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ABSTRACT	

The	complex	and	global	nature	of	wood	product	 supply	 chains	makes	 tracing	products	 to	
their	raw	material	sources	nearly	impossible,	despite	the	desire	of	companies	and	external	
stakeholders	to	understand	their	 influence	on	deforestation	and	other	environmental	and	
social	 issues.	 The	 Sustainability	 Consortium	 (TSC),	 a	 member	 organization	 committed	 to	
advancing	 product	 sustainability,	 has	 developed	 a	 Commodity	 Mapping	 Program	 that	
utilizes	 trade	and	procurement	data	 to	model	 supply	 flows	and	 supports	 this	 information	
with	geographic	 risk	 layers	on	 relevant	environmental	 and	 social	 impacts.	 TSC	 tasked	 this	
group	with	developing	base	maps	 to	enable	 the	Commodity	Mapping	Program	to	analyze	
global	wood	sourcing.	Tree	cover	 loss	and	gain	data,	provided	by	Hansen	et	al.	 (2013),	 in	
concert	with	Google	Earth	imagery,	were	used	to	identify	global	tree	growing	regions	that	
are	likely	(tree	farms)	and	not	likely	(palm	plantations)	to	consistently	supply	wood.	MODIS	
fire	 point	 data	 were	 also	 leveraged	 to	 determine	 forest	 lost	 to	 fire	 as	 a	 cause	 of	
deforestation	that	can	be	isolated	from	the	influence	of	forest	supply	chains.	The	resulting	
base	 maps	 enable	 TSC	 to	 inform	 members	 on	 their	 wood	 commodity	 sourcing	 and	 the	
associated	 environmental	 and	 social	 impacts	 relative	 to	 other	 products	 and	 sourcing	
regions.  
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EXECUTIVE	SUMMARY	

Deforestation	threatens	global	wood	product	supply.	Deforestation	also	threatens	the	many	
other	services	that	forests	provide,	such	as	promoting	biodiversity	and	sequestering	carbon	
dioxide.	 In	addition	to	deforestation,	numerous	environmental	and	social	 impacts,	ranging	
from	forced	labor	to	water	pollution,	are	linked	to	wood	sourcing.	Considering	these	risks,	
companies	that	produce	wood	products,	as	well	as	external	stakeholders	ranging	from	non-
governmental	 organizations	 to	 customers,	want	 to	 know	whether	 a	 given	product	 supply	
chain	 is	 tied	 to	 the	 aforementioned	 risk	 factors.	 Increasing	 supply	 chain	 knowledge	 also	
enables	 companies	 to	 identify	 opportunities	 to	 improve	 resource	 planning	 and	 allocation	
and	increase	efficiencies	in	their	value	chain,	ultimately	improving	their	bottom	lines	(WRI,	
2015).	However,	complexities	 in	forestry	supply	chains	arising	from	convoluted	processing	
and	 distribution,	 international	 regulatory	 inconsistencies,	 and	 the	 proprietary	 nature	 of	
supplier	procurement	data	make	it	virtually	impossible	to	trace	a	given	product	to	its	exact	
raw	material	source.	 																								
	
The	Sustainability	Consortium	(TSC)	is	a	member	organization	committed	to	enhancing	the	
sustainability	of	consumer	products	(TSC,	2015a).	To	this	end,	TSC	developed	a	Commodity	
Mapping	Program,	which	models	and	maps	trade	flows	using	 international	trade	data	and	
company	 specific	 procurement	 data.	 TSC	 contextualizes	 its	 commodity	 mapping	 with	
geographic	 risk	 layers	 on	 relevant	 environmental	 and	 social	 impacts.	 Due	 to	 the	
complexities	 of	 wood	 product	 supply	 chains,	 wood	 supplier	 procurement	 data	 is	 often	
unavailable.	Thus,	 to	apply	 the	Commodity	Mapping	Program	to	wood	product	origin	and	
enable	 stakeholders	 to	 better	 understand	 the	 impacts	 associated	with	 sourcing	wood	 for	
specific	products,	spatial	analysis	was	needed	to	identify	where	in	the	world	wood	is	likely	
to	be	sourced	at	a	fine	scale.	The	global	scope	is	crucial	in	order	to	encompass	all	of	TSC’s	
members	and	their	supply	chains,	provide	a	global	view,	and	to	consider	impacts	of	a	given	
product	or	sourcing	region	relative	to	others.	Fine	resolution	is	also	needed	as	impacts	can	
vary	drastically	within	a	country	or	region.		
	
This	 project	 leverages	 existing	 spatial	 datasets	 to	 generate	 global	models	 and	 base	maps	
that	 identify	 areas	 most	 and	 least	 likely	 to	 serve	 as	 consistent	 wood	 sources	 and	
characterizes	 these	 sourcing	 regions	 based	 on	 whether	 they	 are	 plantations	 or	 potential	
causes	of	deforestation	on	a	10km	by	10km	scale.	Based	on	the	assumption	that	plantations		
experience	rapid	cyclical	harvest	and	regrowth	in	the	same	region,	tree	plantations	that	are	
most	likely	(tree	farms)	and	least	likely	(palm	plantations)	to	serve	as	consistent	sources	of	
wood	commodity	supplies	were	modeled	using	tree	cover	 loss	and	gain	data,	provided	by	
Hansen	 et	 al.	 (2013)	 and	 Google	 Earth	 imagery.	 The	 resulting	 base	 maps	 show	 the	
probability	 that	 any	 given	 10km	 by	 10km	 parcel	 of	 land	 contains	 a	 tree	 farm	 or	 palm	
plantation.	MODIS	fire	points	were	then	utilized	to	model	where	in	the	world	forest	is	lost	
to	fire	as	a	cause	of	deforestation	that	can	be	isolated	from	the	influence	of	forest	supply	
chains.	To	identify	potential	wood	sourcing	areas	that	exhibit	tree	cover	loss	and	partial	or	
natural	regrowth,	rather	than	the	accelerated	regrowth	indicative	of	plantations,	tree	cover	
loss	associated	with	plantations	and	forest	 lost	to	fire	could	be	subtracted	from	total	tree	
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cover	 loss.	 These	 areas	 in	 which	 forests	 are	 cut	 and	 not	 regrown	 are	 more	 likely	 to	 be	
associated	 with	 land	 conversion,	 deforestation,	 and	 the	 associated	 social	 and	
environmental	impacts.	
	
The	tree	farm	model	proved	to	be	particularly	strong	in	its	predictive	capabilities,	with	tree	
cover	gain	serving	as	a	reliable	predictor	of	the	presence	of	tree	farms.	The	palm	plantation	
model	 output	 does	 not	 appear	 to	 be	 overwhelmingly	 correlated	 with	 known	 oil	 palm	
concessions,	 and	 so	 additional	 available	 datasets	 may	 be	 necessary	 for	 accurate	
characterization	 of	 palm	 plantations.	 Furthermore,	 the	 fire	 model	 produced	 an	
oversampling	of	 forest	 lost	due	 to	 fire.	 This	was	anticipated	as	 the	MODIS	 fire	points	are	
unable	to	differentiate	natural	wildfire	from	controlled	burns.	However,	the	fire	base	map	is	
able	 to	 identify	 specific	 fires	 including	 Santa	 Barbara’s	 Zaca	 Fire	 of	 2007.	 Ultimately,	 the	
models	and	base	maps	resulting	from	this	project	will	 increase	the	spatial	accuracy	of	the	
Commodity	 Mapping	 Program	 as	 it	 applies	 to	 wood	 product	 sourcing	 and	 enable	 TSC	
members	 to	 better	 understand	 where	 the	 wood	 in	 their	 products	 is	 sourced	 and	 the	
associated	environmental	and	social	risks.		
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CLIENT	INTRODUCTION	

The	 Sustainability	 Consortium	 (TSC),	 the	 client	 of	 this	 project,	 is	 a	 global	 member	
organization	dedicated	to	advancing	the	sustainability	of	consumer	goods.	It	formed	in	2009	
in	 response	 to	 cross-industry	 stakeholder	 interest	 in	 collaborating	 to	 more	 accurately	
quantify	and	communicate	the	sustainability	of	products	in	response	to	increasing	pressure	
and	 limited	 resources.	 TSC’s	 over	 100	 members	 and	 partners	 represent	 an	 array	 of	
stakeholders,	 from	 manufacturers	 and	 retailers	 to	 non-governmental	 organizations	 and	
academics,	 who	 convene	 to	 construct	 science	 based	 decision	 making	 tools	 to	 address	
supply	chain	sustainability	issues	throughout	product	life	cycles	(TSC,	2015a).	
	
TSC’s	portfolio	of	services,	which	exist	to	aid	in	the	effective	implementation	of	sustainable	
processes,	 products,	 and	 networks,	 are	 science	 based,	 stakeholder	 informed,	 and	 impact	
driven.	One	area	in	which	TSC	seeks	to	expand	its	offerings	is	in	commodity	mapping.	TSC’s	
Commodity	 Mapping	 Program	 identifies	 the	 geographies	 associated	 with	 product	 supply	
chain	risks	or	hotspots.	Hotspots	are	defined	by	TSC	as	a	phase	within	a	product’s	life	cycle	
where	 significant	 social	 or	 environmental	 impacts	 occur.	 	 The	 tools	 developed	 by	 TSC	
incorporate	 procurement	 data	 and	 global	 trade	 data	 to	 model	 where	 a	 company’s	
commodity	 supply	 could	 have	 originated,	 enabling	 companies	 to	 understand	 their	 supply	
chain	risk	exposure	and	identify	where	in	the	supply	chain	to	focus	sustainability	efforts.	
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BACKGROUND	

Global	Forest	Supply	and	Value	
Earth’s	forests	represent	a	vital	resource	from	both	economic	and	ecological	perspectives.	
Covering	 over	 31%	 of	 the	 earth’s	 land	 area,	 forests	 are	 necessary	 for	 the	 regulation	 of	
atmospheric	 carbon	 dioxide	 and	 oxygen	 in	 the	 atmosphere	 (FAO,	 2010).	 	 By	 removing	
carbon	dioxide	 from	the	air	and	 replacing	 it	with	oxygen	as	 they	photosynthesize,	 forests	
are	necessary	 in	 containing	 the	 impacts	of	 anthropogenic	 climate	 change	associated	with	
the	 release	 of	 carbon	 dioxide	 and	 other	 greenhouse	 gases.	 Further,	 forests	 provide	
necessary	 ecosystem	 services	 and	 harbor	 biodiversity	 by	 providing	 critical	 terrestrial	
habitats	around	the	globe.		Yet	an	estimated	13	million	hectares	of	forest	are	lost	every	year	
to	 deforestation	 via	 land	 clearing	 for	 agriculture	 or	 urban	 development,	 unsustainable	
logging,	and	fire	(FAO,	2010).	As	such,	deforestation	is	a	serious	global	problem	due	to	 its	
impact	 on	 climate	 change,	 biodiversity,	 and	 ecosystem	 services,	 among	 other	
socioeconomic	considerations.		
	
Forests	 also	 represent	 a	 vital	 economic	 resource,	 serving	 as	 the	 source	 for	 a	 host	 of	
commodities	and	materials	used	 in	 the	production	of	 consumer	goods.	The	United	States	
alone	 produced	 between	 12	 and	 14	 million	 cubic	 feet	 of	 industrial	 roundwood	 (an	
aggregation	of	all	 categories	of	harvested	wood	 for	product	 categories	except	 fuel)	 every	
year	 from	 2003	 to	 2012	 (U.S.	 Forest	 Service,	 2016).	 As	 the	 population	 grows	 and	 global	
incomes	rise,	demand	for	forest	resources	will	increase	pressure	on	remaining	forests.		
	
Due	 to	 supply	 and	 reputational	 risks	 associated	with	 unsustainable	wood	 sourcing,	many	
global	brands	have	pledged	zero	net	deforestation	goals	and	demonstrated	an	 interest	 in	
ensuring	 the	 sustainability	 of	 their	 forest	 sourcing.	 Considering	 the	 economic	 value	 and	
ecological	 significance	 of	 forests,	 stakeholder	 interest	 in	 information	 that	 could	 enable	
companies	to	better	understand	their	 forest	supply	and	curtail	deforestation	comes	as	no	
surprise.	However,	complexities	in	the	forestry	supply	chain,	which	encompasses	a	network	
of	 intermediary	 parties	 and	 processes	 that	 often	 involve	multiple	 supply	 chains	 in	many	
different	 countries,	 pose	 challenges	 to	 achieving	 this	 desired	 understanding	 (D'Amours,	
Rönnqvist,	&	Weintraub,	2008).	
	
The	wood	product	life	cycle	involves	a	complicated	transfer	of	materials	through	a	network	
of	 suppliers,	 dealers,	 buyers,	 manufacturers,	 distributors,	 and	 retailers	 (Anker-Rasch	 &	
Daviknes	Sørgard,	2011).	For	example,	the	production	of	approximately	2.7	million	tons	of	
wood	chips	could	involve	a	network	of	roughly	65	landowners,	600	suppliers,	120	sawmills,	
and	 10	 shipping	 operations	 (Nogueron	&	 Laestadius,	 2012).	 Since	materials	 from	 various	
stages	of	a	product’s	 life	cycle	may	flow	between	a	number	of	facilities,	 it	 is	generally	not	
possible	to	determine	the	precise	origins	of	wood	product	components.		
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The	 production	 of	 wood	 fiber	 involves	 a	 number	 of	 stakeholders	 including	 landowners,	
loggers,	sawmills,	dealers,	and	buyers.	To	 further	complicate	matters,	 forest	management	
and	operational	practices	vary	depending	on	whether	the	land	is	publicly	or	privately	owned	
(D'Amours,	Rönnqvist,	&	Weintraub,	2008).	Typically,	logs	are	harvested	and	transported	to	
sawmills,	 where	 they	 are	mixed	 together.	 Since	 companies	 often	 harvest	 wood	 in	 many	
different	 locations	 within	 a	 country,	 the	 mixing	 of	 logs	 prior	 to	 wood	 fiber	 production	
prevents	the	association	of	the	fiber	in	a	specific	product	to	a	specific	region	(WRI	WBCSD,	
2015).	While	vertically	 integrated	companies	that	control	both	upstream	and	downstream	
processes	tend	to	have	less	difficulty	with	traceability	and	are	able	to	better	manage	their	
resources,	 the	 divergent	 nature	 of	 the	 forestry	 supply	 chain	 for	 non-vertically	 integrated	
companies	provides	an	opportunity	to	improve	the	linkage	between	consumer	products	and	
their	 original	 raw	 materials	 (Anker-Rasch	 &	 Daviknes	 Sørgard,	 2011).	 Additionally,	 the	
increasing	 prevalence	 of	 outsourcing	 in	 the	 U.S.	 has	 the	 effect	 of	 further	 disconnecting	
companies	from	their	supply	chains	(WRI	WBCSD,	2015).		
	
Related	 to	 and	 in	 some	 cases	 resulting	 from	 these	 challenges,	 are	 the	 lack	 of	 data	 on	
plantation	locations,	forest	ownership,	planting	rates,	tree	species,	and	yields	from	harvest,	
all	of	which	are	obstacles	to	supply	chain	understanding	and	transparency	(Carle,	Del	Lungo,	
&	Varmola,	2003).	Compounding	the	limitations	caused	by	the	inherent	complexities	of	the	
forestry	 supply	 chain	 is	 the	 proprietary	 nature	 of	 supplier	 data.	 For	 example,	 companies	
that	 compete	 against	 one	 another	 may	 jointly	 own	 sawmills.	 As	 such,	 the	 sharing	 of	
information	regarding	their	individual	suppliers	may	violate	U.S.	anticompetitive	regulations	
(WRI	WBCSD,	2015).	In	the	U.S.,	information	sharing	in	such	a	scenario	may	be	considered	
by	 the	Federal	Trade	Commission	as	horizontal	conduct,	which	occurs	when	“competitors	
interact	 to	 such	 a	 degree	 that	 they	 are	 no	 longer	 acting	 independently,	 or	 when	
collaborating	 gives	 competitors	 the	 ability	 to	wield	market	power	 together”	 (U.S.	 Federal	
Trade	Commission,	2016).		
	
Governance	
In	 the	United	States,	 the	 Lacey	Act,	 amended	 in	2008,	encourages	 companies	 to	 improve	
supply	chain	management	by	requiring	an	import	declaration	stating	the	country	of	origin,	
species	name	of	plants	contained	within	a	product,	and	the	quantity	and	value	of	 imports	
(GreenBlue,	 2011).	 Through	 the	 imposition	 of	 penalties,	 including	 fines	 and	 jail	 time,	 the	
Lacey	 Act	 serves	 as	 a	 powerful	 deterrent	 for	 illegal	 logging	 and	 deforestation	 and	 has	
encouraged	 American	 companies	 to	 implement	 institutional	 changes	 and	 improve	 their	
relationships	with	their	supply	chains	(WRI,	2009).	Criticism	of	the	Lacey	Act	centers	on	its	
acceptance	of	certain	plant	products	for	which	the	plant	species	or	country	of	origin	cannot	
be	 determined	 and	 lacking	 in	 terms	 of	 provision	 of	 a	 clear	 and	 supportive	 framework	 to	
guide	compliance	by	importers	and	exporters	(Rainforest	Alliance,	2008).	
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On	the	global	governance	and	collective	action	front,	the	ninth	meeting	of	the	Conference	
of	the	Parties	 in	2008	featured	a	call	by	the	World	Wildlife	Fund	(WWF)	for	countries	and	
international	organizations	to	pledge	to	zero	net	deforestation	(ZND)	by	2020	(WWF,	2009).	
Although	WWF	was	successful	in	collecting	signed	commitments	from	68	country	delegates	
and	 creating	 awareness	 of	 deforestation,	 the	 ZND	 pledges	 were	 met	 with	 a	 number	 of	
inherent	complications.		
	
First,	companies	must	have	information	regarding	their	supply	chains	as	well	as	knowledge	
about	potential	environmental	and	social	problems	in	different	sourcing	regions	in	order	to	
meet	ZND	goals.	While	this	is	a	positive	indication	that	TSC’s	Commodity	Mapping	Program	
may	be	helpful	 for	companies,	these	types	of	tools	and	data	were	not	as	readily	available	
when	companies	committed	to	ZND.	This	lack	of	information	may	indicate	that	companies	
did	not	have	an	accurate	 idea	of	 their	 contributions	 to	deforestation	or	 the	challenges	of	
pursuing	ZND	by	2020.		
	
Second,	 ZND	 does	 not	 account	 for	 variations	 in	 forest	 type,	 quality,	 biodiversity,	 and	
ecosystem	value	(WWF,	2009).	ZND	adherence	merely	requires	an	equal	area	replacement	
of	forests	lost	to	clearance	or	conversion.	As	such,	countries	may	still	experience	significant	
loss	of	natural	forests	and	continue	to	contribute	to	climate	change	even	if	companies	are	
pursuing	ZND	(Goering,	2013).		
	
Finally,	 there	 exist	 definitional	 incongruences	 regarding	 deforestation,	 which	 hinder	
understanding	of	deforestation	and	the	advancement	of	best	forest	sourcing	practices.	The	
2015	Global	 Forest	 Resource	Assessment	 (FRA)	 by	 the	 Food	 and	Agriculture	Organization	
(FAO)	defined	deforestation	as	“the	conversion	of	forest	to	other	land	use	or	the	permanent	
reduction	of	the	tree	canopy	cover	below	the	minimum	10	percent	threshold”	(FAO,	2015).	
This	can	be	thought	of	as	the	“long-term	or	permanent	loss	of	forest	cover”	and	implies	that	
deforestation	 is	 characterized	 by	 transformation	 into	 another	 land	 use	 (FAO,	 2015).	

Meanwhile	WWF	(2009)	defines	deforestation	as	“the	conversion	of	forest	to	another	land	
use	 or	 the	 long-term	 reduction	 of	 the	 tree	 canopy	 cover,”	 including	 the	 “conversion	 of	
natural	forest	to	tree	plantations,	agriculture,	pasture,	water	reservoirs	and	urban	areas	but	
excludes	timber	production	areas	managed	to	ensure	the	forest	regenerates	after	logging.”	
These	definitions	of	deforestation	fail	to	protect	areas	of	natural	forest	from	many	instances	
of	one-time	clearing,	which	can	harm	biodiversity	and	carbon	sequestration	ability	as	well	
(FAO,	2015).		
	
ZND	was	subsequently	amended	to	zero	net	deforestation	and	degradation	(ZNDD).	While	
the	 goal	 remains	 to	 achieve	 zero	 net	 forest	 loss	 by	 2020,	 this	 new	 version	 accounts	 for	
forest	quality	and	the	protection	of	natural	forests	(WWF,	2016).	Degradation	encompasses	
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the	 important	 components	 of	 forest	 health	 that	 were	 neglected	 by	 focusing	 on	
deforestation	and	 is	 a	 crucial	 part	of	 forest	management.	Degradation	 is	 defined	by	 FRA,	
and	similarly	by	WWF,	as	“changes	within	the	forest,	which	negatively	affect	the	structure	
or	function	of	the	stand	or	site,	and	thereby	lower	the	capacity	to	supply	products	and/or	
services”	(FAO,	2011;	WWF,	2016a).		

	
The	Reducing	Emissions	from	Deforestation	and	Forest	Degradation	program	(REDD+)	is	an	
initiative	created	by	the	U.N.	to	 facilitate	collaboration	between	developing	countries	and	
international	organizations	to	protect	forests	and	reduce	greenhouse	gas	emissions	(WWF,	
2016b).	 Much	 like	 ZNDD,	 REDD+	 originally	 started	 as	 a	 program	 that	 focused	 on	
deforestation	and	neglected	degradation.	With	 the	 inclusion	of	degradation,	 the	program	
offers	 funding	 to	 developing	 countries	 to	 incentivize	 the	 protection	 of	 forests	 and	
implement	 sustainability	measures	 using	 a	 value	 system	 based	 on	 the	 amount	 of	 carbon	
stored	in	a	forest	(Rocchio,	2015).	In	order	to	use	this	method,	accurate	measures	of	forest	
cover	along	with	a	universal	definition	of	a	forest	are	needed.		
	
The	difficulty	in	managing	degradation	includes	the	limitation	of	monitoring	forest	changes	
via	satellites	(Putz	&	Redford,	2010).	Forest	degradation	that	occurs	beneath	canopy	cover	
is	 not	 detectable	 by	 satellites	with	 current	 technology.	 However,	 a	 larger	 challenge	may,	
again,	be	the	problem	with	definitions.	There	has	yet	to	be	an	international	standard	for	the	
definition	of	a	forest	or	a	tree.	The	U.N.	recognizes	over	800	definitions	of	forests.	The	U.N.	
Food	 and	 Agriculture	 Organization	 (FAO)	 created	 a	 broad	 classification	 guideline	 that	
includes	 minimum	 area,	 minimum	 tree	 cover,	 and	 minimum	 tree	 height	 with	 which	
countries	 are	 to	 establish	 their	 own	 threshold	 values	 (Lake	&	Baer,	 2015).	 The	 2015	 FRA	
definition	of	a	forest	is	more	specific	as	it	considers	forests	to	be	“land	spanning	more	than	
0.5	hectares	with	trees	higher	than	5	meters	and	a	canopy	cover	of	more	than	10	percent,	
or	trees	able	to	reach	these	thresholds	in	situ.	It	does	not	include	land	that	is	predominantly	
under	agricultural	or	urban	land	use”	(FAO,	2015).		
	
Supply	Chain	Management	Tools	
Due	to	the	global	economic	importance	of	the	forestry	industry,	many	tools	and	methods,	
such	as	TSC’s	Commodity	Mapping	Program,	exist	to	address	the	lack	of	transparency	and	
traceability	in	wood	product	supply	chains.	These	product	offerings	can	generally	be	broken	
down	into	informational	tools	(based	on	mapping,	survey	responses,	etc.)	and	attempts	to	
physically	track	wood	flows.		
	
The	 World	 Resources	 Institute	 (WRI)	 Global	 Forest	 Watch	 program,	 along	 with	 over	 40	
other	 organizations,	 have	 partnered	 together	 to	 create	 the	 Global	 Forest	 Watch	
Commodities	 (GFW	 Commodities)	 program	 (WRI,	 2016).	 GFW	 Commodities	 is	 an	 online	
platform	 that	 utilizes	 open	 source	 data	 and	 satellite	 data	 to	 provide	 businesses	 with	
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information	 about	 deforestation	 in	 their	 supply	 chains.	 While	 GFW	 Commodities	 was	
created	for	the	Roundtable	on	Sustainable	Palm	Oil	 (RSPO),	 it	provides	useful	 information	
regarding	forest	cover	as	well.	Perhaps	the	most	similar	tool	to	TSC’s	Commodity	Mapping	
Program	is	the	Forest	Analyzer,	an	interactive	map	that	covers	forest	change	(loss	and	gain),	
forest	 cover,	 forest	 fires,	 forest	 use,	 conservation,	 and	 logging	 concessions	 by	 country,	
region,	 and,	 even,	 for	 a	 user-drawn	 shape	 on	 the	 map.	 GFW	 Commodities	 is	 beneficial	
because	 it	provides	timely	 information	 in	an	accessible,	 interactive	map.	The	drawback	to	
this	tool	is	that	it	is	regionally	limited,	but	new	data	are	consistently	being	added	on	a	global	
scale.	
	
FAO’s	Global	 FRA	offers	 an	online	 tool	 called	 the	 Forest	 Land	Use	Data	Explorer	 (FLUDE),	
which	 compiles	 primarily	 2015	 land	 use	 data,	 including	 agriculture	 and	 land	 use	
classifications,	for	the	analysis	of	forest	resource	use	(FAO,	2016).	FLUDE	uses	information	
submitted	by	national	governments	to	FAO	as	well	as	data	from	international	organizations.	
FLUDE	 also	 uses	 remote	 sensing	 and	 Landsat	 data,	 in	 partnership	 with	 the	 European	
Commission	 Joint	Research	Centre	 (JRC)	and	remote	sensing	specialists	around	the	world.	
The	 tool	 is	organized	by	 topic,	which	 includes	 forest	area	and	characteristics,	disturbance	
and	forest	degradation,	biodiversity	and	conservation,	ecosystem	services,	and	economics,	
and	filter	data,	which	include	deforestation,	planted	forest,	reforestation,	and	natural	forest	
area	 change.	 The	 tool	 displays	 maps	 and	 charts	 relevant	 to	 the	 topic	 and	 filter	 data	
selected.	While	FLUDE	is	advantageous	because	of	its	interactive	platform	and	the	number	
of	partnerships	involved	in	the	project,	the	tool	lacks	data	over	time	as	well	as	more	region	
specific	data.			
	
The	 International	Tropical	Timber	Organization	 (ITTO)’s	Annual	Review	Statistics	Database	
provides	information	regarding	the	production	and	trade	of	primary	wood	products	(ITTO,	
2014).	 This	 is	 accomplished	using	data	 from	 the	 Joint	 Forest	 Sector	Questionnaire,	which	
was	formed	through	a	partnership	with	Eurostat,	the	FAO	Forestry	Department,	and	the	UN	
Economic	 Commissions	 for	 Europe	 (UNECE).	 The	 database	 incorporates	 trade	 data,	 tree	
species,	 price	 trends,	 and	 secondary	 wood	 products	 with	 questionnaire	 information	 to	
provide	import	and	export	quantity	and	value	by	country,	wood	type,	and	year.	While	this	
tool	 is	 helpful	 for	 trade	 information	 and	 analysis	 of	 resource	 flow,	 it	 is	 neither	
comprehensive	 nor	 spatially	 specific	 enough	 to	 help	 companies	 increase	 supply	 chain	
transparency.	
	
The	High	Carbon	Stock	Approach	Toolkit	is	the	result	of	collaboration	between	The	Steering	
Group,	 WWF,	 Greenpeace,	 Tropical	 Forest	 Trust,	 FPP,	 and	 plantation	 companies	
(Greenpeace	Southeast	Asia,	2014).	The	Toolkit	provides	a	way	to	address	deforestation	via	
the	 identification	 of	 forests	 with	 high	 conservation	 value	 for	 land	 use	 planning.	 It	 uses	
Landsat	data	and	GIS	to	classify	 land	 into	the	following	six	categories:	high	density	 forest,	
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medium	 density	 forest,	 low	 density	 forest,	 young	 regenerating	 forest,	 scrub,	 and	 cleared	
land.	While	this	tool	is	useful	for	identifying	high	value	forests	that	should	be	protected	and,	
consequently,	where	 companies	 should	 not	 be	 sourcing	 from,	 it	 does	 not	 directly	 inform	
companies	about	their	particular	supply	chains.		
	
The	Programme	for	the	Endorsement	of	Forest	Certification	(PEFC)	has	an	online	platform	
called	the	Global	Information	Registry	that	tracks	the	trade	of	certified	materials	and	allows	
certified	suppliers	to	share	information	with	downstream	parties	(PEFC	international,	2016).	
This	 allows	 certified	materials	 for	 solid	wood	 and	 paper	 products	 to	 be	 traced	 along	 the	
supply	chain.	This	is	limited,	however,	because	of	its	focus	on	certified	wood	and	neglects	to	
provide	 information	 for	 other	 sources	 of	 wood,	 which	 may	 restrict	 supplier	 options	 for	
companies	 and	 prevents	 companies	 from	 working	 on	 improvements	 with	 their	 current	
suppliers.	
	
SmartSource	 is	 an	 online	 tool	 that	 allows	 access	 to	 supplier	 submitted	 information	
regarding	 the	species,	origin,	and	certification	status	of	wood	and	 fiber	 in	a	product.	This	
tool	 is	 part	 of	 a	 Rainforest	 Alliance	 program	 and	 is	 used	 by	 retailers,	 importers,	 and	
manufacturers	 to	 manage	 supply	 chains	 for	 solid	 wood	 and	 paper	 products.	 String	 is	
another	tool	that	allows	all	parties	within	the	supply	chain	to	request	product	information	
from	 their	 suppliers	 (WRI	 WBCSD,	 2015).	 Similar	 to	 String,	 Forest	 Stewardship	 Council’s	
(FSC)	 Online	 Claims	 Platform	 (OCP)	 allows	 all	 parties	 within	 the	 supply	 chain	 to	 access	
information	and	records	for	a	product	as	it	moves	down	the	supply	chain	(FSC	International,	
2016).	However,	String	and	OCP	are	limited	by	the	data	that	suppliers	are	willing	to	provide	
and	 the	 OCP	 only	 provides	 information	 regarding	 FSC	 certified	 solid	 wood	 and	 paper	
products.		
	
In	 terms	 of	 approaches	 to	 physically	 track	 wood	 supply,	 electronic	 barcoding	 allows	 the	
tracking	of	 timber	 in	 real	 time	using	barcodes	and	a	data	 collecting	 software	 system	 that	
can	 report	 the	 GPS	 location	 as	 well	 as	 species	 of	 a	 tree	 (FSC	 International,	 2016).	 This	
method	provides	information	regarding	each	point	of	passage	in	the	supply	chain,	but	the	
technology	 is	 limited	 to	 solid	wood	or	 timber	and	 requires	 commitment	and	organization	
amongst	workers	along	the	supply	chain.	Barcodes	must	be	applied	to	standing	trees,	which	
remain	on	 the	 stump	after	harvest,	 and	 corresponding	barcodes	must	be	added	 to	 felled	
logs.	Manufacturers	and	retailers	also	use	fiber	analysis	to	categorize	the	type	of	tree	used	
in	 paper	 products	 (WRI	 WBCSD,	 2015).	 Fibers	 in	 paper	 samples	 may	 be	 used	 to	 verify	
whether	the	paper	was	made	from	hardwood	or	softwood	species	along	with	the	pulping	
process,	 genus,	 and,	 in	 some	 cases,	 the	 species	 of	 the	 tree.	While	 this	method	 does	 not	
provide	 direct	 information	 regarding	 the	 origin	 of	 the	 wood	 fiber,	 it	 provides	 general	
information	that	can	be	used	to	deduce	possible	source	regions.	As	such,	companies	have	
used	this	tool	to	demonstrate	due	care	in	consideration	of	the	Lacey	Act.	(Grant,	Nogueron,	
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&	Hanson,	2011).	Finally,	DNA	mapping	entails	the	extraction	of	DNA	from	a	population	of	
trees	 to	encapsulate	genetic	variation	and	comparing	 that	 to	DNA	 from	wood	samples	 to	
verify	 their	 origins	 (WRI	WBCSD,	 2015).	While	 this	 can	 only	 be	 used	 for	 solid	wood,	 it	 is	
advantageous	 for	 random	product	 sampling	because	 it	 can	be	used	 for	 finished	products.	
This	 tool	may	be	used	by	 forest	managers,	manufacturers,	 importers,	and	retailers,	but	 is	
time	and	resource	intensive.		
	
While	 there	 are	 many	 approaches	 to	 improving	 supply	 chain	 transparency,	 the	
aforementioned	 tools	 for	 tracing	wood	 supply	 are	 limited	 in	one	way	or	 another	by	data	
availability	 constraints	 and	 scope.	 Upon	 completion,	 TSC’s	 Forestry	 Commodity	Mapping	
Program	 will	 be	 unique	 because	 it	 will	 show	 trends	 in	 global	 canopy	 cover	 over	 a	
comparatively	long	time	span,	from	2001-2013.	Using	this	information,	in	conjunction	with	
trade	or	company-specific	sourcing	data,	will	make	it	possible	to	deduce	the	location	of	tree	
farms	and,	consequently,	potential	wood	sourcing	regions.	The	addition	of	regional	hotspot	
information	 will	 provide	 important	 context	 to	 tie	 potential	 sourcing	 regions	 with	
environmental	 and	 social	 risks.	 By	 providing	 a	more	 comprehensive	 spatial	 and	 temporal	
view	 of	 the	 global	 forestry	 supply	 chain,	 the	 TSC	 Commodity	Mapping	 Program	 can	 help	
companies	 better	 understand	 their	 current	 impacts	 and	 work	 with	 existing	 suppliers	 to	
improve	supply	chain	sustainability	rather	than	restricting	companies	to	certified	suppliers.	
To	this	end,	companies	are	provided	with	information	and	resources	to	compare	different	
sourcing	 regions	 and	 understand	 their	 supply	 chain	 impact	 relative	 to	 global	 trends.	 This	
provides	companies	with	more	information	as	well	as	more	options	for	suppliers.		
	
	
PROJECT	SIGNIFICANCE	

Forests	 represent	 a	 vital	 resource	 and	 provide	 countless	 services,	 including	 harboring	
biodiversity,	helping	to	regulate	the	Earth’s	climate,	and	providing	the	commodity	inputs	for	
wood	products.	Companies	that	produce	wood	products	and	other	stakeholders,	including	
non-governmental	 organizations	 and	 consumers,	 have	 become	 increasingly	 aware	 of	 the	
threat	of	deforestation	and	numerous	additional	social	and	environmental	issues	associated	
with	wood	sourcing.	However,	 the	global,	 complex	nature	of	wood	product	 supply	chains	
results	in	a	lack	of	traceability	and	accessible	high-quality	information	about	wood	sourcing	
regions.	 The	 subsequent	 lack	 of	 supply	 chain	 knowledge	 can	 inhibit	 companies	 from	
understanding	the	environmental	risks	or	benefits	associated	with	their	product	sourcing.	
	
TSC’s	Commodity	Mapping	Program	provides	tools	that	address	supply	chain	transparency	
and	traceability	issues	by	leveraging	international	trade	data	and	applying	company-specific	
procurement	data	(where	available)	to	show	companies	and	external	stakeholders	where	in	
the	world	the	commodity	 inputs	 to	products	are	 likely	sourced.	TSC	also	 incorporates	risk	
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layers	to	show	which	geographies	are	prone	to	 impacts	such	as	deforestation,	child	 labor,	
and	water	pollution.	While	TSC	can	use	trade	data	and	some	basic	sourcing	knowledge	to	
demonstrate	 the	 country	 where	 a	 product’s	 commodity	 inputs	 are	 likely	 to	 originate,	
additional	spatial	analyses	that	identify	sourcing	regions	on	a	finer	scale	must	be	included	to	
demonstrate	impacts	that	vary	sub-nationally.	Furthermore,	company	specific	procurement	
data	 or	 regional	 analysis	 might	 pinpoint	 a	 company’s	 supply	 source	 and	 the	 associated	
impacts,	but	the	global	scope	of	this	project	 is	needed	to	understand	the	benefits	or	risks	
from	sourcing	in	a	particular	region	relative	to	other	regions.	
	
This	project	enables	the	Commodity	Mapping	Program	to	begin	to	cover	wood	products	by	
providing	 base	 maps	 that	 identify	 and	 characterize	 wood	 sourcing	 regions	 globally	 on	 a	
10km	by	10km	scale.	 Specifically,	 it	 identifies	plantations	around	 the	world	 that	are	most	
likely	 to	 serve	 as	 sources	 of	 entry	 for	wood	product	 supply	 chains	 (tree	 farms)	 and	 least	
likely	 (palm	 plantations),	 as	 well	 as	 deforested	 areas	 that	 are	 least	 likely	 to	 enter	 forest	
supply	 chains	 (forest	 lost	 to	 fire)	 on	 a	 consistent	 basis.	 The	 creation	 of	 these	 base	maps	
provides	 valuable	 insights	 to	 exactly	 where	 wood	 is	 most	 and	 least	 likely	 to	 be	 sourced	
around	the	world	and	what	characteristics	describe	these	areas.	This	 increases	the	spatial	
accuracy	of	the	Commodity	Mapping	Program	as	it	applies	to	wood	products	and	will	enable	
TSC	members	 to	 better	 understand	 their	wood	product	 supply	 chains	 and	 the	 associated	
impacts	based	on	where	in	the	world	the	products	are	sourced	and	whether	that	sourcing	
originates	from	a	plantation	or	deforestation.		
	
Through	the	identification	of	plantations	and	forest	fire	and	the	associated	tree	cover	loss,	
these	models	also	show	where	tree	cover	loss	occurs	that	is	not	related	to	either.	This	is	a	
critical	 contribution	 of	 the	 project	 as	 it	 is	 in	 these	 areas,	 where	 tree	 cover	 is	 lost	 by	
processes	 other	 than	 fire	 and	 does	 not	 recover	 at	 rates	 consistent	with	 plantations,	 that	
wood	sourcing	may	pose	 the	greatest	 risk	of	deforestation.	Moving	 forward,	TSC	plans	 to	
integrate	these	areas	of	tree	cover	loss	not	identified	as	plantation	or	forest	lost	to	fire	with	
the	 plantation	 analysis	 to	 create	 a	 comprehensive	 global	 wood	 fiber	 production	 dataset.	
This	 dataset	 will	 inform	 its	 membership	 of	 the	 geographic	 significance	 of	 their	 wood	
sourcing	 in	 a	 comprehensive	 manner.	 By	 enabling	 TSC	 to	 provide	 its	 membership	 with	
enhanced	 global	 and	 cross-regional	 understanding	 of	 wood	 sourcing,	 this	 project	 plays	 a	
direct	 and	 significant	 role	 in	 equipping	 companies	 to	 better	 address	 the	 potential	
environmental	 and	 social	 risks	 associated	with	 their	 sourcing,	work	 towards	 internal	 and	
industry-wide	commitments,	 and	adhere	 to	evolving	 regulations.	 This	 knowledge	will	 also	
empower	 concerned	 customers	 and	 non-governmental	 organizations	 to	 hold	 these	
companies	accountable.		The	new	methodologies	developed	and	utilized	in	this	project	may	
be	applied	in	the	future	to	further	inform	the	Commodity	Mapping	Program	as	it	relates	to	
wood	and	other	commodities.		
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PROJECT	OBJECTIVES	

The	project	aims	to	analyze	global	forest	canopy	change	to	identify	and	characterize	wood	
sourcing	 regions	 to	 enable	 companies	 to	 better	 understand	 the	 origin	 of	 their	 wood	
products.	 	 The	 project	 helps	 to	 inform	 strategic	 wood	 sourcing	 for	 global	 brands	 by	
providing	 a	 series	of	mapping	 tools,	which	 characterize	wood	 sources	 that	 are	 consistent	
with	plantations	and	deforestation.		
	
Specifically,	these	tools:	

1. Identify	areas	that	are	likely	to	be	plantations,	including	both	tree	farms	and	palm.		
2. Predict	likely	wood	sourcing	regions	that	are	not	classified	as	traditional	tree	farms.		
3. Support	the	trade	flow	analysis	of	the	larger	Commodity	Mapping	Program.	 	

	

METHODS		

Guiding	Logic	
Spatial	input	data	analyzed	in	this	report	highlight	global	forest	change.	Some	of	this	canopy	
clearance	enters	wood	supply	chains	on	a	recurring	basis,	some	is	periodically	cleared,	and	
some	forested	land	is	permanently	cleared	for	purposes	such	as	urbanization	or	agriculture.	
Wood	 can	 enter	 supply	 chains	 from	 one	 time	 clearing	 (deforestation)	 or	 from	managed	
forest.	Some	cleared	canopy,	such	as	that	lost	to	fire,	may	not	enter	supply	chains	at	all.	
	
Wood	plantations,	referred	to	as	tree	farms,	represent	a	consistent	point	of	entry	into	wood	
supply	chains.	In	order	to	determine	where	in	the	world	wood	comes	from,	locations	of	tree	
farms	 must	 first	 be	 identified.	 These	 locations	 are	 predicted	 using	 the	 methodology	
described	in	the	“Plantation	Analysis”	section.		
	
Trees	are	also	sourced	from	other	regions	that	harbor	different	harvesting	practices,	such	as	
natural	regrowth	or	clear-cutting.	When	trees	are	harvested,	the	clearance	is	visualized	as	
canopy	 loss.	Some	canopy	 is	 lost	due	to	fire.	Trees	that	burn	are	 less	 likely	to	be	entering	
wood	 supply	 chains.	 In	 order	 to	 delineate	where	 else,	 besides	 tree	 farms,	wood	may	 be	
coming	 from,	 canopy	 lost	 to	 fire	 is	 subtracted	 from	 overall	 canopy	 loss.	 This	 output	
represents	 deforestation	 that	 cannot	 be	 attributed	 as	 lost	 to	 fire	 or	 occurring	 on	
plantations,	 so	 it	 could	be	entering	 supply	chains.	The	 locations	of	 canopy	 lost	 to	 fire	are	
visualized	using	the	methodology	described	in	the	“Deforestation	Analysis”	section.		
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Data		
This	project	calls	on	three	major	sources	of	spatial	data:	Hansen	et	al.	(2013),	MODIS,	and	
Google	Earth.	Table	1	summarizes	the	individual	datasets	that	were	used.	
	
Hansen/UMD/Global	Forest	Change	Dataset	
Hansen	et	al.	(2013),	at	the	University	of	Maryland’s	Department	of	Geographical	Sciences,	
analyzed	 growing	 season	 Landsat	 7	 images	 using	 Google	 Earth	 Engine	 to	 produce	 global	
spatial	data	regarding	forest	extent	and	change	from	2000	to	2013.	The	researchers	define	
trees	as	vegetation	taller	than	5m	in	height.	The	study	area	excludes	Antarctica	and	some	
Arctic	 islands.	Only	 full	 canopy	 clearance	 is	 detected	 (e.g.,	 selective	 understory	 logging	 is	
not	identified	as	loss).	The	original	global	datasets	have	a	spatial	resolution	of	1	arc-second	
per	pixel,	or	roughly	30m	by	30m	at	the	equator	(Hansen	et	al.,	2013).	
	
MODIS	Fire	Points	
MODIS	(Moderate	Resolution	Imaging	Spectroradiometer)	is	a	scientific	instrument	built	by	
Santa	Barbara	Remote	Sensing	and	launched	by	NASA.	The	Terra	and	Aqua	satellites	carry	
MODIS,	and	each	satellite	views	the	Earth’s	surface	every	1	to	2	days.	Fire	data	are	sensed	
by	MODIS	and	distributed	by	FIRMS	(Fire	Information	for	Resource	Management	System)	–	
both	are	services	run	by	NASA.	The	University	of	Maryland	extracts	and	produces	the	actual	
data	 on	 active	 fire	 location	 (called	 source	MCD14ML	 Fire	 Location	 Product,	 Collection	 5,	
Version	1)	 (FIRMS,	2015).	MODIS	detects	 fires	at	a	1km	by	1km	resolution,	with	an	active	
fire	point	representing	the	center	of	a	1km2	pixel.	That	pixel	may	contain	one	or	more	fires.	
The	MODIS	data	do	not	provide	 information	on	 cloud	 cover	or	missing	data.	 The	dataset	
contains	 about	 4	 million	 fire	 points	 for	 each	 calendar	 year.	 Each	 fire	 point	 contains	
attributes	presented	in	Table	2.	
	
Google	Earth	
Google	 Earth	 is	 a	 global	 information	 system	 that	 renders	 a	 virtual	 globe	 by	 aggregating	
satellite	imagery	from	different	years.	These	analyses	used	Version	7.1.5.1557	and	ran	it	on	
Microsoft	Windows	(6.1.7601.1).	Google	Earth	presents	imagery	at	a	fine	resolution,	about	
1m	by	1m.	
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Table	1.	Datasets	used	for	spatial	analyses.	
Dataset	 Dates	 Definition	 Encoded	 Resolution	 Source	 Datum	

Tree	Cover	 2000	 Encodes	canopy	closure	as	
percentage	per	grid	cell	

0-100:	
percentage	tree	
cover	per	cell	

1	arc-
second	per	
pixel	

Hansen	et	al.,	
2013	

WGS	
1984	

Gain	 2000-
2012	

Identifies	change	from	non-
forest	to	forest	entirely	within	
study	period	

1:	gain	

0:	no	gain	

1	arc-
second	per	
pixel	

Hansen	et	al.,	
2013	

WGS	
1984	

Loss	 2000-
2014	

Identifies	change	from	forest	
to	non-forest	state	

1:	loss	

0:	no	loss	

1	arc-
second	per	
pixel	

Hansen	et	al.,	
2013	

WGS	
1984	

Loss	Year	 2001-
2013	

Disaggregates	Loss	to	annual	
time	scale	

0:	no	loss	

1-13:	year	of	
loss,	2001	-	
2013	

1	arc-
second	per	
pixel	

Hansen	et	al.,	
2013	

WGS	
1984	

Fire	Points	 2001-
2013;	as	
requested	

Active	fire	location	 point	dataset	
with	table	of	
attributes	

1km	x	1km	 MODIS/NASA	 WGS	
1984	

Oil	Palm	
Concessions	

NA	 Displays	areas	(ha)	in	
Cameroon,	Republic	of	Congo,	
Indonesia,	and	Liberia	that	are	
“allocated	by	a	government	or	
other	body	for	industrial-scale	
oil	palm	plantations…data	
may	come	from	government	
agencies,	NGOs,	or	other	
organizations	and	varies	by	
date	and	data	sources”	

NA	 NA	 WRI	Global	
Forest	Watch,	
2016:		

Cameroon	
(WRI);	
Indonesia	
(Ministry	of	
Forestry);	
Liberia	
(Global	
Witness);	
Congo	(WRI	&	
Ministry	of	
Agriculture)	

WGS	
1984	
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Table	2.	MODIS	fire	point	attributes	(FIRMS,	2015).	
Attribute	 Description	
Latitude	 Center	of	1km	fire	pixel	but	not	necessarily	the	actual	location	of	the	fire	as	one	or	more	fires	can	

be	detected	within	the	1km	pixel.	
Longitude	 Center	of	1km	fire	pixel	but	not	necessarily	the	actual	location	of	the	fire	as	one	or	more	fires	can	

be	detected	within	the	1km	pixel.	
Brightness	 Brightness	temperature	of	the	fire	pixel	measured	in	Kelvin,	using	Channel	21/22.	

Scan	 The	algorithm	produces	1km	fire	pixels	but	MODIS	pixels	get	bigger	toward	the	edge	of	scan.	Scan	
and	track	reflect	actual	pixel	size.	

Track	 The	algorithm	produces	1km	fire	pixels	but	MODIS	pixels	get	bigger	toward	the	edge	of	scan.	Scan	
and	track	reflect	actual	pixel	size.	

Acq_Date	 Date	of	MODIS	acquisition.	
Acq_Time	 Time	of	acquisition/overpass	of	the	satellite	(in	UTC).	
Satellite	 A	=	Aqua	and	T	=	Terra.	

Confidence	 This	value	is	based	on	a	collection	of	intermediate	algorithm	quantities	used	in	the	detection	
process.	It	is	intended	to	help	users	gauge	the	quality	of	individual	hotspot/fire	pixels.	Confidence	

estimates	range	between	0	and	100%	and	are	assigned	one	of	the	three	fire	classes	(low-
confidence	fire,	nominal-confidence	fire,	or	high-confidence	fire).	

Version	 Version	identifies	the	collection	(e.g.	MODIS	Collection	5)	and	the	source	of	Level	1B	data	used	to	
make	the	Level	2	product.	The	source	for	MCD14DL	are	near	real-time	data	processed	by	LANCE	
FIRMS;	this	is	indicated	by	.0	after	the	collection	e.g.	Version	5.0.	MCD14ML	are	from	MODAPS,	
these	are	standard/science	quality	data,	processed	by	the	University	of	Maryland	(with	a	3	month	

lag)	and	distributed	by	FIRMS;	indicated	by	.1	after	the	collection	e.g.	Version	5.1.	
Bright_T31	 Brightness	temperature	of	the	fire	pixel	measured	in	Kelvin,	using	Channel	31.	

FRP	 Depicts	the	pixel-integrated	fire	radiative	power	in	MW	(megawatts).	

	
	
Plantation	Analysis	
The	Hansen	dataset	was	used	to	predict	areas	of	tree	farms	(sometimes	referred	to	as	tree	
plantations)	 and	 palm	 plantations	 globally.	 Data	 from	 these	 datasets	 were	 aggregated,	
compiled,	and	then	input	into	a	binary	logistic	model	to	predict	existence	of	tree	farms	and	
palm	plantations	globally.	Observed	characteristics	from	global	satellite	 imagery	 in	Google	
Earth	were	used	to	build	a	binary	dataset	(existence,	non-existence)	for	both	tree	farms	and	
palm	 plantations.	 This	 dataset	was	 then	 used	 as	 the	 dependent	 input	 variable	 to	 build	 a	
binary	 logistic	 regression	model.	 The	 output	 of	 this	model	was	 two	 datasets	 that	 predict	
existence	of	tree	farms	and/or	palm	plantations.	This	component	of	the	analysis	uses	tree	
loss,	tree	gain,	and	tree	canopy	cover	spatial	data	from	the	Hansen	dataset	(Hansen	et	al.,	
2013)	and	global	satellite	imagery	from	Google	Earth.	
	
Methods		
The	datasets	were	initially	aggregated	to	improve	the	processing	speed	and	stability	of	the	
loss,	 gain,	 and	 tree	 canopy	cover	data.	 The	aggregation	process	was	performed	 in	ArcGIS	
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using	 the	Block	Statistics	 tool	 (solving	 for	 the	mean	value	over	an	area	of	10	pixels	by	10	
pixels,	Figures	1	&	2).	Note	that	an	iteration	model	was	used	to	iterate	models	globally	over	
the	original	504	tiles	designated	in	the	original	Hansen	data	such	as	all	resampling	models	
(Figure	3).	This	iteration	process	was	used	when	the	size	of	outputs	made	the	processing	of	
a	model	unstable/unreliable.	After	 iterating	the	resample	process,	the	datasets	were	then	
projected	 to	 an	 equal-area	 projection	 to	 allow	 for	 area-based	 analyses.	 This	 process	was	
performed	 in	 ArcGIS	 using	 the	 Project	 tool	 (Goode	 Homolosine	 projection,	 raster	 size	 of	
250m	by	250m;	Figure	4).	The	datasets	were	then	aggregated	to	a	scale	of	10km	by	10km	to	
allow	for	global	modeling.	This	process	was	performed	 in	ArcGIS	using	the	Block	Statistics	
tool	(solving	for	the	mean	value	over	an	area	of	40	pixels	by	40	pixels	resulting	in	10km	by	
10km	averaged	pixels;	Figure	5).	
	

Figure	1.	Resample	to	0.0025	by	0.0025	degree	cells.	This	model	was	used	to	resample/aggregate	raster	files	
from	a	resolution	of	0.00025	by	0.00025	degree/cell	to	0.0025	by	0.0025	degree/cell.	

	
	

	
Figure	2.	Resample	to	0.0025	by	0.0025	degree	cells	for	Loss	Year.	This	model	was	used	to	

resample/aggregate	raster	files	from	a	resolution	of	0.00025	by	0.00025	degrees/cell	to	0.0025	by	0.0025	
degrees/cell	specifically	for	the	Loss	Year	dataset	(using	a	majority	statistic	over	a	sum	statistic).	
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Figure	3.	Iterate	model.	This	model	was	used	to	iterate	model	processes	over	the	504	raster	sections	inherent	
in	the	Hansen	dataset	to	allow	for	more	reliable	processing.	

	
	

	
Figure	4.	Project	model.	This	model	was	used	to	project	rasters	into	the	World	Goode	Homolosine	projection	

to	allow	for	equal-area	analysis.	
	

	
Figure	5.	Resample	to	10km	by	10km	cells.	This	model	was	used	to	resample/aggregate	raster	files	from	a	

resolution	of	250m	by	250m	to	10km	by	10km.	
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Furthermore,	an	additional	dataset	 identifying	 the	overlap	 in	 the	 tree	 loss	and	 tree	cover	
gain	 datasets	was	 created.	 This	 dataset	 represents	 the	 percentage	 of	 loss	 and	 gain	 in	 an	
area	that	overlaps	(e.g.,	a	value	of	100	indicates	that	there	were	equal	amounts	of	loss	and	
gain	within	the	pixel;	Figures	6	&	7).	This	overlap	was	calculated	using	the	projected	250m	
by	250m	tree	loss	and	tree	gain	datasets	and	then	aggregated	using	the	Block	Statistics	tool	
(solving	for	the	mean	value	over	an	area	of	40	pixels	by	40	pixels	resulting	in	10km	by	10km	
averaged	pixels).	This	tree	loss/gain	overlap	dataset	was	created	and	utilized	because	of	the	
underlying	assumption	that	 tree	 farms	have	much	quicker	 regrowth	rates	 than	other	 tree	
management	 practices	 (i.e.	 natural	 forest	 or	 cleared	 land)	 due	 to	 active	 regrowth	
management.	 Additional	 datasets	 of	 the	mean	 and	maximum	value	 of	 the	 surrounding	 8	
pixels	 (and	 the	 central	 pixel)	 for	 several	 datasets	 (tree	 loss,	 tree	 gain,	 and	 tree	 loss/gain	
overlap)	were	created	in	MATLAB	to	give	more	inputs	on	the	tree	statistic	trends	in	an	area.	
Furthermore,	the	tree	cover	data	were	used	to	normalize	the	tree	loss	and	gain	data.	This	
normalization	was	used	to	 transform	the	 loss	and	gain	data	 from	statistics	based	on	total	
area	to	statistics	based	on	total	tree	cover.	For	example,	before	normalization	a	value	of	50	
in	the	loss	dataset	would	indicate	that	there	was	a	tree	cover	loss	event	in	half	of	the	total	
area	within	the	10km	by	10km	grid	cell	without	any	reference	to	the	amount	of	initial	tree	
cover	in	the	cell.	A	value	of	50%	loss	in	a	cell	that	is	only	covered	by	50%	tree	cover	is	much	
more	impactful	than	a	value	of	50%	in	a	cell	that	has	100%	tree	cover.	It	is	for	this	rationale	
that	the	normalization	was	employed.	
	
	

	
Figure	6.	Loss	Gain	overlap	statistic	model.	This	model	was	used	to	calculate	the	loss	gain	overlap	statistic.	

Output	raster	values	represent	the	percentage	of	total	tree	cover	loss	and	gain	that	was	lost.	
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Figure	7.	Recalculate	Loss	Gain	overlap	statistic.	This	model	was	used	to	recalculate	the	loss	gain	overlap	
statistic.	Input	raster	values	represent	the	percentage	of	total	tree	cover	loss	and	gain	that	was	lost.	The	

output	raster	values	represent	the	percentage	of	total	loss	and	gain	that	was	either	lost	or	gained	(e.g.,	a	value	
of	100	indicates	that	areas	of	loss	and	gain	are	identical).	

	
	
Next,	a	table	of	values	(1=true,	0=false)	was	built	using	Google	Earth	imagery	to	analyze	tree	
covers	and	the	presence	of	tree	farm	visually.	A	true	value	was	made	if	any	amount	of	tree	
farm	(and/or	palm	plantation)	was	observed	within	a	particular	block	of	a	global	10km	by	
10km	 grid.	 The	 tree	 farm	 classification	 is	 defined	 as	 having	 clear	 rows	 of	 homogeneous	
trees	with	 evidence	 of	 clearing	 by	 either	 the	 existence	 of	 cleared	 land	within	 the	 grid	 or	
evidence	 of	 forest	 lost	 through	 historical	 imagery.	 The	 palm	 plantation	 classification	 is	
defined	as	having	clear	 rows	of	homogenous	palm	trees,	which	can	be	 identified	by	 their	
fronds	 in	Google	Earth	 imagery	where	resolution	 is	adequately	high.	 If	 the	resolution	was	
low	or	 identification	was	 unclear	 in	 any	 region,	 the	 tested	 block	was	 not	 included	 in	 the	
dataset	to	minimize	error	in	the	data.		
	
This	 dataset	 of	 true/false	 Google	 Earth	 imagery	 values	 was	 then	 used	 as	 the	 dependent	
input	 variable	 in	 a	 binomial	 logistic	 regression	model	 in	MATLAB.	 The	 independent	 input	
variables	 were	 chosen	 from	 the	 tree	 loss,	 tree	 gain,	 and	 loss/gain	 overlap	 datasets.	 The	
output	of	this	model	was	then	implemented	into	an	interactive	map	using	the	Leaflet	library	
within	RStudio	(version	3.2.2).	
	
	
Deforestation	Analysis	
This	 component	of	 the	project	 identifies	where	 forest	has	been	 lost	due	 to	 fire	using	 the	
Hansen	 Loss	 Year	 and	 MODIS	 datasets.	 ArcGIS	 10.3.1	 was	 used	 for	 all	 spatial	 analyses.	
Confidence	 of	 fire	 occurrence	 was	 accounted	 for	 and	 areas	 of	 overlap	 of	 the	 two	 input	
datasets	 were	 identified	 on	 an	 annual	 scale.	 The	 areas	 of	 fire	 and	 canopy	 loss	 overlap	
represent	the	areas	of	forest	loss	that	can	be	attributed	to	fire.	
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Approach	Logic	
The	Loss	Year	dataset	shows	in	which	year	a	particular	tree	cover	area	was	cleared.	MODIS	
shows	daily	 fire	points.	MODIS	distinguishes	 low	confidence	fire	as	one	that	 is	below	30%	
confidence	 range	 (Giglio,	 2010).	 To	 prevent	 the	 inclusion	 of	 any	 false	 alarms	 of	 fires	
occurrence,	 low-confidence	 fire	points	were	removed	from	analysis.	The	analysis	assumes	
that	canopy	clearance	that	overlaps	with	fire	points	in	a	given	year	likely	resulted	from	the	
region	being	burned.	Fire	data	exist	as	points	in	the	centroid	of	1km	by	1km	pixels,	meaning	
that	 fire	 could	 have	 occurred	 anywhere	 within	 the	 given	 1km2	 pixel.	 Burned	 area	 was	
categorized	 as	 any	 canopy	 loss	 that	 is	 within	 1km	 of	 a	 fire	 point.	 Burn	 area	 extent	 was	
estimated	by	calculating	the	areas	of	contiguous	Loss	Year	polygons.	
	
Preparing	Hansen	Loss	Year	Dataset	
The	original	Loss	Year	dataset	pixel	edge	is	0.00025	decimal	degrees.	The	raw	dataset	was	
resampled	using	Block	Statistics	(majority	of	10	cells	by	10	cells)	to	a	pixel	edge	of	0.0025	
decimal	degrees	(Figure	2).	Blocks	that	had	equal	majorities	came	up	as	blank	cells,	so	the	
team	ran	a	Reclassify	and	subsequent	Nibble	step	(Figure	8).	The	data	were	then	projected	
to	an	equal	area	projection	(Goode	Homolosine)	with	a	resolution	of	250m	by	250m	(Figure	
4).		
	
	

	
Figure	8.	Nibble	Loss	Year	model.	This	model	was	used	to	fill-in	missing	data	points	within	the	tree	cover	Loss	
Year	0.0025	by	0.0025	decimal	degrees	dataset	that	were	caused	from	having	equal	amounts	of	loss	from	two	

years	within	an	output	cell	in	the	aggregation	model.	
	
The	Loss	Year	dataset	 is	a	 raster	with	each	cell	coded	as	year	of	canopy	clearance.	 It	was	
broken	up	into	annual	rasters,	which	were	then	converted	into	polygons	in	order	to	select	
areas	(in	m2)	of	canopy	clearance	(Figure	9).	
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Figure	9.	ArcGIS	Model	Builder	sequence	for	Hansen	Loss	Year.	First	step	of	fire	analysis,	where	the	

resampled	and	projected	250m	by	250m	Loss	Year	raster	is	broken	up	into	polygons	corresponding	to	years	of	
canopy	clearance	(“y”),	2001-2013.	The	thirteen	resulting	polygons	are	created	into	feature	layers	with	a	

column	that	represents	whether	the	loss	polygon	was	within	1km	of	a	fire	point.	
	

Determining	Burned	Areas	
The	 team	developed	a	model	 to	determine	how	much	annual	deforestation	 is	due	 to	 fire	
(Figure	10).	The	input	fire	point	files	contain	all	fire	detection	confidence	classes.	In	order	to	
refine	fire	detection,	the	team	made	a	layer	out	of	only	the	nominal-	and	high-confidence	
fire	points	(30	≤	C	≤	100).	The	contiguous	polygons	of	canopy	loss	that	occurred	within	1km	
of	a	corresponding	annual	confidence	fire	point	were	then	selected	and	designated	as	lost	
due	to	fire	 in	that	year	(Figure	11).	The	team	then	calculated	areas	(in	m2)	of	total	annual	
canopy	 loss	 and	 annual	 canopy	 loss	 that	 can	 be	 attributed	 to	 fire.	 Finally,	 the	 analysis	
aggregated	 the	 annual	 total	 canopy	 loss	 polygons	 into	 one	 polygon	 showing	 global	
deforestation	 from	2001	 to	 2013	 and	 aggregated	 the	 annual	 burned	 canopy	 regions	 into	
one	burned	canopy	polygon	by	using	“Selection	->	Select	by	Location”	in	ArcGIS.	
	
	

	
Figure	10.	ArcGIS	Model	Builder	sequence	for	calculating	annual	burned	and	total	deforestation	areas.	
Example	sequence	shown	for	2012,	where	the	area	of	canopy	loss	that	occurs	within	1km	of	a	nominal-	or	

high-confidence	fire	point	and	the	total	area	of	canopy	loss	are	calculated.	
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Figure	11.	Representation	of	fire	selection	methodology,	2013.	The	purple	background	grid	is	10km	by	10km.	
The	colored	polygons	represent	areas	of	canopy	loss	in	2013.	The	red	points	represent	centroids	of	1km2	cells	
that	contain	at	least	one	nominal-	or	high-confidence	fire.	The	fire	model	selects	the	contiguous	polygons	that	

are	within	1km	of	any	red	fire	point	and	turns	the	polygons	pink.	The	teal	polygons	represent	canopy	loss	
areas	in	2013	that	were	not	burned.		Cell	resolution:	250m	by	250m.	
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RESULTS	AND	DISCUSSION	

Plantation	Analysis	
The	results	of	the	logistic	regression	for	the	tree	farm	model	show	a	significant	relationship	
between	 tree	 cover	 gain	 and	 prevalence	 of	 tree	 farm	 (p-value	 <	 0.001;	 Table	 3).	 This	
relationship	 is	well	 understood	as	 tree	gain	 in	 tree	 farms	 is	 a	distinguishing	 factor	of	 this	
type	 of	 forest/tree	 management	 practice	 over	 others	 (such	 as	 transformation	 into	
agriculture	 or	 natural	 regeneration	 of	 forest).	 The	 other	 two	 input	 factors	 (tree	 loss	 and	
loss/gain	overlap)	did	not	show	the	same	statistical	significance.	However,	loss	of	tree	cover	
and	loss/gain	overlap	certainly	occur	on	global	tree	farms.	Therefore,	these	datasets	were	
not	eliminated	despite	the	lower	statistical	significance.	
	
For	 the	 tree	 loss	data,	 there	 are	many	other	 forest	 events	 that	 can	occur	other	 than	 the	
cutting	on	a	 tree	 farm	that	could	 result	 in	 tree	cover	 loss.	Accordingly,	 it	 is	not	surprising	
that	 loss	alone	 is	not	a	great	predictor	of	 tree	 farm,	as	 it	 is	not	a	unique	characteristic	of	
tree	farms.	However,	 it	does	help	to	identify	tree	farms	in	relation	to	forest	that	does	not	
experience	 any	 or	 little	 loss	 and	 for	 that	 reason	 is	 still	 viable	within	 the	model.	 The	 low	
significance	 of	 loss/gain	 overlap	 is	 surprising.	 A	 major	 characteristic	 of	 tree	 farm	
management	is	the	loss	and	subsequent	(and	relatively	rapid)	regain	of	tree	cover.	This	loss	
and	 gain	 pattern	 differentiates	 the	 management	 style	 from	 others.	 Accordingly,	 the	 low	
significance	 does	 not	 preclude	 the	 data	 from	 the	 model	 but	 indicates	 that	 some	
modifications	may	need	 to	be	made	on	 the	 sampling	of	 the	data.	 Currently	 the	 loss/gain	
overlap	 data	 were	 compiled	 at	 the	 0.0025	 by	 0.0025	 degree/pixel	 resolution	 and	 then	
aggregated	to	10km	by	10km.	Changing	the	compilation	resolution	may	allow	for	a	better	
representation	 of	 tree/loss	 overlap	 and	 allow	 for	 a	 more	 statistically	 robust	 model.	 A	
sensitivity	analysis	may	allow	for	better	understanding	on	how	sampling	of	loss/gain	overlap	
will	affect	the	final	model	output.		
	
Overall,	 the	 logistic	 model	 appears	 to	 perform	 reasonably	 well.	 Of	 the	 43	 inputted	 true	
values,	 22	 values	 were	 predicted	 above	 80%,	 and	 30	 values	 were	 predicted	 above	 50%	
(Figure	12).	This	 indicates	that	70%	of	the	 inputted	values	were	correctly	predicted	above	
50%	 but	 30%	 were	 not	 correctly	 predicted.	 Identification	 and	 analysis	 of	 non-identified	
regions	 in	the	future	will	allow	for	a	better	understanding	of	 limitations	of	the	model	and	
allow	for	better	inputs	to	improve	the	model.	 	Furthermore,	additional	testing	data	points	
through	satellite	imagery	may	help	improve	the	overall	reliability	of	the	output	as	additional	
sample	points	are	input	into	the	regression	model.	It	is	important	to	note	that	it	is	possible	
that	 managed	 forests	 where	 natural	 regrowth	 occurs	 after	 timber	 harvest	 (e.g.,	 United	
States	national	forest	land)	are	likely	to	be	predicted	as	farm	within	the	tree	farm	model	if	
tree	gain	is	high	enough	(due	to	the	positive	factor	gain	has	on	the	logistic	model	output).	
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Table	3.	Tree	farm	regression	results.	Results	of	logistic	regression	for	tree	farm	existence	(true/false)	using	
tree	loss	average,	tree	gain	average,	and	loss/gain	overlap	average	predictor	variables.	

	 Estimate	 SE	 tStat	 p-value	

(Intercept)	 -2.489	 0.435	 -5.719	 <	0.001	

L	 -0.020	 0.024	 -0.855	 0.392	

G	 0.208	 0.051	 4.102	 <	0.001	

L/G	 0.021	 0.028	 0.755	 0.450	

160	observations	 156	error	degrees	of	freedom	

p-value	<	0.001	
	

	
Figure	12.	Tree	farm	model	results.	Results	of	tree	farm	model	output	showing	the	model	prediction	values	

for	inputted	validated	(blue=true,	red=false)	data.	
	
Unfortunately,	the	palm	plantation	model	did	not	perform	as	well	as	the	tree	farm	model.	
The	goal	of	the	palm	model	was	to	identify	areas	of	palm	plantations	as	it	was	expected	that	
palm	 plantations	might	 be	 falsely	 identified	 as	 tree	 farms	 in	 the	 tree	 farm	model	where	
significant	growth	of	oil	palm	occurs	(due	to	the	nature	of	gain	as	a	significant	factor	within	
the	 logistic	 farm	 regression).	 Palm	plantations	need	 to	be	 identified,	 as	 these	plantations	
produce	a	different	commodity	crop	(palm	oil)	and	do	not	represent	areas	that	contribute	
greatly	to	forest	product	supply	chains.	Therefore,	palm	plantations	identified	as	tree	farms	
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create	 false	 understanding	 about	 the	 amount	 of	 forest	 products	 originating	 from	 those	
regions.	

	
Table	4.	Palm	plantation	regression	results.	Results	of	logistic	regression	for	palm	farm	existence	(true,	false)	
using	tree	loss	maximum,	tree	gain	maximum,	and	loss/gain	overlap	maximum	average	predictor	variables.	

	 Estimate	 SE	 tStat	 p-value	

(Intercept)	 -2.948	 0.413	 -7.135	 <	0.001	

L	 0.004	 0.003	 1.239	 0.215	

G	 -0.001	 0.010	 -0.067	 0.947	

L/G	 0.053	 0.013	 3.994	 <	0.001	

199	observations	 195	error	degrees	of	freedom	

p-value	<	0.001	
	

	
Figure	13.	Palm	plantation	model	results.	Results	of	palm	plantation	model	output	showing	the	model	

prediction	values	for	inputted	validated	(blue=true,	red=false)	data.	
	
	
In	the	logistic	regression	for	palm	plantations,	loss/gain	is	highly	significant	(p-value	<	0.001;	
Table	 4).	 This	 high	 significance	 likely	 results	 from	 the	 pattern	 of	 forest	 clearing	 being	
immediately	replanted	with	fast	growing	oil	palm.	Unfortunately,	this	significance	does	not	
result	in	a	model	that	appears	to	accurately	predict	palm	plantations	(Figure	13).	Additional	
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inputs	and	analyses	are	needed	to	rectify	the	output	of	this	model	before	 it	can	be	relied	
upon	 with	 any	 certainty.	 If	 no	 adjustments	 or	 additional	 datasets	 are	 available	 that	 can	
substantially	improve	this	model,	it	may	be	possible	to	substitute	this	model	with	datasets	
of	designated	palm	plantations	that	are	already	available	(e.g.,	oil	palm	concession	datasets;	
Table	1).	
	
Tree	Farm	Classification	
All	 dataset	 outputs	 were	 combined	 into	 a	 single	 interactive	 document	 using	 the	 Leaflet	
package	in	RStudio.	This	output	allows	for	dynamic	exploration	and	investigation	of	the	full	
global	datasets	in	an	easily	transferable	and	readable	way.	The	primary	dataset	in	the	final	
output	 is	 the	 farm	model	 (Figure	 14).	 The	 data	 is	 coded	 as	 circles	 in	 the	map	 area.	 The	
circles	 correspond	 to	 information	 about	 the	 surrounding	 10km	 by	 10km	 cell	 around	 the	
circle	 center.	 Colors	 of	 the	 circles	 indicate	 the	model	 prediction	 of	 tree	 farms	within	 the	
area	(red	corresponds	to	high	probability	and	green	corresponds	to	low	probability	of	tree	
farm	location).	The	size	of	the	circles	indicates	the	amount	of	loss	that	has	occurred	in	the	
cell	according	to	the	Hansen	data.	Large	circles	indicate	higher	amounts	of	tree	cover	loss.	
With	 this	 symbology,	 information	 about	 both	 type	 of	management	 as	well	 as	 amount	 of	
production	can	be	surmised.	Accordingly,	this	understanding	should	allow	for	the	ability	to	
identify	 highly	 productive	 tree	 farm	 regions.	 Similar	 symbology	 is	 also	 used	 in	 the	 palm	
plantation	model.		
	
One	region	of	high	tree	farm	concentration	is	the	southeastern	corner	of	the	United	States	
(Figure	 15).	 	 However,	 some	 of	 the	 most	 revealing	 information	 in	 this	 global	 tree	 farm	
dataset	 comes	 from	 examination	 of	 smaller	 areas	 identified	 as	 tree	 farms	 because	 the	
model	typically	has	low	probabilities	for	tree	farms	within	national	forests	and	parkland.	For	
example,	 the	model	 predicts	 large	 amounts	 of	 tree	 farm	 activity	 around	 the	Okefenokee	
National	Wildlife	Refuge,	but	it	does	not	seem	to	predict	much	farming	extending	into	the	
refuge.	On	the	other	hand,	in	the	neighboring	Osceola	National	Forest,	although	seemingly	
reduced	 compared	 to	 nearby	 land,	 tree	 farms	 are	 predicted	 to	 extend	 into	 the	 park.	 By	
looking	at	global	imagery	within	an	interactive	interface	inside	the	Osceola	National	Forest,	
this	prevalence	can	be	confirmed	(Figure	16).	This	type	of	tree	farm	prevalence	may	not	be	
known	by	a	user	before	exploring	the	model,	so	this	type	of	identification	is	indicative	of	the	
manner	 in	 which	 local	 timber	 harvesting	 understanding	 may	 be	 gained	 from	 using	 this	
model.	
	
Another	highly	predicted	area	of	tree	farms	is	the	western	coasts	of	the	United	States	and	
Canada	 (Figure	 17).	 However,	 these	 areas	 may	 show	 a	 limitation	 to	 the	 precision	 of	
classification	 of	 tree	 management	 style	 using	 this	 model.	 These	 areas	 likely	 represent	
locations	of	high	timber	production,	but	the	management	 in	these	areas	also	 likely	differs	
from	 that	of	 the	 southeastern	United	States.	 From	global	 imagery,	 clearing	and	 regrowth	
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can	 be	 seen	 in	many	 of	 these	 areas,	 but	 the	 forests	 are	 not	 divided	 and	 sectioned	 into	
homogenous	 rows	 as	 is	 evident	 in	 tree	 farms	 in	 the	 southeastern	 United	 States	 or	
elsewhere	(Figure	16	&	17).	In	these	forests,	the	trees	are	likely	cleared	and	replanted,	but	
are	not	as	vigorously	managed	as	they	would	be	on	a	designated	tree	farm.		Understanding	
and	better	incorporating	these	differences	is	a	challenge	moving	forward	with	this	model.	
	
	

	
Figure	14.	Tree	farm	model	global	output.	Global	output	of	tree	farm	prediction	with	red	areas	indicating	high	

probability	of	tree	farms	and	green	areas	indicating	low	probability.	Note:	in	this	iteration,	only	areas	that	
have	values	of	tree	loss	greater	than	10%	and	model	predictions	for	either	the	tree	farm	or	palm	plantation	
model	greater	than	50%	are	included	to	limit	the	size	of	the	dataset	and	focus	on	timber	producing	hotspots.	
	
	

Farm	Model	
Probability	



	

28	
	 	 	 		 	 	 	

	
Figure	15.	Tree	farm	model	output	for	southeastern	United	States.	Circle	colors	indicate	probability	of	tree	

farm	(red	=	high;	green	=	low).	The	model	predicts	large	amounts	of	tree	farms	within	the	area.	
	
	

	
Figure	16.	Tree	farm	model	output	of	the	Okefenokee	National	Wildlife	Refuge	and	the	Osceola	National	

Forest.	Circle	colors	indicate	probability	of	tree	farm	(red	=	high;	green	=	low).	Tree	farms	are	predicted	to	a	
lesser	degree	inside	the	refuge	and	national	forest	land,	though	some	tree	farms	extend	into	the	Osceola	

National	Forest.	The	prevalence	of	tree	farms	can	be	verified	by	global	imagery	(right).	
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Figure	17.	Tree	farm	model	output	of	western	United	States	and	Canada.	Circle	colors	indicate	probability	of	

tree	farm	(red	=	high;	green	=	low).	The	western	coasts	of	the	United	States	and	Canada	show	high	
probabilities	of	tree	farms,	verified	by	global	imagery	(right).	

	
Brazilian	Farm	Correlation	with	Global	Forest	Watch	Data	
WRI	 Global	 Forest	 Watch	 recently	 published	 a	 dataset	 for	 a	 select	 number	 of	 countries	
detailing	 the	 existence	 of	 tree	 plantations	 (Peterson	 et	 al.,	 2016;	 WRI	 GFW,	 2016).	 The	
methodology	for	determining	tree	plantation	locations	involved	prescreening	for	tree	farm	
areas	 using	 the	 Hansen	 et	 al.	 (2013)	 Global	 Forest	 Change	 Dataset	 and	 then	 processing	
plantation	 areas	 manually	 using	 high-resolution	 satellite	 imagery.	 Due	 to	 the	 less	
automated	 process	with	 a	 smaller	 processing	 extent,	 it	 is	 likely	 that	 the	 precision	 of	 this	
dataset	is	fairly	high.	Accordingly,	the	new	WRI	dataset	allows	for	an	excellent	opportunity	
to	 examine	 the	 precision	 of	 the	 tree	 farm	 logistic	 model	 developed	 in	 this	 report.	 To	
examine	 this	 precision,	 the	data	 from	WRI	were	 aggregated	by	 farm	area	 coverage	 (with	
farm	 area	 designated	 as	 either	wood	 fiber	 or	 recently	 cleared	 areas	within	 the	 dataset).	
These	data	were	aggregated	to	the	10km	by	10km	grid	scale	used	in	the	processing	of	the	
tree	farm	logistic	model,	and	then	the	two	datasets	were	compared.	Visually,	there	is	clear	
overlap	 between	 the	 two	 datasets	 (Figure	 18).	 Both	 datasets	 demonstrate	 large	 areas	 of	
tree	 farm	 in	 southeastern	 Brazil	 with	 only	 smaller	 areas	 elsewhere.	 Furthermore,	 the	
correlation	between	the	datasets	is	fairly	high,	though	it	greatly	depends	on	whether	areas	
of	 low	 tree	 cover	 loss	 are	 included	 in	 the	 calculation	 (Figure	 19).	 When	 all	 areas	 are	
included,	 the	 correlation	 (between	 tree	 farm	 probability	 and	 tree	 farm	 prevalence)	 is	
around	0.58.	However,	when	only	areas	experiencing	greater	than	25%	tree	cover	loss	are	
included,	 the	correlation	 is	nearly	0.85.	This	dependency	 indicates	 that	 the	 logistic	model	
may	not	be	as	accurate	when	low	levels	of	tree	loss	occur.	However,	the	model	goal	was	to	
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determine	areas	of	large	wood	fiber	contributions,	which	the	comparison	with	an	alternate	
dataset	verifies.	

	

Figure	18.	Tree	farm	model	vs.	Global	Forest	Watch	plantation	data.	Inset	A	demonstrates	the	probability	of	
tree	farms	as	predicted	by	the	tree	farm	logistic	model.	Inset	B	demonstrates	the	percentage	of	area	cover	of	

tree	farms	aggregated	from	Global	Forest	Watch	data.	
	

	
Figure	19.	Correlation	between	tree	farm	model	and	Global	Forest	Watch	plantation	data	as	a	function	of	

Loss	Percentage.	Correlation	between	the	logistic	tree	farm	model	and	the	Global	Forest	Watch	plantation	
data	as	a	function	of	tree	loss.	The	logistic	tree	model	data	were	filtered	so	that	only	10km	by	10km	grid	cells	

with	a	tree	cover	loss	value	greater	than	each	given	x-value	were	used	in	the	correlation	computation.	

A	 B	
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Palm	Plantation	Classification	
Analyzing	 the	 palm	 plantation	 output	 in	 the	 context	 of	 the	 full	 global	 model	 allows	 for	
additional	 understanding	 about	 the	 quality	 of	 the	 model.	 Indonesia	 is	 a	 particularly	
important	area	for	palm	plantations	as	there	are	large	and	growing	concentrations	of	these	
plantations	in	this	part	of	the	world.	In	this	model,	the	goal	is	to	limit	the	false	identification	
of	 palm	 plantations	 as	 tree	 farms	 that	 may	 lead	 to	 inaccurate	 information	 about	 the	
locations	of	timber	harvesting.	Unfortunately,	within	the	model,	palm	plantations	may	lead	
to	inflated	values	for	tree	farm	probability.	The	interactive	interface	allows	for	investigation	
into	the	areas	where	such	false	identification	is	occurring.	For	example,	in	Indonesia,	many	
areas	of	tree	farm	are	identified	in	areas	that	have	been	designated	for	oil	palm	concessions	
(Figure	20).	Unfortunately,	examining	the	overlap	between	the	palm	model	output	and	oil	
palm	 concession	 areas,	 there	 does	 not	 appear	 to	 be	 a	 great	 correlation	 (Figure	 21).	 It	 is	
important	to	note	that	oil	palm	concession	do	not	necessarily	indicate	the	actual	presence	
of	 palm	 plantation	 nor	 exclude	 the	 presence	 of	 tree	 farms.	 Concessions	 simply	 indicate	
areas	designated	 for	planting	oil	palm,	which	may	occur	 in	 the	 future.	Therefore,	 it	 is	not	
expected	 that	 the	 palm	 model	 would	 perfectly	 overlay	 oil	 palm	 concession	 locations.	
However,	 due	 to	 the	 low	 statistical	 performance	 of	 the	 palm	model,	 oil	 palm	 concession	
locations	may	be	the	best	indicator	of	palm	plantations	at	this	time.	
	

	
Figure	20.	Indonesia	tree	farm	probabilities	and	oil	palm	concessions.	Areas	of	overlap	between	high	tree	
farm	probabilities	as	indicated	by	the	tree	farm	model	(red	circles)	and	oil	palm	concession	locations	from	

Global	Forest	Watch	data	(blue	outlined	areas)	indicate	high	risk	areas	for	falsely	predicting	palm	plantations	
as	tree	farms.	
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Figure	21.	Indonesia	palm	plantation	probabilities	and	oil	palm	concessions.	Areas	of	overlap	(or	lack	

thereof)	between	high	palm	plantation	probabilities	as	indicated	by	the	palm	plantation	model	(red	circles)	
and	oil	palm	concession	locations	from	Global	Forest	Watch	data	(blue	outlined	areas)	indicate	possibly	weak	

prediction	capabilities	of	the	palm	plantation	model.	
	
	
Deforestation	Analysis	
Deforestation	occurs	outside	the	scope	of	tree	farms.	Regions	that	are	not	likely	to	be	tree	
farms,	but	still	experience	great	canopy	loss,	could	possibly	be	contributing	to	supply	chains	
(Figure	 22).	 Some	 of	 the	 deforestation	 in	 these	 regions	may	 be	 caused	 by	 fire.	Maps	 of	
canopy	 burned	 by	 fire	 were	 created	 in	 order	 to	 determine	 where	 deforestation	 is	 very	
unlikely	 to	 be	 entering	 supply	 chains.	 Once	 fire	 loss	 is	 accounted	 for,	 the	 remaining	
deforestation	patterns	reveal	wood	sourcing	regions	with	practices	that	differ	 from	a	tree	
farm.	
	
Thirteen	global	maps	of	annual	canopy	 lost	 to	 fire	 in	2001-2013	were	constructed	 (Figure	
23).	Closer	visualization	of	regions	of	known,	large	wildfires,	such	as	the	Zaca	Fire	in	Santa	
Barbara	County	in	2007,	verify	the	methodology	used	to	identify	fire	burn	areas	(Figure	24).	
Areas	of	annual	deforestation	and	the	proportion	of	annual	deforestation	that	was	caused	
by	fire	were	calculated	(Figure	25).	Annual	burned	regions	were	then	aggregated	into	a	map	
of	all	canopy	clearance	caused	by	fire	over	the	entire	time	period	(Figure	26).	
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Figure	22.	Tree	loss	not	highly	predicted	as	tree	farm.	Areas	of	tree	loss	greater	than	10%	where	the	tree	

farm	model	probability	was	50%	or	lower.	
	

	
Figure	23.	Global	canopy	loss	in	2012.	Red	areas	are	trees	that	burned.	Blue	areas	represent	deforestation	not	
caused	by	fire.	Inset	reveals	closer	view	of	the	islands	of	Sumatra	and	Borneo.	Cell	resolution:	250m	by	250m.	

Projection:	Goode	Homolosine.	
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Figure	24.	Burned	canopy	in	California,	2007.	A:	Purple	areas	represent	canopy	that	was	lost	to	fire	in	2007.	
The	inset	reveals	burned	canopy	resulting	from	the	Zaca	Fire	in	Santa	Barbara	County.	Cell	resolution:	250m	by	
250m.	Projection:	Goode	Homolosine.	B:	Verification	of	actual	Zaca	Fire	extent	from	the	Los	Angeles	Times	

(Boxall	&	Cart,	2008).	
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Figure	25.	Areas	(hectares)	of	annual	global	deforestation,	2001-2013.	Canopy	lost	to	fire	is	determined	using	

nominal-	and	high-confidence	fire	points	from	the	corresponding	year	of	tree	cover	loss.	
	
	
	
	

	
	

Figure	26.	Aggregate	global	canopy	loss,	2001-2013.	Red	areas	are	trees	that	burned	between	2001	and	2013.	
Green	areas	represent	deforestation	not	caused	by	fire.	Inset	reveals	closer	view	of	South	America.	Cell	

resolution:	250m	by	250m.	Projection:	Goode	Homolosine.	
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The	 maps	 created	 in	 this	 analysis	 visually	 confirm	 annual	 deforestation	 on	 a	 global	 and	
regional	 scale.	 The	 methodology	 identifies	 which	 forests	 are	 being	 lost	 due	 to	 fire.	
Conversely,	it	also	identifies	potential	areas	of	wood	extraction,	as	these	regions	of	canopy	
loss	cannot	be	explained	by	fire	(Figure	26).		
	
This	study	calculates	the	extent	of	annual	global	canopy	clearance	as	a	range	between	8	and	
16	million	 hectares	 (Figure	 25).	 	The	 current	 analysis	 estimates	 that	 about	 half	 of	 annual	
deforestation	results	from	fire.	Events	of	known	wildfires,	such	as	the	Zaca	Fire,	reveal	large	
patches	 of	 canopy	 that	 were	 lost	 to	 fire	 (Figure	 24).	 These	 deforestation	 events	 do	 not	
contribute	 to	 known	 logging	 practices,	 so	 the	 maps	 visually	 confirm	 that	 the	 methods	
developed	 in	 this	 study	 can	 identify	 burned	 canopy.	 Regions	 that	 practice	 slash-and-burn	
land	clearance,	such	as	the	Amazon,	also	reveal	the	resulting	deforestation	patterns	via	this	
satellite	analysis	(Figure	26).		
	
However,	 there	 are	 some	 limitations	 to	 this	 study.	 The	 extent	 of	 fire	 that	 leads	 to	
deforestation	 is	 currently	 being	 oversampled	 due	 to	 the	 nature	 of	 the	 model	 design	 in	
ArcGIS	and	format	of	 input	data.	 If	a	single	 fire	point	 is	within	1km	of	a	 large	canopy	 loss	
polygon	(Figure	11),	the	entire	contiguous	polygon	is	flagged	as	a	burned	area.		The	MODIS	
data	do	not	distinguish	between	manmade	and	wildfires.	Fire	Radiative	Power	(FRP)	is	a	fire	
point	attribute	that	was	considered	as	a	distinguishing	characteristic,	but	a	literature	review	
did	not	identify	any	wildfire-specific	FRP	ranges.	This	leaves	the	possibility	of	a	small	flame	
(ex:	campfire)	selecting	a	large	clearance	area,	when	in	reality	the	region	is	being	cut,	or	the	
flame	did	not	cause	canopy	clearance.	The	temporal	aspects	of	canopy	loss	(annual)	and	fire	
points	 (daily)	 do	 not	 align	 entirely.	 This	 does	 not	 account	 for	 a	 scenario	 where	 wood	 is	
harvested	first,	and	the	region	is	burned	afterwards.	
	
Nonetheless,	it	is	reasonable	to	conclude	that	some	annual	deforestation	occurs	from	fires	
that	 burn	 through	 regions.	 The	 aggregate	 global	map	 (Figure	 26)	 shows	 fire	 prone	 areas	
(red),	 from	which	wood	 is	 likely	not	entering	supply	chains.	 It	also	shows	areas	of	canopy	
clearance	 that	 cannot	 be	 attributed	 to	 fire	 occurring	 within	 that	 time	 frame	 (green),	
therefore	 the	 cleared	wood	must	 be	 going	 somewhere.	 The	 nature	 of	 the	 input	 satellite	
imagery	 is	 not	 fine	 grained	 enough	 to	 distinguish	 selective	 logging,	 nor	 can	 it	 identify	 a	
forest	that	has	been	replanted	with	another	wood	type	(such	as	virgin	rainforest	replaced	
with	Acacia	sp.).		
	
The	 results	 from	 the	 fire	 analysis	 must	 be	 incorporated	 into	 the	 tree	 farm	 classification	
model	to	determine	which	proportion	of	tree	cover	has	been	lost	to	fire	between	2001	and	
2013	within	any	given	10km	by	10km	world	grid	cell.	Then,	the	proportion	of	an	area	that	is	
lost	to	fire	can	be	used	as	an	independent	predictor	variable	that	a	particular	region	is	a	tree	
farm	or	an	oil	palm	plantation.		 	
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CONCLUSIONS	

This	 analysis	 represents	 an	 initial	 step	 in	 the	 evaluation	 of	 a	 larger	 global	 forest	 product	
model.	The	goal	of	this	classification	dataset	is	to	identify	regions	of	tree	loss	that	are	due	to	
tree	farm	activities.	Due	to	the	commercial	nature	of	tree	farms,	the	canopy	loss	identified	
and	characterized	in	this	report	is	likely	to	result	in	commercial	forest	products.	This	report	
concludes	 that	 layering	 canopy	 cover	 loss	 and	 gain	data	 can	predict	with	 consistency	 the	
likelihood	of	a	given	area	of	canopy	cover	corresponding	with	a	 tree	 farm.	By	subtracting	
the	 likely	 plantation	 areas	 and	 forest	 lost	 to	 fire	 from	 total	 forest	 loss,	 the	methodology	
developed	 in	 this	 report	 can	 also	 reasonably	 predict	 where	 wood	 is	 sourced	 from	 non-
plantation	 sources.	 Ultimately,	 both	 the	 plantation	 and	 non-plantation	 results	 will	 be	
incorporated	 into	 TSC’s	 tools	 and	 provide	 the	 foundation	 on	 which	 TSC	 plans	 to	 build	 a	
comprehensive	 global	wood	 sourcing	model.	 TSC’s	 Commodity	Mapping	 Program,	 as	 it	 is	
applied	 for	 its	 Paper,	 Pulp	 and	 Forestry	Working	Group,	will	 be	 unique	 upon	 completion	
because	 it	will	 show	 trends	 in	 global	 canopy	 cover	 over	 a	 comparatively	 long	 time	 span,	
from	2001-2013.	The	base	maps	developed	 in	 this	 report	are	 important	steps	that	enable	
inter-regional	 analysis	 of	 wood	 product	 supply	 chains	 to	 predict	 the	 relative	 impacts	 of	
specific	sourcing	regions	and	products.		
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