Fish scraps to food: new markets in Mexican artisanal fishing communities

Tyler Clavelle, Jessica Couture, Christopher Newman, Morgan Visalli

Advisor: Andrew Plantinga

Overview

The study assessed the feasibility of producing aquaculture feed ingredients from the byproducts of small-scale artisanal fisheries in Baja California Sur, Mexico as a means to create ecologically sustainable economic opportunities.

Background

Over 90% of the fisheries in BCS are artisanal, operating on a small scale with limited technology. Artisanal fishing communities are often remote and impoverished, lacking economic opportunities outside of the fishing sector.

Quantitative Results

Objective 1: Examine supply of artisanal fishery waste

- **Distribution of waste**
 - Waste is produced in over 200 artisanal fishing communities in BCS. Squid Rosas and Concentrated High Value Waste are major contributors.

- **Declining waste production**
 - Squid makes up over 50% of the annual fishery waste produced in BCS. Since 2005, the availability of squid waste has declined due to lower squid landings and changing processing practices.

- **Objective 2: Determine economic feasibility by port**
 - It is economically feasible for some ports to produce silage and transport it to a buyer in southern BCS if silage is sold at a price comparable to fish meal but not soybean meal.
 - Additional, communities with a consistent supply of high quality waste are more likely to be feasible. Transportation costs greatly impact on feasibility.

Qualitative Results

Objective 3: Identify social and ecological considerations

- **Ecological Impacts**
 - Increasing the value of these sensitive fisheries through profitable silage production may result in:
 - Increased fishing effort
 - Increased bycatch, concentrate fishing effort, and divert fish away from direct human consumption.
 - Therefore, silage production is likely to cause negative ecological impacts unless implemented in areas with well-managed fisheries.

Research Question

Is it economically feasible and ecologically sound to produce silage as an aquaculture feed ingredient from artisanal fishery scraps in BCS?

Objectives and Methods

- **Objective 1: Examine supply of artisanal fishery waste**
 - We analyzed eight years of artisanal catch data to:
 1. Estimate the quantity and quality of available waste.
 2. Investigate spatial and temporal trends in waste production.

- **Objective 2: Determine economic feasibility by port**
 - Ports deemed economically feasible are clustered in southern BCS because of their close proximity to buyer pick-up locations, which results in lower transportation costs and higher profits. When silage is valued at a higher fish meal price, ports bring in more revenue and can transport silage from farther away, which results in more economically feasible ports overall.

Alternative Uses of Fish Scraps

Aquaculture: Silage can be made into aquaculture feeds onsite by fish farmers at the artisanal scale, bypassing feed producers.

Livestock: Silage can be directly fed to pigs and chickens as well as used strategically to supplement livestock diets when grazing and feed sources are limited.

Agriculture: Silage can also be applied directly to fields as a fertilizer to supplement food production in communities.

Conclusions

- The amount of fishery waste in BCS is variable and has declined from 2005 to 2012.
- This decline was primarily the result of low landings from the squid fishery and changing processing practices.
- Silage production from fish scraps is economically feasible if the product is valued as a substitute for fish meal but not soybean meal.
- Adding value to fishery byproducts may generate perverse incentives that increase bycatch, concentrate fishing effort, and divert fish away from direct human consumption.
- In locations where silage sale to a feed producer is not feasible, alternative local uses of fish scraps in aquaculture, livestock, or agriculture may be possible.

Acknowledgements

We would like to thank: Andrew Plantinga, Gary Libeau, David Romanos Morales, Gretchen Grebe, Frank Hur, Alejandro Flores Márquez, Darcy Bradley, Steve Miller, James Frew, Jeff Deier, Ben Baer, Beau Perry, Kristin Read, Steve Gaines, Katie Nichols, and Sarah Underst.