suitable habitat was found in ANF (Figure 40). Our models 
predicted a 10.4% decrease in suitable habitat for saplings as compared to adults across high confidence 
areas (363,324 vs. 405,675 acres). Across low confidence areas, we expect a 30.6% decrease in suitable 
habitat for saplings as compared to adults (56,222 vs. 81,045 acres). 
 
Of the total 405,675 acres of projected adult suitable habitat across high confidence areas, 55,249 acres 
were found to be uniquely suitable for just adults. Across low confidence areas, 24,841 out of the 81,045 
total acres of projected adult suitable habitat were found to be uniquely suitable for just adults. In 
comparison, only 12,898 acres of habitat projected across high confidence areas and no habitat projected 
across low confidence areas were uniquely suitable for saplings. The remaining suitable habitat is suitable 
for both saplings and adults. See Appendix R for detailed maps and analysis comparing current sapling 
and adult suitable habitat in the three portions of the study area.  
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Figure 40. Current (1981-2010) projected yellow pine sapling and adult suitable habitat. Pink regions 
depict habitat projected to be suitable for both saplings and adults, while purple regions depict habitat 
projected to be suitable for only saplings and green regions depict habitat projected to be suitable for only 
adults.  Low confidence areas are represented by hash marks. 

Forests currently dominated by Ponderosa pine, Jeffrey pine, and mixed conifers (YPMC forest), as 
classified by CALVEG, generally overlap with projected suitable habitat of adult yellow pines (Figure 
41). Only a small proportion of the study area that currently has YPMC forests was not predicted to be 
suitable for adult yellow pines. See Appendix R for detailed maps of current CALVEG YPMC forest 
distributions as compared to projected suitable habitat of yellow pines in the three portions of the study 
area. 
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Figure 41. Current habitat classified by CALVEG as YPMC forest compared to current projected suitable 
habitat for adults. Light green regions represent regions where current YPMC forests overlap with 
projected suitable habitat for adult yellow pines, while red regions represent regions where current YPMC 
forests do not fall within regions of projected suitable habitat. Dark green regions depict projected 
suitable habitat not currently dominated by YPMC forest. Low confidence areas are represented by hash 
marks. 

6.3.2 Past Suitable Habitat of Saplings                

 
Our models predict a 0.3% increase in suitable habitat across high confidence areas and a 16.4% decrease 
in suitable habitat across low confidence areas for yellow pine saplings under current climate conditions 
(AUC=0.953) as compared to historic climate conditions (AUC=0.953). This corresponds to a gain of 
approximately 1,243 acres (from 362,081 to 363,324) and a loss of approximately 11,024 acres (from 
67,246 to 56,222) of suitable sapling habitat across these respective areas. While we observe an overall 
negligible increase in suitable habitat across high confidence areas, trends differ across different portions 
of the study area. The western Transverse Ranges experienced a net gain in suitable sapling habitat 
(27,219 acres), while the central and eastern Transverse Ranges experienced net decreases in suitable 
sapling habitat (11,511 and 14,465 acres, respectively) (Figure 42). See Appendix S for detailed maps and 
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analysis comparing historic and current projected yellow pine sapling suitable habitat in each of the three 
portions of the study area. 

 
Figure 42. Historic (1921-1950) postdicted and current (1981-2010) projected yellow pine sapling 
suitable habitat. Light purple regions depict habitat that is predicted to be suitable under both time 
periods. Orange regions depict habitat only predicted to be suitable under historic climate conditions, 
while dark purple regions depict habitat only predicted to be suitable under current climate conditions. 
Low confidence areas are represented by hash marks. 

6.3.3 Future suitable habitat of saplings 

 
Comparing projected suitable habitat from high confidence areas under the 2010-2039 summed scenario 
and current sapling projection, we found a 50.4% decrease (from 304,328 to 150,867 acres) in projected 
sapling suitable habitat by 2010-2039. Analysis of the low confidence areas revealed a 64.8% decrease 
(from 115,217 to 40,531 acres) in sapling suitable habitat by 2010-2039. Furthermore, our models 
predicted even larger decreases in sapling suitable habitat by 2040-2069, as compared to present-day. Our 
models predicted a 67.1% decrease in suitable habitat (from 304,328 to 100,086 acres) across high 
confidence areas, and a 79.5% decrease (from 115,217 to 23,670 acres) across low confidence areas 
(Figure 43, Table 33). See Appendix T for detailed maps and analysis of current, 2010-2039, and 2040-
2069 projected suitable habitat in the three portions of the study area. 
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Figure 43. Current and future projected yellow pine sapling suitable habitat. Dark purple regions depict 
projected suitable habitat under current climate. Yellow regions represent projected suitable habitat under 
the 2010-2039 summed scenario, while blue regions represent projected suitable habitat under the 2040-
2069 summed scenario. Low confidence areas are represented by hash marks. 
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Table 33. Projected yellow pine sapling suitable habitat under current, 2010-2039, and 2040-2069 
climates. 

Entire Study Area 

Time Period Acres Suitable 
Habitat 

High Confidence 

Percent Change in 
Suitable Habitat 
High Confidence 

Acres Suitable 
Habitat 

Low Confidence 

Percent Change in 
Suitable Habitat 
Low Confidence 

Current 304,328.21 N/A 115,217.43 N/A 

2010-2039 
Summed 
Scenario 

150,867.10 -50.43% 40,531.46 -64.82% 

2040-2069 
Summed 
Scenario 

100,085.68 -67.11% 23,670.37 -79.46% 

 
Under dry future climates, our models projected a 44.6% decline in suitable habitat (from 340,590 to 
188,751 acres) across high confidence areas by 2010-2039 as compared to present-day. Low confidence 
areas are expected to experience a decrease of 54.8% in suitable habitat (from 78,955 to 35,704 acres) 
across the same time frame and conditions (Figure 44, Table 34). Gaps in current and projected suitable 
habitat under a dry future widen under the 2040-2069 projections. Our models predicted a 64.3% decrease 
(from 304,328 to 108,714 acres) in sapling suitable habitat across high confidence areas under dry future 
climates, and a 72.7% decrease (from 115,217 to 31,470 acres) across low confidence areas (Figure 45, 
Table 35).  
 
Under wet future climates, suitable habitat is projected to decrease 40.7% (from 340,590 to 202,045 
acres) across high confidence areas and 49.4% (from 78,955 to 39,973 acres) across low confidence areas 
by 2010-2039 (Figure 44, Table 34). Similarly to trends observed under a dry future, suitable habitat is 
expected to continue decreasing as we project under a wet future into 2040-2069. Under wet future 
climates, our models predicted a 62.4% decrease (from 304,328 to 114,533 acres) across high confidence 
areas and a 78.4% decrease (115,217 to 24,931 acres) across low confidence areas by 2040-2069 (Figure 
45, Table 35.  
 
See Appendix T for detailed maps and analysis of 2010-2039 and 2040-2069 dry and wet habitat 
suitability projections in the three portions of the study area. The model AUC was consistent across all 
current sapling and future sapling projections (AUC=0.953), as all projections were built from the current 
sapling model.  
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Figure 44. 2010-2039 projected yellow pine sapling suitable habitat. Orange regions depict habitat 
projected to be suitable under both the 2010-2039 summed dry scenario and the 2010-2039 summed wet 
scenario. Aqua regions represent habitat projected to be suitable only under the summed wet scenario, and 
red regions represent habitat projected to be suitable only under the summed dry scenario. Low 
confidence areas are represented by hash marks.  
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Table 34. Projected yellow pine sapling suitable habitat under 2010-2039 wet and dry futures. 

Entire Study Area 

Time 
Period 

Acres Suitable 
Habitat 

High confidence 

Percent Change in 
Suitable Habitat 
High Confidence 

Acres Suitable 
Habitat 

Low confidence 

Percent Change 
in Suitable 

Habitat 
Low Confidence 

Current  340,590.36 NA 78,955.28 NA 

2010-2039 
Summed Dry  
Scenarios 

188,750.50 -44.58% 35,703.71 -54.78% 
 
 

2010-2039 
Summed Wet 
Scenario 

202,044.82 -40.68% 39,973.03 -49.37% 
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Figure 45. 2040-2069 projected yellow pine sapling suitable habitat. Orange regions depict habitat 
projected to be suitable under both the 2040-2069 summed dry scenario and the 2040-2069 summed wet 
scenario. Aqua regions represent habitat projected to be suitable only under the summed wet scenario, and 
red regions represent habitat projected to be suitable only under the summed dry scenario. Low 
confidence areas are represented by hash marks.   
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Table 35. Projected yellow pine sapling suitable habitat under 2040-2069 wet and dry futures. 
 

Entire Study Area 

Time 
Period 

Acres Suitable 
Habitat 

High confidence 

Percent Change in 
Suitable Habitat 
High Confidence 

Acres Suitable 
Habitat 

Low confidence 

Percent Change 
in Suitable 

Habitat 
Low Confidence 

Current  304,328.21 NA 115,217.43 NA 

2040-2639 
Summed Dry 
Scenario 

108,714.38 -64.28% 31,470.43 -72.69% 
 
 

2040-2069 
Summed Wet 
Scenario 

114,532.90 -62.37% 24,931.35 -78.36% 
 
 

 
 
6.4 Discussion 
 
Our models indicate that there is a small range mismatch between the current distribution of yellow pine 
saplings and adults across both low and high confidence areas. Literature supports our findings that less 
current habitat may be suitable for conifer saplings as compared to adults (McCann in prep.), as young 
yellow pines are especially vulnerable to environmental conditions (Hilberg et al., 2016). Slight changes 
in climate, such as increases in temperature or decreases in precipitation, are likely to disproportionately 
affect saplings. For instance, saplings may struggle with accessing deep soil water reserves due to their 
shallow root systems, and therefore, will fare worse under drought conditions than adults (Niinemets, 
2010; Wright et al., 2013). With climate change already at play, we expect to see a reduction in the 
potential range of saplings as compared to adults as supported by our model results. Thus, we expect to 
see smaller distributions of yellow pines in the future, as these trees will not be able to regenerate across 
their entire contemporary range following mortality events. Throughout California, the frequency and 
intensity of severe climatic events, such as wildlife and drought, are increasing under climate change 
(Diffenbaugh et al., 2015; Fried et al., 2004; Liu et al., 2010). Such events will likely result in the die-off 
of adult trees, including die-off from areas that are unsuitable for yellow pines saplings in the future. 
While yellow pines may currently occupy these areas, they will not be able to successfully re-populate 
these areas under future conditions, and therefore, the species will no longer be able to persist in these 
areas following die-off events.  
 
Comparing projections of the current suitable habitat of adults to areas currently mapped as YPMC forest 
gives insight into the accuracy of our models. YPMC forests include mixed conifer forests, Ponderosa 
pine, and Jeffrey pine forests. Mixed conifer forests are dominated by a variety of conifers, including P. 
jeffreyi and P. ponderosa as classified by CALVEG. The accuracy of our model results are supported by 
the fact that regions projected to be suitable yellow pine habitat overlap with the majority of YPMC 
forested areas mapped by CALVEG. The main exception to this is projected habitat at the top right of 
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CALVEG mapped YPMC forests in SBNF and in LPNF. In both cases, our model overestimates habitat 
suitability in these areas. This suggests that the loss of suitable habitat in the future is overestimated, 
particularly in LPNF.  
Postdictions of suitable habitat reveal a negligible change in the amount of sapling suitable habitat under 
historic and current climates across high confidence areas. However, our models’ projections indicate 
notable decreases in sapling suitable habitat across high confidence areas under expected 2040-2069 
future climates. Across low confidence areas, results illustrate a loss in suitable sapling habitat under both 
historic and current comparisons and current and future comparisons. However, the loss in sapling 
suitable habitat is much greater when comparing current and future projections as compared to past and 
current projections (79.5% vs. 16.4%). Although climate change was already at play in the early 20th 
century, the rate of warming quickly accelerated in the 1970s and is expected to continue accelerating 
(Indicators of Climate Change in California, 2018). Between 1880-1980, global temperatures have 
increased at an average rate of 0.07°C per decade, while global temperatures have increased at a much 
faster rate of 0.18°C per decade since 1981 (State of the Climate: Global Climate Report for Annual 2019, 
2020). Therefore, comparisons of historic and current climates will be more similar than comparisons of 
current and future climates across the same time period, resulting in greater similarities in habitat 
suitability across historic and current models as compared to current and future models. In fact, 
comparisons of projected suitable sapling habitat under current and 2010-2039 climates reveal notably 
greater changes across both low and high confidence areas in 30 years than changes observed across the 
past 60 years. Due to the accelerating rate of climate change, we can expect to see disproportionately 
greater losses in sapling suitable habitat beyond our 2040-2069 projections.   
 
The projected losses of suitable habitat for yellow pine saplings by 2010-2039 and 2040-2069 does not 
necessarily mean that the overall range of yellow pines will also contract by these time frames. Yellow 
pine adults are very drought tolerant (Hilberg et al., 2016) and therefore, can continue to persist in areas 
that are not suitable for saplings for several decades, if not centuries. Rather, disturbance events, such as 
severe wildfire, drought, or bark beetle attack, will likely be the catalyst for shifting ranges of yellow 
pines (Davis et al., 2019). Wildfires and droughts are predicted to become more frequent and severe 
(Diffenbaugh et al., 2015; Williams et al., 2019),  which will contribute to the mortality of adult yellow 
pines across the landscape. The loss of adult yellow pines from areas unsuitable for saplings will lead to 
areas where yellow pines will likely not re-establish, as future climates across these areas are predicted to 
no longer support sapling regeneration. This trend has already been observed with oak species, Q. 
douglasii and Q. kelloggi, in the southern Sierra Nevada and western Tehachapi Mountains (Davis et al., 
2016). However, bark beetles tend to avoid pole-sized trees (H. Safford, personal communication 
December 1, 2020), so it’s possible that some younger yellow pines will be spared from such attacks and 
continue to persist across these areas. 
  
Despite our predictions of future losses in yellow pine suitable habitat, Serra-Diaz et al. (2016) suggest 
that areas suitable for seedling establishment are likely larger than predicted by species distribution 
models. Seedling establishment is strongly influenced by annual climate variability and often occurs in 
pulses during favorable climatic conditions (Jackson et al., 2009). However, these periods of favorable 
weather are masked by 30-year climate averages. We used 30-year climate averages in the present study, 
so it’s possible that our results underestimate true suitable habitat. Given the general consensus in 
literature that climate change in threatening conifer forests (Diffenbaugh et al., 2015; Fried et al., 2004; 
Liu et al., 2010), we believe that our results illustrating future losses in yellow pine suitable habitat are 
accurate.  However, results from Serra-Diaz et al. (2016) suggest that the magnitude of these predicted 
losses may be overrepresented.  
 
Habitat suitability projections may be used to help in the prioritization of specific areas for conservation, 
by illustrating habitat that will likely be critical to the long-term survival of a species of interest (Elith & 
Leathwick, 2009; Wiens et al., 2009). Funds and resources for conservation activities are often limited, 
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and therefore, conservation efforts should focus on areas that have a high likelihood of contributing to the 
long-term success of the project. MaxEnt models of future plant distributions have been considered in 
various land use planning projects. The results of Qin et al.’s (2017) study mapping future distributions of 
an endangered conifer species were intended to be used in the selection of priority areas for the 
introduction of the species. Similarly, Saarimaa et al. (2019) argue for the results of their MaxEnt model 
to be used to prioritize areas for restoration, thereby benefiting threatened wetland plants. Our analysis 
illustrates areas where yellow pine forests will likely thrive under future climates, as well as where these 
forests are at risk of being lost indefinitely in the event of a stand-replacing disturbance. Conservation 
projects may choose to prioritize one or both of these areas depending on project goals and feasibility, 
among other considerations. Section 7 provides an example of how the results of our SDM may be used 
to help determine high priority conservation areas in YPMC forests throughout southern California.  
 
6.5 Limitations 

While MaxEnt has been used to model habitat suitability across wide ranges (Hu et al., 2015; McKenzie 
et al., 2003; Qin et al., 2017), local genotypes can affect species distributions (Valladares et al., 2014). 
While the Transverse Ranges have the same geographic orientation (east-west) and can be considered the 
same “geographic extent”, this area experiences variation in such factors as topography and rainfall. All 
of these factors can affect local species adaptations, and thus species distributions Valladares et al., 2014; 
Vizcaíno Palomar, 2016) A MaxEnt model of habitat suitability for oaks on the California Channel 
Islands found that model results changed depending on whether the geographic extent of their model 
included all the Channel Islands or each island individually (McComb et al., 2019). This implies that our 
results may vary if we were to model each portion of the Transverse Ranges as their own geographic 
extent. However, the lack of presence data across specific regions of our study area, mainly ANF, 
prevented us from modeling the eastern, western, and central Transverse Ranges separately. General 
trends in future yellow pine distributions can still be drawn from our analysis. 

We acknowledge that it would have been more representative to model the distribution of P. jeffreyi and 
P. ponderosa separately. Although both species are tolerant to drought and cold, P. ponderosa is thought 
to be less drought and cold tolerant than P. jeffreyi and has a smaller distribution throughout southern 
California (Comer et al., n.d.). Young seedlings and saplings are disproportionately affected by drought 
and cold as compared to adult trees, and therefore, such variables are especially important to capture 
when modeling sapling distributions (Gucker, n.d.). The species’ differing tolerances to these 
environmental conditions suggests that projections of these species’ future distributions will vary under 
certain climates, including drought conditions which are expected to increase in the future (Williams et 
al., 2015). By modeling the joint distribution of these species, we may be biasing our models and masking 
the species’ true distributions. However, given that there is a high chance that surveyors are 
misidentifying and mistaking these trees for one another (Section 6.2.2), it is likely that we would to some 
extent unwillingly be mapping their joint distributions even if we chose to model P. jeffreyi and P. 
ponderosa presence points separately. Additionally, although these species may have slightly different 
habitat responses, they are generally believed to occupy similar habitats (Hallin, 1957). Again, our models 
were designed to illustrate general trends in future yellow pine distributions, rather than precise, fine 
scales estimates of habitat suitability. 

We also acknowledge that incorporating annual climate data, rather than 30-year climate summaries into 
our MaxEnt models would likely have more accurately captured suitable sapling habitat across the time 
frame(s) of interest. Annual climate variability strongly affects the germination and survival of young 
trees, and in turn, seedling establishment often occurs in pulses of favorable climatic conditions which are 
masked under 30-year climate summaries (Serra-Diaz et al., 2016). However, annual climate data was 
unavailable at fine-scale resolutions for the study area of interest (see Section 6.2.3.1). Considerations 
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into how using 30-year climate summaries rather than annual climate data may have affected our results 
are discussed in Section 6.4.   

Species distributions are limited in large part by abiotic conditions, biotic interactions, and dispersal 
ability (Simões & Peterson, 2018). While abiotic factors, such as temperature and precipitation, are 
incorporated into SDMs as predictor variables, it is not common to directly model biotic factors 
(Staniczenko et al., 2017). Instead, SDMs may incorporate biotic interactions by using specific 
information about interacting species, such as occurrences of these species, as predictor variables in the 
model (Araújo & Luoto, 2007; Franklin, 2010; Godsoe et al., 2016; Morueta‐Holme et al., 2016). Biotic 
interactions, including competition, parasitism, and mutualism, can have large effects on the distribution 
of plant species (Dam, 2009). However, integrating biotic interactions with SDMs is still a developing 
field of study (Wisz et al., 2013). Furthermore, mapping species distributions across large 
macroecological scales makes it difficult to incorporate local species interactions, which are often studied 
at much smaller extents and finer resolutions (Staniczenko et al., 2017). It is also often difficult to predict 
the spatial extent and intensity at which biotic interactions will influence species distributions (Kadowaki 
et al., 2016). For instance, future management practices are unpredictable and have the potential to 
strongly influence interacting species. For these reasons, we chose to examine only how abiotic factors 
affect yellow pine distributions.  

While survey data utilized for this study was in the form of presence/absence data (Section 6.2.3.2), we 
selected MaxEnt as our SDM of choice, which was designed to work with presence-only data (Elith et al. 
2011; Guillera‐Arroita et al., 2014). Biotic factors, such as canopy cover, likely influence yellow pine 
distributions. Yellow pine adults and seedlings are shade intolerant and are often replaced by more shade 
tolerant conifers, such as white fir and incense cedar, under shade conditions (Bigelow et al., 2011; 
Minnich et al., 1995). YPMC forest tree density and canopy cover have significantly increased in 
southern California (Section 5.1 and 5.5), suggesting that shade may be influencing yellow pine 
distributions. While a given region may be climatically suitable for yellow pine saplings, high canopy 
cover may prevent seedlings and saplings from germinating and surviving in the shaded conditions. 
Surveying across these areas could result in recorded yellow pine sapling absences that were more a 
factor of canopy cover, rather than the modeled abiotic environment. Additionally, surveying in recent 
fire scars would result in yellow pine saplings being recorded as absent from recently burned areas. 
However, in the absence of fire, the abiotic conditions across these locations may actually be suitable for 
yellow pine establishment and growth. By modeling presences only, we ensure that our models are not 
affected by absences that could have been influenced by biotic factors. Our predictions of suitable habitat 
represent areas that are predicted to be climatically suitable for yellow pine saplings. Results from our 
analysis may be considered along with information on local species presences and interactions to ensure a 
more holistic approach towards conservation planning.  

Lastly, our method of requiring all cells to be considered suitable habitat when creating the summed 
future scenarios could result in future habitat suitability being underestimated. For example, if a cell was 
suitable in 7 of the 8 future scenarios, then the cell would not be considered suitable. Future analyses 
should explore different thresholds when determining future suitable habitat.   
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7. Prioritization 

Our goal with this objective is to demonstrate one way our quantitative analysis and a NRV can be used 
in a management setting while tying together our results from the species distribution model. We identify 
YPMC forests in SBNF that are a priority for forest health projects using a multi-criteria decision 
analysis. Forest health projects aim to increase the resiliency of forested lands and provide watershed 
protection that maintain the ecosystem services provided by the forest. Some examples of management 
actions utilized in forest health projects include reintroducing fire into these landscapes through the use of 
prescribed burning or if prescribed fire is not possible, actions that mimic fire, like thinning may also be 
utilized. 

While our NRV results are not used directly in this example to identify priority conservation areas, our 
NRV analysis can be used to create management goals and define desired conditions. For example, if a 
manager’s goal is to protect future watersheds from runoff and erosion caused by high severity fire, an 
assessment of the current stand structure (tree density, canopy cover, etc.) can be compared to historical 
conditions to evaluate the need for action and define a target desired condition. Our NRV results can be 
used to set goals for tree density and size class distribution that will promote forest resilience. 
Additionally, our analysis comparing changes in historic and contemporary forest structure were not used 
in this analysis. However, our results can be used to create a spatial model of tree density or basal area to 
further determine where to focus forest health projects.  

We acknowledge that managers will have to incorporate their own constraints and select their own criteria 
when determining where to do forest health projects. Thus, this analysis represents an exploratory case 
study to demonstrate how limited resources can be utilized towards conserving forests that will have the 
greatest impact on long-term ecosystem health.  

7.1 Methods 

To identify key conservation areas within YPMC forests, we first identified areas in which management 
actions are allowed. These areas are referred to as legal and administrative constraints (North et al., 2015). 
We identified three main legal and administrative constraints: wilderness, California spotted owl (Strix 
occidentalis occidentalis) habitat, and riparian zones. Forests within wilderness boundaries were excluded 
because activities within wilderness, even conservation activities, are harder to accomplish for several 
reasons. First, mechanical devices are not allowed within wilderness boundaries (e.g., no cars or 
chainsaws; hand tools only). This limitation prohibits forest health activities like mechanical thinning 
(North et al., 2015). Second, working in wilderness would require a minimum requirements decision 
guide to be completed (https://wilderness.net/practitioners/minimum-requirements-analysis). We 
excluded California spotted owl habitat because working within these areas is also highly restricted 
because they are a species of special concern (North et al., 2015). Last, we excluded areas within 100ft of 
a river, as recommended by current USFS guidelines (North et al., 2015). Any YPMC forest within these 
legal and administrative constraints was excluded from the prioritization model.  

After identifying areas where conservation actions can legally take place, we overlapped three layers in 
ArcGIS to determine which of the remaining YPMC forests would be a priority for forest health projects 
based off of three considerations:  

1. Ecosystem services: Underwood et al. (2018) created five layers at 30m resolution that were 
combined to represent ecosystem services in southern California: runoff, groundwater recharge, 
soil retention, biodiversity, and biomass. We did not use the biomass layer because the estimates 
had low accuracy in forested regions (Underwood per. comm.), making it unreliable to apply to 
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our study area. Marxan was used to estimate biodiversity across southern California. Biodiversity 
is an important underlying factor that influences ecosystem resilience (Peterson et al., 1998; 
Tilman, 1996). Runoff and groundwater recharge were extracted from the Basin Characterization 
Model. Water security and watershed management is an increasingly important issue as climate 
change is expected to alter precipitation patterns (Hayhoe et al., 2004). Soil retention (i.e., 
sediment erosion potential) was estimated using sediment delivery ratio model (SDR) from 
InVEST which required inputs like DEM, a rainfall erosivity index, soil erodibility, and 
normalized difference vegetation index (NDVI). Soil erosion, especially after wildfires which can 
strip the landscape of native vegetation, causes severe damage to human dominated and natural 
downstream communities and reduces water quality (Wohlgemuth & Beyers, 2012). This layer 
identifies areas across the landscape that have the best ability to retain sediment and thus avoid 
soil erosion. 

The continuous values of each layer were converted to deciles. We utilized values that were in the 
top three deciles (top 30%) of each layer (adapted from Underwood et al. 2018) to represent cells 
that would be a priority for conservation (Figure 46A-D). Then we used Raster Calculator in 
ArcGIS to sum the layers to identify ecosystem hotspots. Part of the definition of “hotspots” by 
Underwood et al. (2018) included cells that contained the top deciles of all layers. However, we 
wanted to take a more flexible approach in identifying areas that would be a priority for forest 
health projects, so we defined ecosystem hotspots as cells that contain the top 30% of 3-4 
ecosystem services.  

2. Probability of high fire severity: High severity wildfire has severe repercussions on ecosystem 
health and human infrastructure (Bladon et al., 2014; Fraser et al., 2020; McCaffrey & Rhodes, 
2009). Identifying areas that are at risk for high severity wildfire is the first step in risk reduction 
(Scott et al., 2013). Parks et al. (2018) used a machine learning model to determine the 
probability of a fire being a high severity fire at 30m resolution in ecoregions across the 
southwest U.S. SBNF fell within the South Coast Ecoregion of Parks et al.’s (2018) study (layers 
are available at https://www.frames.gov/NextGen-FireSeverity). Weather and live fuel variables 
best explained severe fire severity in this ecoregion. We used the layer that predicted high fire 
severity under extreme weather conditions and overlapped cells whose probability of fires ranged 
from 0.405-0.8097. 0.8097 is the maximum value of probability of high fire severity. Pixels with 
a value of 0.405 have half the probability of high fire severity occurring as the maximum value.  

3. Future suitable habitat: Within YPMC forests, yellow pines are some of the most drought and fire 
tolerant conifers (Hilberg et al., 2016, US Forest Service, 2019). These characteristics are 
important for resilient forests as droughts and wildfires are projected to increase in the future (Liu 
et al., 2010, Fried et al., 2004, Diffenbaugh et al. 2015). Thus, identifying areas that will be 
suitable habitat for yellow pines in the future is a crucial step in selecting priority conservation 
areas. This layer is a product of our habitat suitability analysis in which we used 8 climate 
scenarios (4 wet and 4 dry) to predict suitable habitat for yellow pine saplings from 2010-2039. 
We conservatively defined cells that were a priority for forest health projects if habitat for yellow 
pine saplings was suitable under 6 of the 8 future climate scenarios.  
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Figure 46. Top 3 percentiles of four ecosystem service layers (biodiversity (A), recharge (B), runoff (C), 
and soil retention index(D)) from Underwood et al. (2018). See Figure 48A for the sum map of these 
ecosystem services.    

The final step in our analysis incorporated feasibility into the selection of areas that could be a priority for 
forest health projects. We used a 1,000m buffer around roads and trails to identify areas easiest to reach 
(adapted from North et al. 2015). Areas where there are existing roads and trails indicate areas where 
personnel can access conservation sites, and are therefore prioritized (i.e., ranked higher) in our model. 
Areas too far from roads are often too difficult to reach due to steep terrain or dense vegetation.  
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7.2 Results  
 
There are a total of 113,900 acres of YPMC forests in SBNF. Of this, forest health projects can take place 
in 86,937 acres (76.2%) after excluding areas in which legal and administrative constraints make forest 
health projects infeasible (Figure 47). We used a binary approach in our multi-criteria decision analysis to 
select areas that would be a priority for conservation, meaning if a cell met one of the priority criteria it 
was assigned a value of 1. We only used cells that were a priority in all 3 criteria (ecosystem services, fire 
severity, and future habitat suitability of yellow pine saplings). After incorporating the priority criteria, 
only 9,280 acres (8.1%) of YPMC forest would be prioritized for forest health projects (Figure 48). 
Finally, after incorporating feasibility by only considering priority forests that are within 1,000m of a road 
or trail, only 6,749 acres of these priority areas would be feasible for forest health projects (Figure 49). 
After accounting for legal and administrative constraints, feasibility, and priority requirements a total of 
5.9% of YPMC forests (6,749 acres) are a feasible priority for forest health projects (Figure 50). 
 
 

 
Figure 47. (A) Areas in SBNF where conservation would not be possible due to legal and administrative 
restrictions overlapped with YPMC forests. (B) YPMC forests where forest health projects can be 
conducted as they are not restricted by legal or administrative constraints (areas in purple).  
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Figure 48. (A) Ecosystem services hotspots. We utilized cells that contained the top 3 deciles of 3-4 
ecosystem services. (B) Probability of burn severity in extreme weather conditions if a fire were to occur 
(Parks et al., 2018). We utilized cells that had a 0.405-0.8097 probability of high severity fire if a fire 
were to occur. (C) Projected future suitable habitat of yellow pines from 2010-2039. We utilized cells that 
were suitable in 6 of 8 climate scenarios. (D) Cells that occurred in all 3 layers used to identify areas that 
would be a priority for forest health projects (orange). These areas were overlapped with YPMC forests 
that fall outside of legal and administrative constraints (see Figure 46B) (purple).  
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Figure 49. YPMC forests that are a priority for conservation and outside of legal and administrative 
constraints were intersected with a 1000m roads buffer. 
 

 
Figure 50. YPMC forests that are a priority for conservation after overlapping areas that are outside of 
legal and administration constraints feasible for conservation (Figure 47), contain priority attributes 
(Figure 48), and are feasible to access (Figure 49). 
 
7.3 Discussion 
 
Ultimately, identifying areas that should be a priority for forest health projects is a subjective task that 
may vary with the needs of stakeholders and or funding constraints. Selecting the criteria used to identify 
what values represent forests that would be a priority for conservation was the most subjective part of the 
analysis that will change depending on management goals, stakeholders, and the forest health activity. 
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Additionally, managers and stakeholders may opt for a different approach in their multi-criteria decision 
analysis. While we used a binary approach that applied equal weight to each of the three priority layers, 
others may choose to assign more or less weight to the layers depending on the management objectives.  
 
Several parts of our analysis still remain relevant when planning for a non-theoretical forest health 
project. The most applicable part of this analysis for future projects was determining where forest health 
projects are allowed to take place due to legal and administrative constraints. All managers will be 
affected by these constraints when planning forest health projects. Feasibility will also be a critical 
component influencing where forest health projects are likely to occur. Our feasibility analysis likely 
overestimates the total acres of YPMC forests that we determined to be feasible for conservation projects. 
For one, it is very likely that not all the roads and trails used to create the feasibility buffer are actually 
passable. Local knowledge of the traversability of roads and trails would further narrow down the amount 
of YPMC forests feasible for conservation. Second, inclusion of a threshold for slope (North et al., 2015) 
would also narrow down forests that can be safely accessed. Additionally, a NRV will remain useful 
despite the situation, but it is up to the managers to decide how to utilize the NRV analysis. A NRV can 
be used to determine what conditions warrant intervention, create management goals, and inform the 
public on justifications for forest health projects.  
 
While the variables managers use to define priority areas will change depending on the situation, we 
encourage prioritization efforts to incorporate, in some way, all the three topics used in this analysis to 
prioritize locations for forest health projects: ecosystem services, fire, and future climate change. Three of 
the four ecosystem services layers we used (runoff, recharge, and soil retention index) pertained to water 
quality and security. Since climate change is expected to alter precipitation patterns (Hayhoe et al., 2004), 
managing watersheds will be an increasingly important task to protect and preserve water resources. 
Future prioritization should also consider how fire will impact YPMC forests. Fire suppression has led to 
the densification of forests in southern California (see Section 5.2), which can result in high severity 
crown fires (Steel et al., 2015). Crown fires can have long lasting impacts on natural ecosystems and 
human environments (Bladon et al., 2014; McCaffrey & Rhodes, 2009; Fraser et al., 2020). Thus, 
preventing crown fires should be a priority for managers and can be achieved in part by considering fire 
risk when establishing priority criteria. Lastly, managers should incorporate climate change impacts into 
prioritization models. This can help direct limited resources to forests that will be the most likely to 
persist under future climate scenarios. For example, restoration may be prioritized in areas where the 
future climate will be most likely to support YPMC forests. Alternatively, if protecting current, mature 
YPMC forests was the management goal, one can make the argument that resources should be prioritized 
to forests that are least likely to be suitable for recruiting seedlings under future climates. Since adult 
conifers can continue to persist in climates no longer suitable for new recruits, managers may want to 
keep these forests on the landscape so they can continue to provide important ecosystem services for as 
long as possible. Thus, managers may want to conduct forest health projects, such as thinning, in these 
areas to reduce the likelihood of high fire severity since conifer seedlings would be unlikely to replace 
adult conifers after a wildfire.  
 
In conclusion, the goal of this case study was not to determine definitively where forest health projects 
should be done. Rather, the goal was to conduct a thought exercise demonstrating how managers can 
integrate several criteria to help make educated decisions for conservation activities that prioritize 
ecosystem health with limited funding. Our approach exhibits one way forest managers can incorporate 
modern research when planning for resilient forests.   
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Appendix 
 
Appendix A: Literature review  
 
Our client, Nicole Molinari, contacted USFS librarian, Julie Blankenburg, on April 2, 2020. Her search 
was as follows: 

● California montane conifer forest search strategies 

○ Google Scholar: “montane conifer” AND (“Southern California” OR Baja) AND 
(paleoclimate OR paleoclimatology).  

○ Google: “montane conifer” AND (“Southern California” OR Baja) AND (paleoclimate 
OR paleoclimatology).  

● Flora 
○ Hathitrust: “montane conifer” AND (“Southern California” OR Baja) AND (flora OR 

survey); Title(plants OR flora) AND title(California); “montane forest” AND California; 
(“Southern California” OR baja) AND ("pinus jeffreyi"OR "pinus lambertiana" OR 
"pseudotsuga macrocarpa" OR "pinus flexilis" OR "pinus coulteri"); Montane AND 
(“Southern California” OR baja) AND ("pinus jeffreyi"OR "pinus lambertiana" OR 
"pseudotsuga macrocarpa" OR "pinus flexilis" OR "pinus coulteri")  

○ Google Scholar: Montane AND (“Southern California” OR baja) AND ("pinus 
jeffreyi"OR "pinus lambertiana" OR "pseudotsuga macrocarpa" OR "pinus flexilis" OR 
"pinus coulteri"); “montane conifer forest” (“Southern California” OR baja) history; early 
exploration of Southern California; botanical exploration of Southern california and baja; 
flora and fauna baja conifer 

● Fire 
○ Google Scholar: Fire AND “montane conifer” AND (california or baja); "Fire history" 

“montane conifer” (california or baja) 
● Locations 

○ Google Scholar: “sierra Juarez” OR “sierra san pedro mártir” OR idyllwild OR “san 
jacinto mountains” OR “big bear” OR “cuyamaca state park” OR “mount pinos” OR 
“reyes peak” OR “frazier mountain” OR “laguna mountain” OR “palomar mountains”  

○ HathiTrust: “sierra Juarez” OR “sierra san pedro mártir” OR idyllwild OR “san jacinto 
mountains” OR “big bear” OR “cuyamaca state park” OR “mount pinos” OR “reyes 
peak” OR “frazier mountain” OR “laguna mountain” OR “palomar mountains”; (“sierra 
Juarez” OR “sierra san pedro mártir”) AND (“montane conifer”); (idyllwild OR “san 
jacinto mountains”) AND (“montane conifer”); (“big bear” OR “cuyamaca state park”) 
AND  (“montane conifer”); (“mount pinos” OR “reyes peak”) AND (“montane conifer”); 
(“frazier mountain” OR “laguna mountain”) AND (“montane conifer”); “palomar 
mountains” AND “montane conifer”; Southern California conifer mountain 

● Dendrochronology 
○ Google Scholar: dendrochronology "Southern california" 

 
We had an initial consultation with UCSB Research and Engagement Librarian, Kristen LaBonte, on 
April 28, 2020. GotF members conducted their own literature search to find additional sources.  

● Key terms included a combination of the following: 
○ Location: Southern California; Baja California/Baja, Mexico; San Bernardino National 

Forest, Los Padres National Forest, Cleveland National Forest, Angeles National Forest 
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○ Time periods: current; future; historic; pre-european; 16th-19th Century; holocene; early 
1900s; pre-historic 

○ Fire: Wildfire; Wildland urban interface (WUI); Prescribed burns; Fuels 
management/reduction; forest resilience; regeneration; tree rings/dendroecology; Forest 
thinning; Native American burning; fire suppression 

○ Forest Structure and Composition: d.b.h. (diameter at breast height); Yellow Pine; Mixed 
Conifer; Jeffrey Pine; Ponderosa Pine; Ecosystem services; snags; Weislander 

○ Natural Range of Variability: NRV; Historic/natural range of variation 
○ Spotted Owls/Wildlife: Endangered species; Species of concern; Southern spotted owl; 

Policy; Listed species 
○ Climate & Mortality: Climate modeling; Drought Predictions; Mitigation; Business as 

usual (BAU); Increased temperatures; Habitat shift/regime shift; Tree mortality; Dieback; 
Bark Beetles 

● Databases searched: Melvyl, Hathi Trust Digital Library, LA Times historic newspapers, Google 
Scholar, Web of Science, National Emergency Library, and ProQuest Dissertations and Theses.  

● Searched reference sections of key articles primarily from Dr. Richard Minnich.  
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Appendix B: Tree density code example 
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Figure B1. Sample code of how we calculated tree density using a landscape approach and slope 
calculated area.  
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Appendix C: Additional tree density analysis 

 
Figure C1. Mean tree density by National Forest excluding oak species (Q. chrysolepis and Q. kelloggii). 
Xs represent the median, black circles represent the mean, and the bars represent the standard error. 
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Figure C2. Mean tree density by elevation and aspect between VTM and FIA data. Xs represent the 
median, black circles represent the mean, and the bars represent the standard error.  
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Figure C3. Mean tree density by elevation and aspect for oaks only (left). Mean tree density by elevation 
and aspect for conifers only (right). Note, all data was used even if it had a small sample size. Xs 
represent the median, black circles represent the mean, and the bars represent the standard error.  
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Appendix D: Tree density metrics of variance 
 
Table D1. Means, quantiles, and other measures of distribution for tree density by functional group (oaks 
& conifers), shade and fire tolerance, and shade and fire tolerance excluding oaks. Means were calculated 
across all plots in the landscape (VTM: n=195, FIA: n=210). 

 
 
Table D2. Means, quantiles, and other measures of distribution for tree density by species. Means were 
calculated across all plots in the landscape (VTM: n=195, FIA: n=210).
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Table D3. Means, quantiles, and other measures of distribution for tree density by elevation and elevation 
and aspect.  

 
 
Table D4. Means, quantiles, and other measures of distribution for tree density by elevation and aspect 
for oaks.  
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Table D5. Means, quantiles, and other measures of distribution for tree density by elevation and aspect 
for conifers.  

 
 
Table D6. Means, quantiles, and other measures of distribution for tree density by national forest, 
including and excluding oaks.  
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Appendix E: Additional tree size class density analysis and metrics of variance 

 
Figure E1. Tree density by size class by National Forest excluding oaks.  

 
Figure E2: Comparison of the average tree density of A. concolor, C. decurrens, P. lambertiana, and 
yellow pine by size class and National Forests across all southern California plots using VTM and FIA 
data using a landscape approach. Sample sizes for ANF: n=20 (VTM) and n=26 (FIA); LPNF: n=54 
(VTM) and n=62 (FIA); and SBNF: n=113 (VTM) and n=107 (FIA). Interpretations from this graph 
should be made with caution. Most groupings had very small sample sizes (n<10).  
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Table E1.  Means, quantiles, and other measures of distribution of tree size class distribution for all plots 
in the landscape. Means were calculated across all plots in the landscape (VTM: n=195, FIA: n=210). 

 
 
Table E2.  Means, quantiles, and other measures of distribution of tree size class distribution by 
functional group. Means were calculated across all plots in the landscape (VTM: n=195, FIA: n=210). 
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Table E3.  Means, quantiles, and other measures of distribution of tree size class distribution by species.  
Means were calculated across all plots in the landscape (VTM: n=195, FIA: n=210). 
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Table E4.  Means, quantiles, and other measures of distribution of tree size class distribution by species 
(continued). Means were calculated across all plots in the landscape (VTM: n=195, FIA: n=210). 

 
 
Table E5. Means, quantiles, and other measures of distribution of tree size class distribution by shade and 
fire tolerance including oaks. Means were calculated across all plots in the landscape (VTM: n=195, FIA: 
n=210). 
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Table E6.  Means, quantiles, and other measures of distribution of tree size class distribution by shade 
and fire tolerance excluding oaks.  Means were calculated across all plots in the landscape (VTM: n=195, 
FIA: n=210). 

 
 
Table E7. Means, quantiles, and other measures of distribution of tree size class distribution by elevation 
classes.  
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Table E8. Means, quantiles, and other measures of distribution of tree size class distribution by elevation 
classes for oaks only.  

 
 
Table E9. Means, quantiles, and other measures of distribution of tree size class distribution by elevation 
classes for conifers only.  Means were calculated across all plots in the landscape (sample sizes here). 
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Table E10. Means, quantiles, and other measures of distribution of tree size class distribution by National 
Forest. Sample sizes for ANF: n=20 (VTM) and n=26 (FIA); LPNF: n=54 (VTM) and n=62 (FIA); and 
SBNF: n=113 (VTM) and n=107 (FIA). 
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Appendix F: Basal area code example 
 
###################################### vtm data ###################################### 
vtm_dbh <- vtm %>%  
  pivot_longer('dbh_4_11':'dbh_36', 
               names_to = "dbh_class", 
               values_to = "dbh_count") %>%  
  filter(dbh_count != 0) %>% # get error when use uncount() and there are rows with a value of 
0 
  tidyr::uncount(dbh_count) %>%  
  mutate(dbh_class = case_when( 
    dbh_class == "dbh_4_11" ~ "10.2-30.4", 
    dbh_class == "dbh_12_23" ~ "30.5-60.9", 
    dbh_class == "dbh_24_35" ~ "61.0-91.3", 
    dbh_class == "dbh_36" ~ "91.4+" 
  )) %>%  
  mutate(dbh_class = as.factor(dbh_class), 
         dbh_class = fct_relevel(dbh_class, levels=c("10.2-30.4", "30.5-60.9", "61.0-91.3", 
"91.4+"))) 
########################################## FIA ###########################################  
fia_dbh <- fia %>%  
  filter(!is.na(dbh)) %>%  
  mutate(dbh_class = case_when( 
    dbh < 10.2 ~ "0-10.2",        
    dbh <= 30.4 ~ "10.2-30.4",   
    dbh <= 60.9 ~ "30.5-60.9",  
    dbh < 91.44 ~ "61.0-91.3",  
    dbh >= 91.44 ~ "91.4+" 
  )) %>%  
  filter(dbh_class != "0-10.2") 

Figure F1. R code for classifying tree size classes for VTM and combined FIA data. 
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####################################### sub data #######################################  
# calc avg stem density/ size class 
vtm_basic_df <- vtm_dbh %>%  
  group_by(plotkey, dbh_class) %>% tally() %>%  
  mutate(stem_density = n/0.0809) %>%  # trees/ha (stem density) in each size class 
  #filter(plotkey%in% c("154B14", "154B117", "154D13")) %>%   
  group_by(dbh_class) %>%  
  summarize(avg_stem_density = mean(stem_density), 
            median = median(stem_density), 
            sd = sd(stem_density), 
            se = sd((stem_density) / sqrt(n())), 
            sample_size = n()) %>%  
  mutate(data = "VTM") 
 
fia_basic_df <- fia_dbh %>%  
  group_by(join_plot, dbh_class) %>%  
  tally() %>%  
  mutate(stem_density = n/0.067245) %>%  
  group_by(dbh_class) %>%  
  summarise(avg_stem_density = mean(stem_density), 
            median = median(stem_density), 
            sd = sd(stem_density), 
            se = sd((stem_density) / sqrt(n())), 
            sample_size = n()) %>%  
  mutate(data = "FIA") 
 
dbh_basic_df <- rbind(vtm_basic_df, fia_basic_df) 

Figure F2. R code for calculating tree density per size class for VTM and FIA data. 

Appendix G: Basal area histograms and one-to-one graphs 
 

 
Figure G1. Distribution of trees in the largest size class (>91.4cm) by species. Not shown in graph is 
cade with the largest d.b.h. of 228.  
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Figure G2. One-to-one line with total plot basal area using unbinned FIA and binned FIA data.  

 
Figure G2. One-to-one line with total plot basal area using unbinned FIA and binned FIA data. 
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Figure G3. One-to-one line with total plot basal area using unbinned FIA and binned FIA data. 

 
Figure G4. One-to-one line with total plot basal area using unbinned FIA and binned FIA data. 
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Appendix H: Additional basal area analysis and metrics of variance 

 
Figure H1. Change in mean basal area by shade and fire tolerance across all YPMC species and 
excluding oaks. 
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Figure H2. Change in mean basal area by shade and fire tolerance across all YPMC species and including 
oaks. 
 

 
Figure H3. Changes in mean basal area by elevation class and aspect across all YPMC species. Only the 
1500–1999m and 2000–2499m classes are shown here as the other classes were removed due to small 
sample sizes. 
 

 
Figure H4. Changes in mean basal area by National Forest across all plots in the landscape. CNF is not 
shown here due to small sample sizes. Sample sizes for ANF: n=20 (VTM) and n=26 (FIA); LPNF: n=54 
(VTM) and n=62 (FIA); and SBNF: n=113 (VTM) and n=107 (FIA). 
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Table H5. Means, quantiles, and other measures of distribution for basal area (m2/ha) by total number of 
plots, classification, and shade/fire tolerance. Means were calculated across the entire landscape. 

 
 
Table H6. Means, quantiles, and other measures of distribution for basal area (m2/ha) by species. Means 
were calculated across the entire landscape. 
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Table H7. Means, quantiles, and other measures of distribution for basal area (m2/ha) by National Forest. 
Means are calculated across the entire landscape. 
 

 
 
Table H8. Means, quantiles, and other measures of distribution for basal area (m2/ha) by elevation 
classes. Means are calculated across the entire landscape. 
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Appendix I: Canopy cover FVS equations and code example 
 

Table 4.4.2.1 Coefficients and equation reference for crown width equations {4.4.2.1} – {4.4.2.5} in the 
WS variant. *Equation refers to the species-specific equation used when DBH > DBHT 

{4.4.2.1} CW = a1 + a2 * DBH   DBH >= DBHT 

{4.4.2.2} CW = a1 * DBH^a2   DBH >= DBHT 

{4.4.1.4} CW = HT * s1    HT < 4.5’ and DBH < DBHT 

{4.4.1.5} CW = d1 + d2 * DBH    HT > 4.5’ and DBH < DBHT 

CW is maximum tree crown width  
DBH is tree diameter at breast height 
DBHT is threshold diameter shown in table 4.4.2.1 
 d1-2, a1-2, s1 are species-specific coefficients shown in table 4.4.2.1 
 

FVA 
Alpha 
Code 

Species Name Equation 
Used* 

DBHT d1 d2 a1 a2 s1 

SP Sugar Pine {4.4.2.1} 7.4 3.5 0.338 -1.476 1.01 0.7778 

WH White Fir {4.4.2.1} 5 3.26 1.103 5.82 0.591 0.7778 

IC Incense Cedar {4.4.2.1} 5 3.5 1.192 7.11 0.47 0.7778 

JP Jeffrey Pine {4.4.2.2} 5 3.5 0.5754 1.52 0.891 0.7778 

PP Ponderosa Pine {4.4.2.2} 5 3.77 0.7756 2.24 0.763 0.7778 

CP Coulter Pine {4.4.2.2} 5 3.5 1.7618 3.9347 0.7086 0.7778 

BD Big-Cone Douglas Fir {4.4.2.1} 5 3.5 5.5672 27.030 0.8612 0.7778 

CY Canyon Live Oak {4.4.2.1} 5 2.5 2.19 5 1.69 0.5556 

BO Black Oak {4.4.2.1} 5 2.5 2.7 10 1.2 0.5556 
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After applying the FVS equations to each tree species, we calculated crown area. To calculate crown area, 
we used 𝜋r 2 (ft2). Crown with measured the diameter of the canopy, so we multiplied the radius (r) by 
0.5. Crown areas were summed for all species for each plot and then converted to square meters (m2). To 
find the total percent cover per plot, we divided each total plot crown area by the size of their plot (for 
VTM, plots are 809 m2; for FIA, plots are 672.45m2).  
 

 
Figure I1. An example of our canopy cover code, assigning the FVS equation and species-specific 
constants to P. ponderosa trees.  
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Figure I2. An example of our code combining all of our calculations into one data frame, finding the 
percent cover per plot, and then applying the Crookston and Stage (1999) equation to account for overlap.  
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Appendix J: FIA Canopy cover using d.b.h. midpoints and actual d.b.h. measurements  

 
Figure J1. The above graph shows the difference between using binned d.b.h. midpoint values in the 
FVS equations (FIA_1) and actual d.b.h. measurements in the FVS equations (FIA_2). Mean values 
between the two were relatively similar.  
 
Table J2. Two-sided t-test between using binned d.b.h. measurements and actual d.b.h. measurements in 
the FVS equations. There was no statistical difference between the two. 
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Appendix K: Canopy cover metrics of variance 
 
Table K1. Means, quantiles, and other measures of distribution for total canopy cover including and 
excluding oaks.  

 
 
 
Table K2. Means, quantiles, and other measures of distribution for canopy cover by National Forest, 
including and excluding oaks.  

 
Table K3. Means, quantiles, and other measures of distribution for canopy cover by elevation 
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Appendix L: Canopy cover histograms 

 
Appendix L1. Histogram of the canopy cover for VTM and FIA plots. VTM data has a normal 
distribution and FIA is left skewed.  

 
Appendix L2. Histogram of the canopy cover for FIA plots. As you can see, it is left skewed, which is 
why many of our medians were higher than our means for FIA canopy cover estimates.  
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Appendix M: VTM logging map in southern California  
 

 
Figure M1. VTM Plots: 13 VTM plots (out of 195) had notes about being "cut/logged" or "second 
growth" and they were all from SBNF. Logged plots (in yellow) as compared to all plots used in our 
analysis (purple). 
 
Appendix N: TWI Calculations 
 
Process: see https://www.youtube.com/watch?v=kVJPYnwq04k. Default parameters were used unless 
otherwise noted. 
 
1)  Fill (Hydrology tool): Make sure DEM is in the projected coordinate system. WGS 1984 UTM 11N 
was used. This is to fill in any missing data in the DEM.  
2)  Flow direction (Hydrology tool): Use filled DEM.  
3)  Flow accumulation (Hydrology tool): use flow direction layer. 
4)  Slope (Surface tool): use filled DEM. Units must be in degrees.  
5)  Raster calculator: 

a.       Raster_calc_slope = (“Slope” * 1.570796) / 90  
b.       Tanslope = Con(“Raster_calc_slope” > 0, Tan(“Raster_calc_slope”), 0.001) 
c.       Raster_calc_flow_acc = (“Flow accumulation” + 1)* cell size of dem 
d.       Twi = Ln(“Raster_calc_flow_acc” / “Tanslope”) 
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Appendix O: Environmental data processing   
 
Creating the extent: 
We used ArcGIS ModelBuilder to create an extent mask raster of our study area. This mask was used in 
the final preparation of all environmental data layers to ensure that all layers were clipped to the same 
extent. This raster was already in our desired projection, NAD 1983 California Teale Albers, but was 
resampled to 270 m resolution. ArcGIS tools utilized: 

●      Extract by mask: use one of the BCM layers and mask to the extent of our study area, 
the Transverse Ranges 
●      Resample: Resampled extent raster to 270 x 270 meters 

 
Figure O1. ArcGIS Model to create an extent mask raster of the study area, the Transverse Ranges 
 
Setting model parameters: 
ModelBuilder properties were set to the parameters displayed below. This window can be accessed in 
ModelBuilder under ‘Environments’. Select the boxes for ‘Processing Extent’, ‘Raster Analysis’, and 
‘Output Coordinates’, and then select ‘Value’ to set parameters.  

● Processing extent: 
“Extent” = “same as variable extent” 
“Snap raster” = “extent” 

● Raster analysis:  
“Cell size” = “same as variable extent”  
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Figure O2. ModelBuilder parameter settings. 

ModelBuilder was used to iterate through all raw environmental rasters and transform soil data from 
polygon to raster data, projected into NAD 1983 California Teale albers. All rasters were clipped to the 
desired extent and converted to ASCII file format for input into MaxEnt. 
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Appendix P: MaxEnt model parameter settings 

 
Figure P1. MaxEnt parameter settings. 
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Figure P2. Basic MaxEnt parameter settings. 
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Figure P3. Advanced MaxEnt parameter settings. 
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Figure P4. Experimental MaxEnt parameter settings. 
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Appendix Q: Environmental histograms for SDM 

 
 
Figure Q1. Distribution of climatic water deficit (CWD). The distribution of CWD (mm) at sampled 
plots is displayed in yellow and is compared to the distribution of CWD across a random background 
sample taken from YPMC forest in the sample area, as displayed in blue.  

 
 
Figure Q2. Distribution of April snowpack. The distribution of April snowpack (mm) at sampled plots is 
displayed in yellow and is compared to the distribution of April snowpack across a random background 
sample taken from YPMC forest in the sample area, as displayed in blue.  
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Figure Q3. Distribution of topographic position index (TPI). The distribution of TPI at sampled plots is 
displayed in yellow and is compared to the distribution of TPI across a random background sample taken 
from YPMC forest in the sample area, as displayed in blue.  

 
Figure Q4. Distribution of maximum July temperature. The distribution of maximum July temperature 
(degrees Celsius) at sampled plots is displayed in yellow and is compared to the distribution of maximum 
July temperature across a random background sample taken from YPMC forest in the sample area, as 
displayed in blue.  
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Appendix R: SDM results - Current suitable habitat of yellow pine saplings and adults 
 

 
Figure R1. Current (1981-2010) projected yellow pine sapling and adult suitable habitat across the 
western Transverse Ranges.  Pink regions depict habitat projected to be suitable for both saplings and 
adults, while purple regions depict habitat projected to be suitable for only saplings and green regions 
depict habitat projected to be suitable for only adults. We have high confidence in our models’ abilities to 
project habitat suitability across the entire western Transverse Ranges.  
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Figure R2. Current (1981-2010) projected yellow pine sapling and adult suitable habitat across the 
central Transverse Ranges.  Pink regions depict habitat projected to be suitable for both saplings and 
adults, while purple regions depict habitat projected to be suitable for only saplings and green regions 
depict habitat projected to be suitable for only adults. Low confidence areas are represented by hash 
marks. 
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Figure R3. Current (1981-2010) projected yellow pine sapling and adult suitable habitat across the 
eastern Transverse Ranges.  Pink regions depict habitat projected to be suitable for both saplings and 
adults, while purple regions depict habitat projected to be suitable for only saplings and green regions 
depict habitat projected to be suitable for only adults. Low confidence areas are represented by hash 
marks. 
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Table R1. Current (1981-2010) projected yellow pine sapling and adult suitable habitat by region.  

Lifeform 
Current 

Acres Suitable 
Habitat 

High Confidence 

Acres Suitable 
Habitat 

Low Confidence 

Western Transverse Ranges 

Sapling 190,768.07 0 

Adult 195,127.45 0 

Central Transverse Ranges 

Sapling 10,898.46 40,729.61 

Adult 19,058.79 56,383.76 

Eastern Transverse Ranges 

Sapling 161,657.47 15,492.02 

Adult 191,488.63 24,661.14 
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Figure R4. Current CALVEG classified Ponderosa pine, Jeffrey pine, and mixed conifer forests as 
compared to current projected adult suitable habitat in the western Transverse Ranges. Light green 
regions represent regions where current YPMC forests overlap with projected suitable habitat for adult 
yellow pines, while red regions represent regions where current YPMC forests do not fall within regions 
of projected suitable habitat. Dark green regions depict projected suitable habitat not currently dominated 
by YPMC forest. We have high confidence in our models’ abilities to project habitat suitability across the 
entire western Transverse Ranges. 
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Figure R5. Current CALVEG classified Ponderosa pine, Jeffrey pine, and mixed conifer forests as 
compared to current projected adult suitable habitat in the central Transverse Ranges. Light green regions 
represent regions where current YPMC forests overlap with projected suitable habitat for adult yellow 
pines, while red regions represent regions where current YPMC forests do not fall within regions of 
projected suitable habitat. Dark green regions depict projected suitable habitat not currently dominated by 
YPMC forest. Low confidence areas are represented by hash marks. 
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Figure R6. Current CALVEG classified Ponderosa pine, Jeffrey pine, and mixed conifer forests as 
compared to current projected adult suitable habitat in the eastern Transverse Ranges. Light green regions 
represent regions where current YPMC forests overlap with projected suitable habitat for adult yellow 
pines, while red regions represent regions where current YPMC forests do not fall within regions of 
projected suitable habitat. Dark green regions depict projected suitable habitat not currently dominated by 
YPMC forest. Low confidence areas are represented by hash marks. 
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Appendix S: SDM results - Past suitable habitat of yellow pine saplings 

 
Figure S1. Historic (1921-1950) postdicted and current (1981-2010) projected yellow pine sapling 
suitable habitat in the western Transverse Ranges. Light purple regions depict habitat that is predicted to 
be suitable under both time periods. Orange regions depict habitat only predicted to be suitable under 
historic conditions, while dark purple regions depict habitat only predicted to be suitable under current 
conditions. We have high confidence in our models’ abilities to project habitat suitability across the entire 
western Transverse Ranges. 
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Figure S2. Historic (1921-1950) postdicted and current (1981-2010) projected yellow pine sapling 
suitable habitat in the central Transverse Ranges. Light purple regions depict habitat that is predicted to 
be suitable under both time periods. Orange regions depict habitat only predicted to be suitable under 
historic conditions, while dark purple regions depict habitat only predicted to be suitable under current 
conditions. Low confidence areas are represented by hash marks. 
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Figure S3. Historic (1921-1950) postdicted and current (1981-2010) projected yellow pine sapling 
suitable habitat in the eastern Transverse Ranges. Light purple regions depict habitat that is predicted 
suitable under both time periods. Orange regions depict habitat only predicted suitable under historic 
conditions, while dark purple regions depict habitat only predicted to be suitable under current conditions. 
Low confidence areas are represented by hash marks. 
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Table S1. Historic (1921-1950) postdicted and current (1981-2010) projected yellow pine sapling suitable 
habitat by region. 

Time Period Acres Suitable Habitat 
High Confidence 

Acres Suitable Habitat 
Low Confidence 

Western Transverse Ranges 

Historic (VTM) 163,548.94 0 

Current (FIA) 190,768.07 0 

Central Transverse Ranges 

Historic (VTM) 22,409.39 43,593.84 

Current (FIA) 10,898.46 40,729.61 

Eastern Transverse Ranges 

Historic (VTM) 176,122.7 23,652.36 

Current (FIA) 161,657.47 15,492.02 
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Appendix T: SDM results - Future suitable habitat of yellow pine saplings 
 

 
Figure T1. Current and future projected yellow pine sapling suitable habitat across the western 
Transverse Ranges. Dark purple regions depict projected suitable habitat under current climate, yellow 
regions represent projected suitable habitat under the summed 2010-2039 scenario and blue regions 
represent projected suitable habitat under the summed 2040-2069 scenario. We have high confidence in 
our models’ abilities to project habitat suitability across the entire western Transverse Ranges. 
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Figure T2. Current and future projected yellow pine sapling suitable habitat across the central Transverse 
Ranges. Dark purple regions depict projected suitable habitat under current climate, yellow regions 
represent projected suitable habitat under the summed 2010-2039 scenario and blue regions represent 
projected suitable habitat under the summed 2040-2069 scenario. Low confidence areas are represented 
by hash marks. 
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Figure T3. Current and future projected yellow pine sapling suitable habitat across the eastern Transverse 
Ranges. Dark purple regions depict projected suitable habitat under current climate, yellow regions 
represent projected suitable habitat under the summed 2010-2039 scenario and blue regions represent 
projected suitable habitat under the summed 2040-2069 scenario. Low confidence areas are represented 
by hash marks. 
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Table T1. Projected yellow pine sapling suitable habitat under current, 2010-2039, and 2040-2069 
climates by region. 

Time Period Acres Suitable 
Habitat 

High Confidence 

Percent Change in 
Suitable Habitat 
High Confidence 

Acres Suitable 
Habitat 

Low Confidence 

Percent Change in 
Suitable Habitat 
Low Confidence 

Western Transverse Ranges 

Current 190,768.07 N/A 0 N/A 

2010-2039 
Summed 
Scenario 

73,064.71 
  

-61.70% 
  

0 0 

2040-2069 
Summed 
Scenario 

31,038.09 -83.73% 
  

0 0 

Central Transverse Ranges 

Current 3,278.54 N/A 48349.53 N/A 

2010-2039 
All Scenarios 

774.60 
  

-76.37% 
  

20103.6 -58.42% 

2040-2069 
All Scenarios 

54.04 
  

-98.35% 
  

12699.86 -73.73% 

Eastern Transverse Ranges 

Current 110,281.60 N/A 66867.9 N/A 

2010-2039 
Summed 
Scenario 

77,027.79 
  

-30.15% 
  

20427.86 -69.45% 

2040-2069 
Summed 
Scenario 

68,993.55 
  

-37.44% 
  

10970.52 -83.59% 
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Figure T4. 2010-2039 projected yellow pine sapling suitable habitat across the western Transverse 
Ranges. Orange regions depict habitat projected to be suitable under both the 2010-2039 summed dry 
scenario and the 2010-2039 summed wet scenario. Aqua regions represent habitat projected to be suitable 
only under the summed wet scenario, and red regions represent habitat projected to be suitable only under 
the summed dry scenario. We have high confidence in our models’ abilities to project habitat suitability 
across the entire western Transverse Ranges. 
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Figure T5. 2010-2039 projected yellow pine sapling suitable habitat across the central Transverse 
Ranges.  Orange regions depict habitat projected to be suitable under both the 2010-2039 summed dry 
scenario and the 2010-2039 summed wet scenario. Aqua regions represent habitat projected to be suitable 
only under the summed wet scenario, and red regions represent habitat projected to be suitable only under 
the summed dry scenario. Low confidence areas are represented by hash marks. 
 



 192 

 
Figure T6. 2010-2039 projected yellow pine sapling suitable habitat across the eastern Transverse 
Ranges.  Orange regions depict habitat projected to be suitable under both the 2010-2039 summed dry 
scenario and the 2010-2039 summed wet scenario. Aqua regions represent habitat projected to be suitable 
only under the summed wet scenario, and red regions represent habitat projected to be suitable only under 
the summed dry scenario. Low confidence areas are represented by hash marks. 
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Table T2. Projected yellow pine sapling suitable habitat under 2010-2039 wet and dry futures by region. 
Time 

Period 
Acres Suitable 

Habitat 
High 

Confidence 

Percent Change 
in Suitable 

Habitat 
High Confidence 

Acres Suitable 
Habitat 

Low 
Confidence 

Percent Change 
in Suitable 

Habitat 
Low Confidence 

Western Transverse Ranges 

Current 190,768.07 NA 0 NA 

2010-2039 
Summed 
Dry 
Scenario 

78,973.30 -58.60% 0 0 

2010-2039 
Summed 
Wet 
Scenario 

75,982.98 -60.17% 0 0 

Central Transverse Ranges 

Current 3,440.67 NA 48,187.4 NA 

2010-2039 
Summed 
Dry 
Scenario 

792.62 -76.96% 28,624.22 -40.6% 

2010-2039 
Summed 
Wet 
Scenario 

1,170.91 -65.97% 25,814.04 
 

-46.43% 

Eastern Transverse Ranges 

Current 146,381.62 NA 30,767.88 NA 

2010-2039 
Summed 
Dry 
Scenario 

108,984.59 -25.55% 7,079.49 -76.99% 

2010-2039 
Summed 
Wet 
Scenario 

124,890.94 -14.68% 14,158.99 
 

-53.98% 
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Figure T7. 2040-2069 projected yellow pine sapling suitable habitat across the western Transverse 
Ranges. Orange regions depict habitat projected to be suitable under both the 2040-2069 summed dry 
scenario and the 2040-2069 summed wet scenario. Aqua regions represent habitat projected to be suitable 
only under the summed wet scenario, and red regions represent habitat projected to be suitable only under 
the summed dry scenario. We have high confidence in our models’ abilities to project habitat suitability 
across the entire western Transverse Ranges. 
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Figure T8. 2040-2069 projected yellow pine sapling suitable habitat across the central Transverse 
Ranges. Orange regions depict habitat projected to be suitable under both the 2040-2069 summed dry 
scenario and the 2040-2069 summed wet scenario. Aqua regions represent habitat projected to be suitable 
only under the summed wet scenario, and red regions represent habitat projected to be suitable only under 
the summed dry scenario. Low confidence areas are represented by hash marks. 
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Figure T9. 2040-2069 projected yellow pine sapling suitable habitat across the eastern Transverse 
Ranges. Orange regions depict habitat projected to be suitable under both the 2040-2069 summed dry 
scenario and the 2040-2069 summed wet scenario. Aqua regions represent habitat projected to be suitable 
only under the summed wet scenario, and red regions represent habitat projected to be suitable only under 
the summed dry scenario. Low confidence areas are represented by hash marks. 
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Table T3. Projected yellow pine sapling suitable habitat under 2040-2069 wet and dry futures by region. 
Time 

period 
Acres Suitable 

Habitat 
High 

Confidence 

Percent Change 
in Suitable 

Habitat 
High Confidence 

Acres Suitable 
Habitat 

LowConfidence 

Percent Change 
in Suitable 

Habitat 
Low Confidence 

Western Transverse Ranges 

Current 190,768.07 NA 0 NA 

2040-2069 
Summed 
Dry 
Scenario 

34,334.65 -82.00% 0 0 

2040-2069 
Summed 
Wet 
Scenario 

32,154.96 -83.14% 0 0 

Central Transverse Ranges 

Current 3,278.54 NA 48,349.53 NA 

2040-2069 
Summed 
Dry 
Scenario 

144.11 -95.60% 18,356.25 
 

-62.03% 

2040-2069 
Summed 
Wet 
Scenario 

54.04 -98.35% 12,771.91 
 

-73.58% 

Eastern Transverse Ranges 

Current 110,281.60 NA 66,867.9 NA 

2040-2069 
Summed 
Dry 
Scenario 

74,235.62 -32.69% 13,114.18 -80.39% 

2040-2069 
Summed 
Wet 
Scenario 

82,323.90 -25.35% 12,159.44 
 

-81.82% 
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