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Abstract/Project Summary
Climate models are computer simulations that attempt to replicate the complex interactions
between Earth’s systems. Improving the accuracy of climate models relies on evaluating
uncertainty and minimizing error. The Climate and Global Dynamics Lab at the National Center
for Atmospheric Research (NCAR) has recently carried out a Parameter Perturbation Experiment
(PPE) to understand how the uncertainty of parameter values affected the output of their model,
the Community Land Model (CLM); which simulates terrestrial processes. While the necessary
data for the PPE has been collected, the data is stored in a collection of files that are difficult to
interpret in their current form. The current website hosts visualizations for a portion of the PPE
data, but contains no visualizations for data that more closely simulates Earth system
interactions. These issues can be mitigated by developing an emulator with the internal
complexity to isolate a one-to-one relationship between a parameter and climate variable, then
display the predicted relationship. A publicly available emulator with these capabilities will
allow scientists to easily interpret complex climate model outputs and offer insights on
parameter-variable relationships that are not being predicted accurately by the model; which can
lead to increased accuracy and precision of climate models.
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Executive Summary
Climate change is a real and threatening problem facing today’s society. Advancements in
climate modeling have become one of our best tools to support research, policy, and mitigation
strategies to address climate change. The National Center for Atmospheric Research (NCAR)
has allocated substantial resources into developing a large-scale climate model, the Community
Earth Systems Model (CESM), which consists of land, oceanic, and atmospheric climate
sub-models created by various labs at NCAR.

This project has worked primarily with the Climate and Global Dynamics Lab (CGDL) at
NCAR, and the data they have generated as part of the Community Land Model Parameter
Perturbation Experiment, which focuses primarily on terrestrial climate change predictors. The
PPE involved varying over 200 land-parameters one at a time across 2500 simulations, and
varying 32 land-parameters via advanced sampling techniques across 500 simulations to test for
parameter interactions.

While all the necessary data for the PPE has been collected, the data is being stored in a
collection of files that are difficult to interpret in their current form. There is an existing website
that has pre-processed data visualizations for the one at a time data, but there are no
visualizations for the data that factors in parameter interactions. There is also minimal
documentation for the parameter/variable metadata, which makes interpreting the current
visualizations nearly impossible for scientists outside of the Climate and Global Dynamics Lab.
Furthermore, scientists utilizing this data are limited to the 500 parameter sets because running
the simulations for new parameter values is time consuming and computationally inefficient. To
address these issues, the project deliverables include:

● Develop an emulator, using machine learning techniques, that has the internal complexity
to parse out a one-to-one relationship between a parameter and climate variable output

● Creating an interactive dashboard that allows users to select a parameter and variable of
interest and displays visualizations for the predicted values and relative parameter
importance

● Improving the metadata documentation by constructing a splash page that includes
experimental setup, full names of variables/parameters and the associated units.

The initial phase of creating the interactive emulator is to create a standardized workflow of
functions to output a formatted dataset. This dataset was used as the input data for the machine
learning model that will become our emulator. The machine learning model implemented a form
of regression that can identify the individual relationship between a variable and parameter of



interest and quantify the uncertainty around the predicted relationship. After developing the key
functionalities of the emulator, the results were then converted into figures that display the
predicted relationship between a user-selected parameter and variable, a cross-validation plot
showing the accuracy of the emulators predictions compared to the actual climate variable
outputs, and a parameter influence plot to show the parameters with the highest influence on the
selected climate variable.

These figures were then embedded into an interactive python dashboard using the Panel package.
The structure of the dashboard will allow users to select a parameter and variable of interest, then
display the visualizations with an accessible link to an HTML page that will include the metadata
documentation.The dashboard will also be equipped with continuous integration, so that NCAR
staff can build upon this emulator to add in extended functionality. The associated GitHub
repository for this project will also act as a template for other departments at NCAR to develop
similar tools for visualizing parameter sensitivity experiments.

By providing a publicly accessible emulator equipped with these capabilities, scientists gain
effortless access to interpreting intricate climate model outputs. This, in turn, fosters an
environment where subject matter experts can contribute insights into parameter-variable
relationships currently overlooked by the model, thereby enhancing the accuracy and precision
of climate forecasts.



Problem Statement
Climate models are one of the best tools we have for predicting the most harmful effects of
climate change, and it’s essential that climate scientists work to maintain the accuracy of the
models as they become more complex. The Parameter Perturbation Experiment aimed to do just
that by using two parameter perturbation methods to check for model inaccuracies. The first
method involved changing one parameter at a time across a range of values, with no parameter
interactions. While this data can be useful, it is not the most accurate representation of Earth’s
interconnected systems. The second sampling method implemented Latin Hypercube (LHC)
sampling to develop a range of realistic parameter sets to test against real-world observations.
Since the working group has yet to release the raw data from their parameter perturbation
experiment, the CLM working group has created a preliminary website where users can quickly
reference the data. However, the point-and-click navigation is time consuming, irreproducible,
and is only available for the one-at-a-time dataset. Additionally, the few visualizations that are
available have little-to-no aesthetic elements that allow users who aren’t familiar with the
acronyms used by the CLM working group to interpret the visualizations. These constraints
make it very difficult to pull meaningful insights from the impactful work of the PPE. Without
access to the raw dataset, there is no way to truly compare the climate variable outputs to the
observations collected in the real world, which is the best way to test for model accuracy.



Specific Objectives
The primary objectives for this project are:

● Development of a user-friendly, interactive dashboard that will allow for users to
view the results of the parameter perturbation experiment easily and efficiently. The
interactive dashboard will provide an interface where new or experienced users can
select a parameter, variable, and time range of interest to quickly visualize the predicted
relationship. The dashboard will contain a link to a splash page with documentation
describing the parameters to allow for a broader scope of individuals to explore the data.

● Creation and validation of a machine learning model that can produce a reduced, yet
representative, dataset that will be used for data visualizations displaying the predicted
relationship between user-defined parameters and variables of interest. This feature will
allow scientists to visualize the results from multiple simulations simultaneously,
increasing the efficiency of model insight generation and exposing flaws in the model.

● Improve the metadata documentation by consolidating existing documentation onto
an easily accessible splash page and producing a clean GitHub repository that allows
users to access the results of the Parameter Perturbation Experiment, as well as our
approach for developing a data-driven emulator as a form of scientific communication.



Summary of Solution Design

8.1 Design Choices
8.1.a Emulator Components

Defining the emulator components

As outlined below in Figure 1, the two components that undergo data preprocessing functions
are LHC perturbed parameter simulations and accepted perturbed parameter values. The
pre-processing of the LHC data includes dimensional reduction of the gridcell and time
dimensions, yielding each simulation's global annual mean. These values are used to train the
emulator to predict the model output for the climate variable. Both datasets were normalized
between 0 and 1. This enables the emulator to further enhance its performance. The
normalization step guarantees data uniformity within a Gaussian assumption. This
pre-processing step improves the accuracy and interpretability of subsequent analyses and
predictions, fostering a more robust understanding of the relationships between perturbed
parameter values and climate variable predictions.

Figure 1: Diagram of CLM-5 PPE data processing workflow: cluster of PPE5 simulations associated with user
selected climate variable (blue), cluster of accepted parameter values (orange).

Perturbed Parameter Simulations (500, 1)

In this workflow, the Latin HyperCube (LHC) data generated by the PPE is subset as a cluster of
500 files containing sets of simulations using time ranges varying in increments of 5 years. Each
simulation contains 32 parameter features that were perturbed according to reasonable bounds.
All parameters were assigned independent, quasi-random values for each simulation. The
timeline selected for the emulator was 1995-2015. This 20 year time range was chosen to provide
more informative insights into parameter value influence on climate variables. The development
and application of satellite data did not begin until the 1980s, so there is a greater degree of



uncertainty associated with climate model predictions (Yang, Jun, et. al, 2013). Therefore, a
decision was made to use data from 1995 and onward.

Accepted Perturbed Parameter Values (500, 32)

A cluster of accepted parameter values for 32 parameters that influence the environment.

8.1.b Gaussian Process Regression Machine Learning (GPR ML) Emulator

Figure 2: Diagram of CLM-5 PPE Emulator workflow: cluster of PPE simulations associated with user selected
climate variable (blue), cluster of accepted parameter values (orange), ‘black box’ GPR ML emulator (black), GPR
plot of emulation prediction of climate variable model output vs perturbed parameter with associated uncertainty
(left), Fourier Amplitude Sensitivity Transformation (FAST) parameter sensitivity analysis plot and Cross Validation
accuracy inset plot (right).

Defining GPR Emulator Capabilities

A Gaussian Process Regression Machine Learning (GPR ML) emulator serves as a versatile tool
in the context of climate modeling calibration and understanding the influence of parameter
value uncertainty on climate model outputs. Emulators are stand-ins for full climate models. The
computational burden required to compute predictive outcomes is alleviated when replacing the
model with an emulator. Insights that invite calibration of the climate model are made available
more quickly.

GPR emulators are capable of predicting climate variable outcomes for complex relationships
within climate models with confidence. The backbone of this ‘black box’ emulator is a
nonparametric Bayesian machine learning approach (Rasmussen, 2004). When handling
multivariate data, each perturbed parameter is distributed normally and their joint distribution is
also Gaussian [normal]. The multivariate Gaussian distribution is defined by a mean vector,
μ,and a covariance matrix, Σ. The relationship between the perturbed parameters and climate



variable output is estimated using the distribution of possible functions. The emulator then
computes the mean prediction based on the estimated distribution (Görtler, et al., 2019).

Eq 1

X, the mean prediction, follows a normal distribution for the mean vector, μ, and covariance
matrix, Σ (Görtler, et al., 2019).

Eq 2

The covariance matrix, Σ, describes the shape of the distribution. It is defined in terms of the
expected value E, as described above in Eq 2 (Görtler, et al., 2019).

Leveraging a GPR ML Emulator

To put it more simply and in the context of this project, The CLM-5 PPE Emulator initially trains
on a set of accepted values for perturbed parameters associated with the climate variable of
interest. It then leverages this information to construct a probabilistic emulation that captures the
relationships between the perturbed parameters and the climate variable of interest. The mean
prediction represents the weighted combination of these probabilistic functions for the expected
value of the climate variable output, while the covariance provides information about the
uncertainty associated with the prediction (Görtler, et al., 2019). A unique feature of GPR is that
all 32 perturbed parameter features passed through it are in a normalized fashion both
individually and combined. Predictions are made by the emulator through estimating μ and Σ of
the climate variable output distribution at each input point. The emulator provides predictions for
the climate variable output at unobserved perturbed parameter values, complete with uncertainty
estimates. Thus, alleviating the hefty computational burden associated with repeatedly running
complex climate models. Enabling climate scientists the ability to gather insightful
interpretations of the climate predictions alongside the confidence provided with the emulator's
predictions.

Through the quantification of uncertainty, insights into the reliability and accuracy of the model
predictions are gained. These emulation outputs can be used to refine and calibrate the CLM-5
climate model, leading to more confidence in the climate simulations created as a result of



recorded reliability and trustworthiness. Leveraging the uncertainty alongside the emulation
predictions, developments to refine climate models may be made through the climate model
calibrations for emulated predictions with high uncertainty. Leading to enhancements in the
ability to simulate and predict future climate scenarios more accurately. To curate stakeholder
trust and build confidence in climate predictions, it is important to communicate uncertainty.
When provided the full picture, stakeholders gain access to a clear understanding of the
uncertainties involved. Leading to higher likelihood of these stakeholders trusting and acting
upon model outputs. Establishing a standard for transparency is essential for effective science
communication and policy formulation. The quantified uncertainty provided by our dashboard
emulation visualizations allows policymakers and climate scientists, alike, to make informed
decisions based on the reliability of the model outputs. Understanding the range of possible
outcomes and their associated uncertainties helps in assessing risks and developing appropriate
adaptation and mitigation strategies.

8.2 The CLM5 PPE Uncertainty Emulator

8.2.a. Emulator Specifications

This is the earliest iteration of the uncertainty emulator, therefore the foundation for the essential
emulator specifications were defined clearly in this project. When tabulating uncertainty, the
emulator is confined to 3 standard deviations. The choice to have a confidence interval of
approximately 99.7% was to strike a balance between coverage and precision and provide a
comprehensive representation of uncertainty.

Increasing the number of standard deviations would widen the uncertainty bounds and provide a
more conservative estimate, it may also lead to overly broad intervals that lack precision.
Juxtaposing the former, by quantifying fewer standard deviations, narrower intervals would
result and potentially exclude important outlier information. For these reasons, 3 standard
deviations was deemed the most robust level of uncertainty that allows climate scientists to gain
insights into the accuracy and validity of the predictions. Leading to further developments in
climate model calibration, uncertainty quantification of parameter value influence, and
educational resources to document climate model behaviors.

8.2.b. Kernel Configuration

What is a kernel?



In GPR, a kernel function, ), further defines the statistical structure used to compute the 𝑘(𝑥
𝑖
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𝑗

covariance between two input data points and (Rasmussen & Williams, 2006). The kernel𝑥
𝑖

𝑥
𝑗

function is a typically specified component of the emulator that measures the correlation between
the values in the perturbed parameter space. It serves as a keystone element of GPR emulators
and defines the shape and characteristics of the covariance function, enabling insights into the
underlying relationships interwoven within the data. Different kernel functions contain specific
flexibilities that allow them to capture various patterns embedded in the data, enabling unique
uncertainty estimations at varying levels of confidence.

In simpler terms, the kernel in a GPR model encapsulates the specifications to assess the
relationship between data points. It quantifies the degree of similarity or dissimilarity between
the perturbed parameter values, thereby determining their influence on each other during the
regression process (Rasmussen & Williams, 2006).

Kernels are of paramount importance in GPR models, as they directly impact the model's
flexibility and predictive performance. The choice of kernel function influences the smoothness
and complexity of the model, thereby affecting its ability to capture underlying patterns and
dependencies in the data (Rasmussen & Williams, 2006). The implementation of a custom kernel
configuration allows the emulator to be more tailored to specific characteristics within data.
Therein, ultimately enhancing the emulator's robustness in interpretability and predictive
accuracy.

Kernel configurations for this model

Below there are a collection of kernel functions that may be combined in a variety of ways to
best interpolate the intricate relationships within the data. Refer to the Future Works section of
this Technical Document to see the outline for potential applications of custom kernel
combinations, leveraging the `select_best_kernel()` function.

Table 1: Types of kernel components that are appropriate to use to make configurations using the scikit-learn
package, sklearn.gaussian_process.kernels (scikit-learn, 2024).

Kernel
Name

Equation Defining Variables Background
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The constant kernel assigns a
constant value to all pairs of data
points. It is often used as a
baseline to capture the overall
variance in the data (scikit-learn,
2024).
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product of
parameter input
vectors.

The linear kernel models linear
relationships between perturbed
parameter values assuming a
linear correlation between them.
It computes the dot product
between input feature vectors
(scikit-learn, 2024).
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The Radial Basis Function
(RBF) kernel, also known as the
Gaussian kernel, measures the
similarity between data points
based on their Euclidean
distance. It assigns higher
weights to nearby data points,
making it suitable for capturing
non-linear relationships
(scikit-learn, 2024).



Matern 32
& 52

Eq 3, Matern 32, for v = 3
2

𝑘(𝑥
𝑖
,  𝑥

𝑗
) =  1 + 3

𝑙 𝑑(𝑥
𝑖
,  𝑥

𝑗
) 2( )  

                                 •  𝑒𝑥𝑝 − 3
𝑙 𝑑(𝑥

𝑖
,  𝑥

𝑗
)( )  

Eq 4, Matern 52, for v = 5
2

𝑘(𝑥
𝑖
,  𝑥

𝑗
) =  1 + 5

𝑙 𝑑(𝑥
𝑖
,  𝑥

𝑗
) + 5

3𝑙 𝑑(𝑥
𝑖
,  𝑥

𝑗
) 2( ) 

                          •  𝑒𝑥𝑝 − 5
𝑙 𝑑(𝑥

𝑖
,  𝑥

𝑗
)( )

is the𝑑(𝑥
𝑖
,  𝑥

𝑗
) 2

Euclidean distance
between the
parameter input
vectors, is the𝑙
length scale of the
parameter,

1 + 𝑛
𝑙 𝑑(𝑥

𝑖
,  𝑥

𝑗
) 2( )

is a flexible linear
term that increases
with distance,

𝑒𝑥𝑝 − 𝑛
𝑙 𝑑(𝑥

𝑖
,  𝑥

𝑗
)( )

is the flexible
exponential decay
term, it decreases
with distance.

The Matern 32 kernel is a
specific case of the Matern
family of kernels, specified in the
top equation. Eq 3 is
characterized by its smoothness
hyperparameter setting of v =
3/2. It balances between
flexibility and smoothness,
making it suitable for modeling
datasets with moderate levels of
noise and non-linearities.

The Matern 52 kernel, shown in
Eq 4, has a smoothness
hyperparameter setting of v =
5/2, resulting in a smoother
function compared to Matern 32.

Matern kernels pair nicely with
the RBF kernel to increase
flexibility (scikit-learn, 2024).

Polynomial
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𝑖
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is a scalar for theδ
dot product of the
input parameter
vectors, is a 𝑐𝑜𝑒𝑓0
constant term,
degree is the power
of the polynomial.

The polynomial kernel interprets
polynomial relationships
between parameter values,
allowing for the capture of
non-linear dependencies
(scikit-learn, 2024).

White Noise
𝑘(𝑥
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 𝑒𝑙𝑠𝑒 0  

When the input
parameter vectors
are not equal, a
constant noise value
is applied.

The white noise kernel, also
known as the bias kernel, as aids
in the standardization of the
noise-level of the signal
(scikit-learn, 2024).

As outlined in Table 1, there are a collection of kernel functions that may be combined
mathematically to better interpolate various relationships. For the earliest iteration of The CLM5



PPE Emulator, the following kernel configuration shown in Eq 5, was selected for this early
iteration due to its simplicity and manageability.

𝑘𝑒𝑟𝑛𝑒𝑙 =  𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝐾𝑒𝑟𝑛𝑒𝑙(𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡_𝑣𝑎𝑙𝑢𝑒 =  3,  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡_𝑣𝑎𝑙𝑢𝑒_𝑏𝑜𝑢𝑛𝑑𝑠 =  (1𝑒 − 2,  1𝑒4))
Eq 5                     •   𝑅𝐵𝐹(𝑙𝑒𝑛𝑔𝑡ℎ_𝑠𝑐𝑎𝑙𝑒 = 1,  𝑙𝑒𝑛𝑔𝑡ℎ_𝑠𝑐𝑎𝑙𝑒_𝑏𝑜𝑢𝑛𝑑 =  (1𝑒 − 4,  1𝑒8))

The RBF kernel is highly flexible and can capture complex non-linear relationships in the data.
This is crucial for environmental data, which often exhibits intricate patterns and interactions
between variables. The Constant kernel is applied to set boundaries to capture model variance.
The boundaries established for the hyperparameters were selected based on the range of values
provided by the emulation outputs. Limitations associated with the kernel figuration are that it
lacks dimensionality in terms of being able to assess each perturbed parameter feature on their
own individual length scale. Instead all perturbed parameters are assessed in the same
dimensional space. To work around these limitations currently within the kernel, an iteration
clause was crafted to enable each perturbed parameter to be individually assessed in the
parameter space. This allows the emulator to be trained to interpolate each parameter’s influence
on the climate variable output. Upon training, the trained emulator is pickled and stored for later
use upon user-querying.

8.2.c Pickling the GPR Emulator

What’s a pickled emulator?

The Pickle package in Python that aids the serializing and deserializing trained emulators and
their associated data (Python Software Foundation, 2024). It saves emulation objects as a file in a
format that can be easily read and reused in the workflow at a later time. Pickle essentially
allows the dashboard to save our trained emulator data and load it back into memory when
selected by a user, preserving all the information and functionalities of the original object.

How is it applied in our model?

In the emulator workflow, we utilize the Pickle package to store emulation results for future use
and ‘unpickle’ those objects employing an if-else statement. At the beginning of our workflow,
we embedded a conditional statement that checks if a climate variable has been selected in the
past. If the relationship has been previously emulated and stored, the dashboard retrieves the
saved emulation results and displays them for the user. Otherwise, if the climate variable is new
and has not yet been previously computed, the model proceeds to run the emulation and stores
the data for future use.



Why is it beneficial?

The use of pickling in our model offers several benefits. Firstly, it saves significant time and
computational resources by avoiding the need to rerun emulations for relationships that have
already been computed. This efficiency not only streamlines the user experience but also reduces
the computational burden and carbon impact associated with running the model repeatedly.
Additionally, pickling ensures that previously computed results are readily available for analysis,
enabling seamless exploration and interpretation of model outputs. Overall, pickling enhances
the efficiency, accessibility, and sustainability of our model workflow.



Products and Deliverables
The goal of this project is to develop an interactive emulator for the results of the Parameter
Perturbation Experiment. The emulator will allow NCAR scientists to view the parameter and
variable definitions, the relationship between a variable and parameter of interest, and the
uncertainty of that predicted relationship. In order to achieve this, the dashboard will have the
following components:

● A splash page with a description of the experiment setup, how the simulation data was
collected, and a full-length description of the 32 perturbed parameters and the 10 most
commonly used climate output variables

● A main page that will allow users to select a parameter and variable of interest from a
drop down menu, and display the following visualizations

○ The predicted relationship between the selected parameter (x-axis) and variable
(y-axis), along with the 99% confidence interval for the estimate

○ The results of a parameter sensitivity analysis for the selected variable, showing
which parameters have the highest influence on the selected variable

○ An accuracy plot to show the comparison between the measured and predicted
values

Our team has structured the dashboard so that staff at NCAR will be able to expand upon the
capabilities of the dashboard after the project is completed in June. To help accommodate NCAR
staff as they build upon the existing scaffolding, the scope of the project includes:

● Implementing continuous integration into the containerization of the dashboard to launch
future work automatically

● Adding a substantial ‘Maintenance and Future Work’ section to the Technical
Documentation

● Developing a cleaned, organized GitHub repository with Jupyter Notebooks outlining the
progress made on suggested future work



Summary of Testing
10.1 Effective and Insightful Data Visualization
Quality Assurance Measures

Throughout the development of the workflow, the emulator components continually underwent
dimensional assessment. This was to guarantee the components being considered contain all of
the desired information required to interpret quality predictions. When configuring our emulator,

a series of qualitative checks were conducted using testing metrics such as the , Root Mean𝑅2

Squared Error (RMSE), and Mean Absolute Error (MAE). The acceptable range of emulation

accuracy defined by the team was for the top 10 most common climate variables to provide an 𝑅2

of 0.65 or greater. Additionally, visualizations such as GPR emulation plot, Fourier Amplitude
Sensitivity Transformation, and a Cross Validation Accuracy plot were produced to assess the
performance of the emulator and accuracy.

Initially, when testing functionality of the emulator, the climate variable (Leaf Nitrogen
Concentration, LNC) and perturbed parameter (Leaf Carbon to Nitrogen Ratio, Leafcn)
relationship was selected due to their highly correlated relationship. The GPR emulation plot was
the primary indicator to determine how well the model was performing, the expected output was
a negative linear trend with high correlation, as seen below in Figure 3.



Figure 3: GPR Emulation Prediction plot for the Climate Variable Leaf Nitrogen Concentration (LNC) and Leafcn.
Shaded region displays uncertainty up to 3 standard deviations.

Once the initial testing relationship revealed the expected predictive trends with minimal
uncertainty, the emulator testing expanded to the 10 most common climate variables. A script
was created to save png images in a designated folder of all the plots generated for the model
predictions. The team later reviewed these images to assess the reliability, validity, and accuracy
of the emulator.

GPR Emulation Prediction Plot

The GPR emulation plot visualizes the predicted relationship between the user-selected perturbed
parameter and the climate variable. It provides an intuitive understanding of how variations in
parameter values influence predicted climate variable outcomes. The plot also incorporates
uncertainty estimation, represented by shaded regions indicating up to three standard deviations,
offering insight into the reliability of predictions.

Fourier Amplitude Sensitivity Transformation (FAST) Plot

The Fourier Amplitude Sensitivity Transformation (FAST) plot is a technique used for
conducting parameter sensitivity analysis in computational modeling (Fang, Gertner, et. al.,



2003). It decomposes the variance of climate variable output into contributions from individual
perturbed parameters. Thus, allowing for the assessment of each parameter's impact on model
outcomes. Figure 4 displays the sensitivity of the predicted climate variable to variations in each
perturbed parameter, providing valuable insights into the relative importance and influence of
different parameters on that climate variable.

Figure 4: Emulation Fourier Amplitude Sensitivity Transformation plot with Cross Validation Accuracy plot inset
for the Climate Variable Leaf Nitrogen Concentration (LNC) and Leafcn. Shaded region displays uncertainty up to 3
standard deviations, is 0.95.𝑅2

The FAST plot serves as a tool for parameter sensitivity analysis, leveraging variance to assess
the influence of individual parameters on the selected climate variable. By examining this plot,
users can discern which parameters exert the most significant impact on the climate variable
under study, aiding in understanding key drivers of model outputs.

Accuracy Plot

Within each FAST plot, a cross validation plot is produced to provide quality assurance
alongside the prediction using a subset of the predicted climate variable output to a subset of the
test data. This plot facilitates the comparison between predicted climate variable values
generated by the emulator and test values. Additionally, the plot includes the coefficient of

determination derived from the emulation, quantifying the model's predictive performance. A𝑅2

perfect alignment with the reference line denotes flawless prediction accuracy and would yield



an of 1. The Accuracy Plot enables users to evaluate the emulator's ability to faithfully model𝑅2

the data and predict outcomes, along with their associated uncertainty.



User Documentation

11.1 Dashboard User Manual

Welcome to the User Manual for the Community Land Model 5 Parameter Perturbation
Experiment Dashboard! This tool is designed to allow users to choose a parameter, variable, and
time-frame of interest to create custom visualization for analysis within the dashboard. Below is
a quick overview of the experimental setup, followed by step-by-step instructions on how to
effectively use this tool.

11.1.a Overview of the Project

This project focuses on using Gaussian Process Regression (GPR) to model and predict climate
data. Specifically, the project involves perturbing a global land model with 32 different
parameters. Each time a single parameter is altered, the responses of the other 31 parameters are
recorded. This process produces a comprehensive sample of the parameter space, which includes
471 different output variables such as surface temperature, leaf nitrogen content, and soil
moisture. The data is stored in NetCDF format for efficient storage and retrieval.

The Gaussian process regressor is trained on this sample data to learn the relationships between
parameters. Once trained, the model can predict the values of output variables based on new
input values. For instance, a sample of 10 different values between 0 and 1 can be provided to
the trained model, and it will predict the corresponding output values.

11.1.b Information on Gaussian Process Regression

Gaussian Process Regression (GPR) is a machine learning model used for predicting outcomes
based on input data. It assumes the data follows a Gaussian distribution and makes predictions by
learning the relationships between input and output variables from training data. When a new
input is provided, the GPR predicts the possible outputs and also provides a measure of
uncertainty through standard deviation. This standard deviation indicates how confident the
model is about its predictions; a smaller standard deviation means higher confidence, and a larger
one indicates more uncertainty. GPR is particularly useful in fields like climate science, where
understanding the variability and confidence in predictions is crucial. Unlike polynomial
regressors, which fit a fixed polynomial equation to the data, GPR models the data using a
probability distribution, making it more flexible and capable of capturing complex relationships
and uncertainties. This flexibility helps scientists make more informed decisions based on the
model's output and its associated confidence levels.



11.1.c Dashboard Output Explanation

The Dashboard generates two visualizations for each new selection made using the drop down
menus. The first visualization is an emulator plot featuring the climate variable predictions, and a
three standard deviation range of uncertainty. In the emulator plot. The emulator plot shown
below shows the relationship between a parameter (Leafcn, the Carbon to Nitrogen Ratio in a
Leaf) and a variable (LNC, the nitrogen concentration in a leaf) for the time range 1995-2015.

Another plot produced below consists of two subplots. The horizontal bar plot represents the
sensitivity of each of the 32 parameters. The parameter with the greatest influence on a variable
has the greatest height, and so on.

The smaller nested plot within the second visualization is a cross-validation plot comparing the
emulator’s predicted result with the output data from the Community Land Model 5. This
comparison is measured using the R² value. An R² value greater than 0.7 indicates good
performance of the model, while values lower than that indicate poor performance.



11.2 Maintenance Documentation for Software Personnel
This document provides detailed instructions for using and maintaining the GPR Emulator with
NetCDF datasets. It is intended for scientists at NCAR who work with climate datasets but have
no experience with supercomputing or Gaussian process regression in a supercomputing
environment. The guide covers setting up the Python environment, configuring resources on the
remote server, running the emulator, using the dashboard interface, and troubleshooting.

Python Environment Setup

Establishing a suitable Python environment is crucial for running the Emulator (machine learning
model) smoothly. The runtime environment should have following packages and versions:

Package Version Description

xarray 2024.1.1 A powerful library for working with labeled multi-dimensional arrays,
particularly useful for handling netcdf data with complex dimensions and
metadata.

pandas 2.2.0 Used for data manipulation and analysis of, especially for tabular data
structures like dataframes.



numpy 1.26.3 Essential for numerical computations, providing efficient array operations
and mathematical functions.

matplotli
b

3.8.2 A versatile plotting library for creating various types of visualizations,
enabling to explore and visualize climate data effectively.

scikit-lea
rn

1.4.0 Offers a wide range of machine learning algorithms and tools, including
Gaussian Process Regression, which is utilized in the emulator.

panel 1.3.8 Enables the creation of interactive dashboards, allowing users to
interactively explore and analyze emulator results.

dask 2024.1.1 Ideal for parallel computing and handling large datasets, which is
common in climate research.

Cluster Configuration

To speed up data processing, use the get_cluster() function to set up a Dask cluster. This
function, located in the project's utils folder, configures resources with 40 cores, 40 threads, and
4GB RAM per core. If get_cluster() is not called, set the following options:

● Number of Cores: 40
● Memory Allocation: 4GB per core
● Walltime: 12 hours (adjust as necessary)

This configuration maximizes computational resources and expedites the emulation process.

Data Preparation and Emulator run

Ensure the following data and information are ready:

Parameter Data Array: Collect and preprocess the required parameter data using
functions from the utils folder. Use read_all_simulation() to read the parameter set and variables
of interest.

Running the Emulator

Execute the train_emulator() function, which includes the following steps:

1. Data Splitting: Divide the data into training and testing sets (80:20 ratio)



2. Model Training: Train a Gaussian Process Regression model using the training data
3. Prediction: Make predictions using the trained model
4. Evaluation: Assess the model's performance using evaluation metrics like R squared
5. Visualization: Plot predicted values, uncertainty estimates, and regression lines

Troubleshooting

Common Issues and Solutions

1. Data Availability: Ensure input data has the shape [500, 32]. Adjust rows as necessary
but maintain 32 columns

2. Function Arguments: Verify the arguments passed to functions are correct and
consistent. Information about each function can be found ‘?function_name`

3. Error Messages: Pay attention to error messages and traceback information. Ensure
output variables are single arrays with shape [500, ]

4. Utils Package: Ensure the utils package is included in the ‘meds
conda’ environment

5. Resource Cutoff: Periodic maintenance at NCAR may limit Dashboard operation. If the
emulator is slow, check NCAR resources

Best Practices

To maximize the effectiveness of the Emulator, consider the following best practices:

● Optimize Resources: Adjust cluster resources based on analysis complexity and
available computational resources

● Validation: Validate emulator results using known data or benchmarks
● Exploration: Explore different parameter ranges and scenarios to understand the

sensitivity of climate variables
● Documentation: Document emulator settings, parameter ranges, evaluation metrics, and

findings for reproducibility



Archive Access
While the data used for this project is not technically proprietary, the dataset is very large and
currently being stored on the NCAR server. The National Center for Atmospheric Research has
plans to publish the full dataset using their current standard for data archival and access. The
code produced during this project is available through the GitHub Organization and the much
smaller, pre-processed emulator datasets are available through Dryad using the DOI:
10.5281/zenodo.11291029.

https://github.com/GaiaFuture
https://datadryad.org/stash/dataset/doi:10.5061/dryad.vq83bk422
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