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a. Objectives.  

Food security in sub-Saharan Africa depends heavily on local agricultural productivity and is 

increasingly under threat from global climate change (Porter et al., 2014). For example, a 

combination of severe drought followed by floods in southern Zambia in 2017 and 2018 pushed 

2.3 million people into food insecurity (OCHA, 2019). Farmers across Africa generally operate 

small-scale farms, live in poverty, and have limited access to the adaptation technologies, such as 

irrigation or drought-resistant seed varieties, that are being used in other regions to mitigate crop 

yield losses caused by extreme climate conditions. Despite the importance of agriculture and 

climate change adaptation for wellbeing across Africa, data limitations imply that little is known 

about how farmers are adapting to climate change in these resource-poor contexts. Agricultural 

statistics in most of sub-Saharan Africa are available only at the national level (FAOSTAT, 2022), 

are measured with substantial error (Lobell et al., 2019), and rarely provide information on 

adaptation strategies. Lack of information on farmer adaptation in the most agriculturally 

vulnerable region of the world substantially limits local and global policy efforts to ensure food 

security under accelerating climate change. This capstone project will build on our client’s 

capstone project from 2021, CropMOSAIKS, to generate the first assessment of farmer adaptation 

to drought across Zambia. In 2021, the CropMOSAIKS team demonstrated that satellite imagery 

and machine learning could be used to predict spatial and temporal variation in maize yields 

across Zambia (e.g., see SM Figure 1). This was a critical first step toward understanding farmer 

adaptation to climate change. Here, we propose to dramatically scale up this initial proof of 

concept, using hundreds of thousands of newly accessed household-level training data 

observations with a richer set of ground truth variables that will allow us to directly quantitatively 

assess farmer adaptation.  

 

b. Significance.  

There are three target audiences for this work. 

1. The climate change impacts research community. Very little is known about whether 

and how farmers in low-income contexts can respond to drought and other aspects of 

climate change (Auffhammer, 2018). Current efforts to generate empirically-based 

estimates of climate change impacts on agricultural production generally fail to incorporate 

farmer crop switching or other forms of adaptation. This research gap is particularly stark in 

low-income communities, where data limitations make measurement of climate change 

impacts and adaptation exceedingly difficult. The first output from this project – satellite 

imagery-based high-resolution maps of farmer adaptation activity over time – will enable 

future research on climate adaptation, unlocking research possibilities that were previously 

out of reach due to data limitations. The second output from this project – analysis and data 

visualizations of the relationship between climate adaptation actions and drought events 

will fill a research gap directly by quantifying which, if any, measurable adaptation 

strategies are Zambian farmers willing and able to adopt when severe drought conditions 

occur.  

2. Policymakers working to develop climate-smart agricultural practices in Zambia. 

Adaptation planning is becoming a critical component of climate policy, both in developed 

and low-income countries. The outputs from this project will provide critical information and 

data inputs to policymakers seeking to support effective climate-smart agriculture in Zambia 

and beyond. For example, the U.N. FAO has a large project on climate-smart agriculture, 

https://github.com/cropmosaiks
https://www.fao.org/3/cb5359en/cb5359en.pdf
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but no case study examples from Zambia. 

3. Scholars and practitioners in developing countries looking to leverage satellite 

imagery to solve social and environmental problems. This project sits within a broader 

research agenda aimed at democratizing access to social and environmental monitoring 

using satellite imagery. The clients are jointly pursuing this agenda as part of a team that 

developed a new unsupervised machine learning approach to featurize satellite imagery 

and generate predictions of a wide range of on-the-ground conditions. This project serves 

as a valuable demonstration of this method, as applied in a developing country context.  

 

c. Background.  

This capstone will allow students to leverage new household-level survey data and combine it with 

satellite imagery and machine learning to provide a much more comprehensive picture of climate 

change adaptation than would be possible with ground truth data alone, given the costs of 

traditional data collection methods in countries like Zambia. Zambia is an ideal place to study 

questions at the intersection of climate and agriculture, as over 30% of its land area is dedicated to 

agricultural production, 55% of the population works in agriculture, and it faces accelerating 

drought intensity under climate change. Building off the CropMOSAIKS pipeline, students this year 

will have access to 30,000 household surveys per year measuring a range of variables, from crop 

switching to irrigation. This is in contrast to aggregate district-level statistics on a single variable 

(maize yield) used in CropMOSAIKS. Students will leverage the featurization process developed 

last year, saving time and allowing them to focus on the machine learning prediction component of 

the pipeline, as well as the analysis of drought effects. This year we will produce higher resolution 

predictions of more variables, and anticipate far higher accuracy than last year’s capstone project, 

due to the infrastructure already in place and the dramatically improved training data obtained. 

Additionally, the focus this year will be on directly measuring adaptation decisions (e.g., crop 

switching), instead of measuring maize yield only. 

 

d. Equity.  

Low-income regions are consistently under-represented in both the production and consumption of 

remote sensing products. This occurs despite the fact that these regions are likely to benefit the 

most from such products, given the paucity of other systematically collected data (Haack and 

Ryerson, 2016). These inequities in access to the rich information contained within satellite 

imagery arise due to large barriers to entry into the remote sensing field, driven by high 

computational, data storage, expertise, and financial resource costs. As documented in Rolf et al., 

the MOSAIKS method separates users from raw imagery, lowering the computational cost by many 

orders of magnitude, while being simple and easy to implement. This project will both make final 

output data available covering a region of the globe in which data are widely known to be scarce 

and of low quality and will release featurized images that will enable and empower people in data-

poor regions to make predictions themselves for new tasks that are not studied here. Through 

these avenues, we hope to facilitate equitable access to environmental monitoring processes and 

outputs.  

 

e. Data.  

This project will combine publicly available satellite imagery from Sentinel and Landsat 7, as 

accessed via Microsoft Planetary Computer, with farm-level survey data on crop planting, 

https://www.usgs.gov/core-science-systems/nli/landsat/landsat-7?qt-science_support_page_related_con=0#qt-science_support_page_related_con
https://planetarycomputer.microsoft.com/
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irrigation, and other adaptation decisions, provided  by the clients. Drought data will come in the 

form of Palmer Drought Severity Index data from the Global Drought Crops Monitoring dataset. 

These data are obtained by our Zambian collaborator Protensia Hadunka and his PhD advisor 

and UCSB faculty member Kathy Baylis. They are not yet publicly available, but have been 

shared with our client via this Box folder.  

 

f. Computational tools & needs.  

Imagery data will be accessed and featurized (turning images into tabular data via MOSAIKS) via 

Microsoft Planetary Computer (PC), following the 2021 Capstone. Then ridge regression (using 

Python) linking adaptation actions observed in household survey data to imagery features will be 

performed on the tabular data on Taylor. Correlations and data visualizations using drought data 

will also be done on Taylor. The majority of computational burden will be carried by the Microsoft 

Planetary Computer (PC) which can be used by MEDS students during this project free of charge. 

Access to these free computational services can sometimes vary. The client has committed to 

providing the capstone team with additional computational services from Microsoft’s paid cloud 

platform Azure if access to PC becomes a problem. 

 

g. Possible approaches.  

The implementation steps are as follows: 

1. Use the “random convolutional features” approach outlined in and coded up by Rolf et al. to 

featurize 8-day Landsat 7 satellite imagery over the 30,000 farms surveyed each year in 

ground truth Zambian data.  

2. Merge geo-located imagery features to administrative records of cropped area by crop, 

multi-cropping, and irrigation. Collapse to include only growing season measurements.  

3. Run cross-validated ridge regressions to predict adaptation actions using the MOSAIKS 

features, pooling across all years. 

4. Use the regression models from Step 3 alongside features for all grid cells in Zambia to 

produce a set of time-varying, high-resolution maps of adaptation across the country. 

5. Correlate adaptation predictions to measures of drought severity and generate data 

visualizations of these results. 

6. Work with the clients to integrate this output, and the intermediate features, into an existing 

public-facing API (API maintenance is not MEDS students’ responsibility). 

h. Deliverables.  

Deliverables include:  

1. A database of high-resolution (1km x 1km) maps over 15 years (2007-2022) showing 

predicted farmer adaptations, including crop switching, multi-cropping, and irrigation.  

2. Estimates and data visualizations of the effects of drought on these adaptation actions. 

This new data product and its open-source codebase will be disseminated through an existing API. 

Results for the impacts of drought on farmer adaptation will be released publicly as a report and 

will be handed off to our Zambian collaborator, Protensia Hadunka. 

 

i. Audience.  

Please see detailed information on the target audiences above in the “Significance” section.  

https://global-drought-crops.csic.es/
https://uofi.box.com/s/nocf8jl6oqecfow61j93s6exyoyltwz3
http://siml.berkeley.edu/
http://siml.berkeley.edu/
http://siml.berkeley.edu/
https://baylislab.ace.illinois.edu/team-2/protensia-hadunka/
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SUPPORTING MATERIALS (not counted toward 3-page limit):  

 

 
SM Figure 1: Comparison of observed yields (left panel) to predicted yields (right panel), where 

predictions are estimated using MOSAIKS features computed from Sentinel and Landsat imagery 

and the CropMOSAIKS pipeline. Observed yield is only available at the district level, so all 

estimates in CropMOSAIKS are performed at the district scale.  
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This project does not require any additional funding. The only possible cost would be 
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computation costs). All other computational steps in the analysis (i.e., geospatial merging, linear 

regression and prediction) do not require large computational resources (as documented in Rolf 

et al., 2021). This featurization step, however, can be conducted using Microsoft’s Planetary 

Computer, where Landsat 7 and Sentinel images are already made available.  

 

The majority of computational burden will be carried by the Microsoft Planetary Computer (PC) 

which can be used by MEDS students during this project free of charge. Access to these free 

computational services can sometimes vary. The client has committed to providing the capstone 

team with additional computational services from Microsoft’s paid cloud platform Azure if access to 

PC becomes a problem. 

 

c. Client letter of support.  
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c-i. Funding:  

 

If additional computational resources are required the client will provide access to the paid cloud 

computing platform Microsoft Azure. 
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https://www.usgs.gov/landsat-missions/landsat-7?qt-science_support_page_related_con=0#qt-science_support_page_related_con
https://www.usgs.gov/landsat-missions/landsat-7?qt-science_support_page_related_con=0#qt-science_support_page_related_con
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c-ii. Data:  

 

This project will combine publicly available satellite imagery from Sentinel and Landsat 7, as 

accessed via Microsoft Planetary Computer, with farm-level survey data on crop planting, 

irrigation, and other adaptation decisions, provided  by the clients. Drought data will come in the 

form of Palmer Drought Severity Index data from the Global Drought Crops Monitoring dataset. 

These data are obtained by our Zambian collaborator Protensia Hadunka and his PhD advisor 

and UCSB faculty member Kathy Baylis. They are not yet publicly available, but have been 

shared with our client via this Box folder.  

https://www.usgs.gov/core-science-systems/nli/landsat/landsat-7?qt-science_support_page_related_con=0#qt-science_support_page_related_con
https://planetarycomputer.microsoft.com/
https://global-drought-crops.csic.es/
https://uofi.box.com/s/nocf8jl6oqecfow61j93s6exyoyltwz3
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