ESM 202 Environmental Biogeochemistry

Arturo A. Keller
Bren Hall 3420
arturokeller@ucsb.edu
OH: open door policy/email appt.

Lectures: Via Zoom, 9:30 to 10:45 am Tuesday and Thursday

The goal of this course is to provide you with a scientific basis to understand:

- Major disturbances to cycling of elements in the environment
- Pollution and its implications
- A range of approaches to understand and develop solutions to these problems
- How this is relevant in your daily life as well as for your career

LECTURES

Week 1 Why is biogeochemistry relevant for solving environmental problems?
Understanding water quality: Part I

Week 2 Understanding water quality: Part II
Eutrophication and P cycle

Week 3 N Cycle – sources, processes and effects
Understanding Air quality

Week 4 Sulfur cycle – sources, processes and effects
Acid mine drainage

Week 5 Carbon cycle dynamics (major drivers of emissions)
Terrestrial and oceanic carbon processes

Week 6 Wetland biogeochemistry
MIDTERM (take home)

Week 7 Trace elements – sources, processes and effects
Life-cycle assessment & biogeochemistry

Week 8 Lead and mercury
Emerging organic pollutants

Week 9 Micro and nano pollutants
Ecotoxicology

Week 10 Modeling Biogeochemistry to Inform Policy Decisions
Synthesis and interactions

March 16 FINAL EXAM (8-11 am, take home)
DISCUSSIONS
TAs: Qian Gao (Bren Hall 2326)
 Violaine Desgens-Martin (Bren Hall 2422)

Week Topics
1 Chemistry boot camp
 (Or what I really need to know to make the most of this course)
2 Water quality concepts
3 N & P biogeochemistry
4 Air quality concepts & Sulfur cycle
5 Carbon cycle
6 Review for midterm
7 Trace elements
8 Emerging pollutants
9 Open topic
10 Review for final

GRADING
• Assignments: 3 x 15% each (#1 Due Week 4, #2 Due Week 8, #3 Due Week 10, on Mondays)
 ▪ The assignments are INDIVIDUAL, and be careful when using information from a published source to express it in your own words after you analyze it
• Midterm: 20%
• Final: 35%

Reading Materials
Textbook: Biogeochemistry : An Analysis of Global Change, by Schlesinger and Bernhardt

Week Readings
1 Chapters 1 and 8 & Article on Water Quality
2 Chapters 6 and 12
3 Chapter 3 & Article on Air Quality
4 Chapter 13
5 Chapters 5, 9 and 11
6 Chapter 7
7 Article on Trace Elements
8 Article on Emerging Contaminants
9 Article on Ecotoxicology
10 Chapter 14

Articles will be posted to the course website in Gauchospace.
Homework assignments will be posted to Gauchospace.