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ABSTRACT 
 
Fisheries are a major component of the global economy, providing a livelihood and 
sustenance for billions of people worldwide. Over half of the global fish catch comes from 
small, local fisheries, primarily located in developing countries. Despite their immense value, 
these fisheries lack the appropriate data to use conventional methods for analyzing the 
health of their fishery. In these situations, known as “data-limited fisheries”, managers often 
struggle to make informed and sustainable decisions. Furthermore, climate change is now 
adding to the challenges of fisheries management by driving shifts in the ranges of fish 
stocks, altering the rates at which fish grow and reproduce, and affecting food and habitat 
availability. These different impacts can be positive for some species in some locations and 
negative for others. Failing to recognize these changes and include them in decision-making 
may lead to poor choices with serious economic and environmental implications. To aid 
decision making in data-limited fisheries, the Environmental Defense Fund (EDF) developed 
the Framework for Integrated Stock and Habitat Evaluation (FISHE). FISHE provides scientific 
guidance for the management of fisheries with minimal resources, however it was not 
designed to explicitly account for the effects of climate change. This project examined if 
FISHE would continue to provide sound guidance to data-limited fishery managers given the 
influences of global climate change on fish. This work gives EDF a location-adaptive process 
to analyze how FISHE can best be utilized to improve fishery outcomes in the face of global 
climate change. 
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SECTION I: EXECUTIVE SUMMARY 
 
Fisheries are a major component of the global economy, providing a livelihood and 
sustenance for billions of people worldwide. Despite their immense value, the majority of 
global fisheries lack the appropriate data to utilize conventional scientific stock assessment 
methods. In these situations, known as “data-limited fisheries”, managers must turn to 
alternative assessment methods and often struggle to make informed and sustainable 
decisions. To aid decision making in data-limited fisheries, the Environmental Defense Fund 
(EDF) developed the Framework for Integrated Stock and Habitat Evaluation (FISHE). The 
goal of this framework is to provide scientific guidance to fisheries managers with minimal 
resources. FISHE is an 11-step process, and each step contains a variety of tools and 
resources designed to promote the sustainable management of data-limited fisheries. 
 
With the latest predictions from the Intergovernmental Panel on Climate Change (IPCC), EDF 
is concerned about the impacts of climate change on the performance of FISHE. Climate 
change is affecting fisheries by driving range and productivity shifts, increasing physiological 
stress, and altering food and habitat availability, all of which may result in changes to 
maximum sustained yield (MSY). These changes could come gradually or abruptly in the form 
of climate driven shocks to the ecosystem. FISHE does not explicitly account for the 
ecological impacts of global climate change, and as a result, it is unknown if FISHE will 
continue to provide sound guidance to data-limited fisheries managers in the face of these 
changes. 
 
Our team developed a three-step approach to address this problem. We began by 
comparing the outcomes of FISHE management decisions on model-simulated fish stocks 
with and without climate change. Given that FISHE performed worse under climate change, 
we then identified steps in FISHE that were most vulnerable to climate change and could be 
evaluated quantitatively. We prioritized four steps by qualitatively analyzing the impact of 
productivity changes on management decisions and evaluating where the exclusion of 
climate effects would have the most negative management implications. Lastly, we designed 
experiments to evaluate the degree to which individual and combined management actions 
could improve the overall outcomes of fisheries given different paces and magnitudes of 
climate change.  
 
From evaluating single management actions, our results show that the frequency of 
assessment, accuracy of estimates, and harvest control rules are not individually sufficient for 
producing good fishery outcomes in the face of climate change. However, when analyzed 
together, our results reveal there are combinations of these actions that can lower the 
proportion of undesirable (closed or overfished) outcomes. This framework determines sets 
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of management actions that produce comparable outcomes and gives managers an ability to 
weigh the tradeoffs associated with each and select an approach that fits with their goals.  
 
Given that human response has the potential to mitigate the negative effects of climate 
change, it is critical that FISHE integrates climate-effective management actions. This project 
provides EDF with a process to analyze how existing and new management actions can 
improve fishery outcomes to assist managers with appropriating limited resources and 
enhancing fishery resilience in the face of global climate change.  
 
SECTION II: OBJECTIVES 
 
Climate change is expected to alter the productivity and distribution of global fisheries. It is 
unknown if FISHE will continue to provide sound guidance to data-limited fisheries managers 
in the face of climate change. The goal of this project is to evaluate the performance of FISHE 
under various climate change scenarios and identify potential vulnerabilities within the 
framework. The specific project objectives include: 
 

1. Determine if FISHE will continue to perform as expected under moderate to severe 
climate change scenarios (RCP 4.5, 6.0, and 8.5).  

2. Identify the quantitative aspects of FISHE most vulnerable to climate change.  
3. Test the sensitivity of the vulnerable aspects of FISHE to climate change using an 

adaptive management approach. 
 
SECTION III: SIGNIFICANCE 
 
Global food production will need to more than double (FAO, 1995) to feed the growing 
global population, which is predicted to reach 8.6 billion by 2030 (UN DESA, 2017). Global 
fisheries are an important food source, providing 15% of the average per capita animal 
protein intake to more than 2.9 billion people worldwide (FAO, 2010). Recent estimates 
indicate marine and inland small-scale fisheries provide over half of the global catch, most of 
which is directly consumed (FAO, 2010). Fisheries provide economic value, employing 43.5 
million people in primary fish production and yielding exports valued at $85.9 billion (FAO, 
2010). Nearly 50% of small-scale fisheries workers are women and more than 95% live in 
developing countries (FAO, 2010).  
 
Despite their social and economic significance, over 33% of global fisheries are classified as 
overfished (FAO, 2018). This statistic, however, was derived from only the small fraction of 
global fisheries that have actually been classified. The vast majority are not classified and are 
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in need of scientific assessment (Apel et al., 2013). Furthermore, research has shown that 
most unassessed small-scale fisheries are likely to be overfished (Costello et al., 2012). 
 
In addition to the existing challenges of fisheries management, climate change is now 
altering marine ecosystems. As a result, global fisheries stand to lose up to 50% of gross 
revenues in the face of severe climate change and continued overfishing (Cheung and 
Sumaila, 2010). Recent research suggests that climate change could lead to a significant 
decline in MSY by 2100 (Gaines et al., 2018). The Food and Agriculture Organization (FAO) 
predicts total maximum catch from Exclusive Economic Zones (EEZs) could decrease by as 
much as 16.2% to 25.2% in the absence of climate mitigation (FAO, 2016). Further, research 
suggests that there is substantial variation in catch potential across the globe. While fisheries 
may be stabilizing below sustainable levels in some regions, other regions continue to face 
declining biomass (Worm & Branch, 2012).  
 
However, recent analyses suggest implementing management measures that are adaptive to 
climate change may increase profit and biomass despite these climate-driven changes 
(Gaines et al., 2018). These potential benefits come from better management of fisheries that 
are currently poorly managed. They require new, climate adaptive management strategies 
incorporating better data on stock-status and ecosystem vulnerability (Worm & Branch, 
2012). In addition to curbing projected economic losses, new adaptive strategies could help 
to offset the negative effects of climate change and bolster the resilience of marine 
ecosystems.  
 
SECTION IV: BACKGROUND 
 
A. Our Client: The Environmental Defense Fund (EDF) 
The Environmental Defense Fund (EDF) is a US non-profit environmental advocacy group that 
tackles global environmental challenges such as climate change, ecosystem restoration, and 
ocean health (EDF, 2016). Through incentive-based and data-driven programs, EDF’s 
Fisheries Solutions Center works to design tools and develop innovative fisheries 
management strategies to reverse overfishing. EDF collaborates with conservation groups, 
governments, fishermen, and other stakeholders to create fisheries management solutions 
which balance conservation with social and economic needs. 
 
B. Data-Limited Fisheries 
Fisheries managers have to make difficult decisions, balancing the pressure from fishers who 
rely on certain yields to make a living with the threat of overfishing – and the ensuing social, 
environmental, and economic losses. Given this delicate balance, it is critical that informed 
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and thoughtful decisions are made using the best information available about a particular 
stock. 
 
Conventional fisheries stock assessment methods require large amounts of data that are 
expensive and time-consuming to collect. As a result, these methods tend to mostly be used 
for high value, commercially harvested stocks in developed countries (Amorim et al., 2019). 
Even in the United States, fewer than 50% of federally managed fisheries have been assessed 
(NMFS, 2012).  
 
Unlike highly developed commercial fisheries, small-scale and less developed fisheries often 
lack the resources to invest in monitoring and assessment. These unassessed fisheries 
contribute over 80% to the global fish catch but lack sufficient data to be managed using 
conventional methods (Costello et al., 2012). Known as “data-limited fisheries”, they must turn 
to alternative stock assessment methods that require fewer data inputs to guide management 
actions.  
 
Common approaches to address the challenges of data-limited fisheries management 
include trend analyses, vulnerability analyses, and extrapolation methods. Trend analyses 
encompasses a wide range of data types and requirements to analyze changes in stock 
productivity through time-series analysis (Honey, Moxley, & Fujita, 2010). Simple time-series 
data on catch statistics, survey-based length or weight reference points, trophic indices, or 
spawning potential ratios are often used for sequential trend analysis (Honey, Moxley, & 
Fujita, 2010). Vulnerability analyses use local and expert knowledge to assess the health of 
and threats to an ecosystem and/or species. An example of a vulnerability analysis is the 
Comprehensive Assessment of Risks to Ecosystems (CARE). CARE ranks the threats to an 
ecosystem and/or a single species within data-limited systems, allowing for rapid 
management decisions (Battista et al. 2017). Additionally, managers can extrapolate through 
local knowledge from fishermen and data from “sister” fisheries that are known to be similar 
in nature (Honey, Moxley, & Fujita, 2010). With these methods, information from data-rich 
fisheries is used to infer traits about data-limited fisheries. 
 
C. The Framework for Integrated Stock and Habitat Evaluation (FISHE) 
To assist in the management of data-limited fisheries, EDF created the Framework for 
Integrated Stock and Habitat Evaluation (FISHE).  FISHE is an 11-step adaptive management 
framework designed to help fisheries managers conduct simplified stock assessments and 
evaluate potential management options with minimal inputs. To develop FISHE, EDF 
compiled a variety of tools and resources that were developed specifically for data-limited 
fisheries. Because these individual tools and resources are effective in different situations, this 
approach allows for FISHE to be used and adapted for any type of stock in any geographic 
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location. FISHE is being used to guide management reforms around the world, including Baja 
California, the Philippines, and Belize (Karr, 2015). 
 
The 11 steps of FISHE are (Figure 1): 

1. Goal Setting 
2. Ecosystem Assessment 
3. Vulnerability Assessment 
4. Initial Stock Assessment 
5. Prioritization 
6. Performance Indicators 
7. Reference Points 
8. Harvest Control Rules 
9. Detailed Assessments 
10. Interpretation 
11. Implementation and Adaptation 

 
FISHE is an inclusive process, intended to consider the needs of all stakeholders involved. 
Steps 1 – 8 of FISHE are completed before any data is analyzed or assessed. Rather, these 
steps are designed to initiate conversations between stakeholder groups and agree upon 
actions that will be taken once the assessments are performed and the data are returned. 
With the management framework set, steps 9 – 11 involve the actual stock assessment, 
interpretation, and implementation of the management decisions previously agreed upon. 
Table 1 provides a description of each FISHE step in more detail. 
 
 

FISHE Step  Description 

Step 1: Goal Setting  • Goal setting is a stakeholder driven and inclusive process 
that considers both short-term and long-term goals and 
acknowledges trade-offs between goals 

• Goals include considerations of ecological objectives, 
economic objectives, and cultural objectives 

Step 2: Ecosystem 
Assessment  

• Ecosystem assessments involve a qualitative assessment of 
the status of the marine ecosystem and associated impacts 
of fishing through local or expert knowledge and simple 
measurements 

• Ecosystem assessments can be used to prioritize 
management measures that address high risk impacts 

Figure 1. FISHE Process. A diagram of the 11-
step FISHE process. 

Table 1. FISHE Process Description. Detailed descriptions of each step of the 11-step FISHE process. 
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Step 3: Vulnerability 
Assessment  

• Vulnerability assessments involve assessing the 
vulnerability of target stocks to fishing pressure using 
basic biological and fishery information through a 
Productivity and Susceptibility Analysis (PSA) model  

• Vulnerability scores are calculated and used to make an 
informed decision on how to group species for further 
assessment and management, if necessary  

Step 4: Initial Stock 
Assessment  

• Initial stock assessments are used to gather a baseline 
understanding of the current state of target stocks 

• Methods include examining catch trends or Catch Per Unit 
Effort (CUPE), MPA Density Ratio, MPA Catch Curve, and 
the Length-Based Spawning Ratio (SPR)  

Step 5: Prioritization  • Prioritization uses the information from Steps 3 and 4 to 
organize species by their vulnerability and stock status 
based on different threat levels  

• Species are then assigned priority based on threat levels 
and management goals 

Step 6: Performance 
Indicators  

• Performance Indicators (PI) are measurable aspects of a 
fishery that can be used to evaluate performance relative 
to management goals  

• PI selection dictates the choices that will be made in steps 
7-9 

Step 7: Reference 
Points  

• Reference Points (RP) are the theoretical PI values used to 
compare to the actual PI values of the fishery to measure 
performance 

• The target RP is the ideal PI value for the fishery 
• The limit RP is the worst PI value for the fishery before 

drastic action is needed 

Step 8: Harvest 
Control Rules 

• Harvest Control Rules (HCR) are simple rules that direct 
the action to be taken for any resulting PI value 

• A HCR only specifies what that rule will accomplish, not 
how that rule will be implemented 

Step 9: Detailed 
Assessments  

• Detailed assessments are completed to estimate the 
actual PI value of the fishery 
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• Methods include Biomass Dynamics models, Depletion-
Corrected Average Catch (DCAC), Marine Protected Area-
Based Decision Trees, and Catch-MSY 

Step 10: 
Interpretation  

• Interpretation involves interpreting the results of step 9, in 
the context of steps 1-8, to make the appropriate 
management decisions to meet fishery goals  

Step 11: 
Implementation and 
Adaptation  

• Implementation involves choosing Harvest Control 
Measures (HCM), which describe how the HCR will be 
implemented 

• Adaptation involves the process of re-visiting the fishery 
goals and re-evaluating the state of the fishery 

 
The success of FISHE is dependent on its adaptability, as fisheries are dynamic systems that 
are influenced by a multitude of variables. Constantly changing conditions mean that the 
FISHE process must be repeated on a regular basis. This gives managers the ability to re-
evaluate and adjust decisions based on new observations about fishery conditions and the 
opportunity to learn from previous management decisions (FISHE, n.d.).  
 
While FISHE was designed to capture the inherently dynamic nature of fisheries, it was not 
specifically designed to address the expected environmental changes stemming from global 
climate change. As climate change has already started to impact fish stocks worldwide, it is 
imperative that FISHE is robust to climate-induced variations and minimizes environmental 
and economic risk (Gaines et al. 2018; FISHE, n.d.). 
 
D. Climate Change 
The earth system experiences substantial natural variation from seasonal cycles to inter-
annual and inter-decadal fluctuations. Anthropogenic activities continue to emit 
unprecedented amounts of carbon dioxide into the atmosphere leading to higher global 
mean temperatures. Since 1993, the rate of ocean warming has more than doubled, and the 
ocean has absorbed more than 90% of the excess heat in the climate system (IPCC, 2019). 
The changing climate is projected to cause a cascade of physical and chemical changes in 
the marine environment (Harley et al., 2006). Physical changes to the marine environment 
include gradual changes such as rising sea levels, intensifying wind fields along the ocean 
margins, stronger thermal stratification, and shifting precipitation patterns. Of particular 
concern to fisheries management is the increased frequency of climate shock events such as 
storms and ENSO conditions (Harley et al., 2006). Elevated levels of atmospheric carbon 
dioxide will also have important biogeochemical implications. The oceans hold up to 30% of 
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modern carbon dioxide emissions, which is anticipated to cause a decrease in ocean pH and 
alter the availability of minerals essential to calcifying organisms (Feely et al., 2004).  
 
The effects of these climate variations on fisheries can be broadly categorized as changing 
stock productivity or shifting stock distribution (Gaines et al., 2018). Productivity can be 
influenced by increased physiological stress, altered food availability, decreased 
reproductive success, changing growth rates, or other ecological interactions. Changes in 
productivity further impact overall ecosystem productivity. As the marine environment 
changes, species habitat ranges are gradually shifting to maintain optimal conditions 
(Szuwalski & Hollowed, 2016). While there is an overall trend toward poleward movement in 
response to warming, species-level response has not been uniform, demonstrating that the 
rates and velocities of climate change events plays critical roles in determining the extent of 
range shifts (Szuwalski & Hollowed, 2016). 
 
Climate change will also affect species differently based on life-history characteristics. Life-
history parameters will be altered as the abiotic factors of the environment change, from 
increasing temperature to decreasing pH. Species with fast life histories have been shown to 
be more responsive to sea surface temperature changes, both positively and negatively, than 
those with slow life history traits (Free et al., 2019). In the North Atlantic, benthic invertebrates 
and diadromous finfish were found to be particularly vulnerable to climate change impacts in 
an analysis that grouped species together based on life-history characteristics (Hare et al., 
2016).  
 
These different categories of climate effects pose unique management challenges. Altering 
stock productivity influences potential yields and fishery profits, while distributional changes 
influence who catches fish and where (Gaines et al., 2018). As stock productivity fluctuates, it 
is imperative that harvest controls be adaptive to respond to changes in abundance. As 
ranges shift, fish may migrate in and out of country jurisdictions, leaving stocks vulnerable to 
overharvesting. This could occur as anticipated stock declines may create incentives for 
overharvesting before the range extends beyond a country’s EEZ or through the emergence 
of unmanaged fisheries from new stocks entering into EEZs (Gaines et al., 2018).  
 
Further, the temporal variation of climate impacts has important implications for 
management decisions. On short time-scales of 1-5 years, overfishing remains the primary 
threat to sustainable fish populations (Brander, 2010). Prolonged and heavy fishing pressure 
reduces the age structure, selects for earlier maturation, reduces diversity and destroys 
habitat (Free et al., 2019). As a result, overfishing lowers species resilience to changing 
environmental conditions and can magnify fluctuations due to environmental variability 
(Brander, 2010; Free et al., 2019). While gradual shifts may not substantially influence fish 
populations on short time-scales, higher inter-annual variability, particularly the increased 
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frequency of ENSO events, may have non-linear impacts that can be detrimental to fish 
populations (Brander, 2010). Research suggests that these gradual shifts in the baseline of 
the marine environment (i.e. temperature, salinity, pH) are more critical on medium time-
scales of 5-25 years (Brander, 2010). Stock recovery and the maintenance of stock abundance 
are influenced by the growth, reproduction, distribution, and recruitment of marine fish – all 
of which may be altered by environmental factors.  
 
E. Uncertainty and Risk 
A considerable amount of uncertainty and risk are inherent to both climate change and 
fisheries management. Climate change projections are highly variable, and the uncertainty 
surrounding those projections leads to dramatic differences in the expected impacts on 
fisheries. Understanding the uncertainty and risks involved with each decision is critical to 
maintaining a sustainable fishery. If not properly considered, there can be lasting and harmful 
consequences. 
 
Representative Concentration Pathways (RCP) are greenhouse gas concentration trajectories 
adopted by the IPCC that account for uncertainty in climate change predictions. Each RCP 
represents a different scenario of future greenhouse gas concentrations and the associated 
impacts of that concentration. The 4 RCP scenarios include 2.6, 4.5, 6.0, and 8.5, ranging 
from business-as-usual (RCP8.5) to best-case mitigation (RCP2.6). In fisheries research, it is 
common practice to model across the 4 RCP scenarios to capture the uncertain effects of 
climate change from a low to high extreme. However, due to a lack of meaningful global 
action to address emissions, it is now nearly impossible to achieve the reductions necessary 
to reach RCP2.6 (Raftery et al., 2017). As a result, more recent research has now dismissed 
RCP2.6 altogether and instead focused on RCP4.5, 6.0, and 8.5 (Free et al., 2019). 
 
Further uncertainties surround the more fine-scale regional impacts of climate change and 
their differing effects on specific species and stocks. In addition to climate change, there are 
many levels of uncertainty within fisheries stock assessments. In data-limited fisheries, this 
uncertainty is extended due to a lack of adequate information. Varying levels of uncertainty in 
stock assessments can stem from errors and biases in data collection, errors in model 
processes within the assessment, and model misspecifications (Szuwalski and Hallowed, 
2016). These uncertainties are then exacerbated by the increased variability introduced into 
the system by climate change. 
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SECTION V: METHODOLOGY 
 
A. Overview 
A qualitative analysis of the FISHE framework was conducted to identify which steps include 
processes that are potentially vulnerable to climate impacts. Four main steps (Reference 
Points, Harvest Control Rules, Detailed Assessment, and Implementation and Adaptation) 
were identified to prioritize in our analysis. A model was developed to test the influence of 
different management actions on fishery outcomes over different paces of climate change. 
The model included three components: a biological model to track the fishery over time, a 
climate change model to track changing productivity and ranges, and a management model 
to simulate implementation of FISHE. Data to test the model was generated by selecting a 
range of values for each model input that would occur in nature. Each of the four steps of 
FISHE were integrated into the model and tested in isolation to understand their individual 
influences. We tested the effect of error in detailed assessment, the amount of reduction in 
fishing mortality from harvest control rules, the frequency of assessment, and tracking 
productivity changes by updating reference points. These four tests were run over a period of 
100 years across a range of initial biomasses, growth rates, and paces of climate change. 
Additionally, all interactions of these factors were analyzed to explore tradeoffs between 
combinations of actions. Three types of climate impacts were analyzed: gradual changes in 
productivity, gradual range shifts, and shock events resulting in larger productivity changes in 
a single year.  
 
B. Literature Review 
The team performed an extensive literature review to gain an understanding of how climate 
change is expected to affect fisheries, common data-limited assessment methodologies, and 
existing studies with research objectives similar to our own. Additionally, this literature review 
included an in-depth look at the FISHE framework through interviews and case studies.  
 
C. Qualitative Evaluation of FISHE 
The FISHE framework contains 11 steps and offers multiple methods for completing each 
step based on the data and resources available. Analysis of all the steps and all the methods 
contained in FISHE was not feasible within the timeframe of the project. The qualitative 
evaluation of the FISHE framework was completed to prioritize steps for analysis in the 
model.  
 
A preliminary evaluation identified steps where the absence of climate considerations may 
have important implications based on our understanding of how climate will influence the 
biology of fish. These steps were further narrowed down to select those for which the 
information presented in the framework could be examined in a quantitative model. Finally, 
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our advisory team (2020) suggested that the steps be compared to a general three-step 
approach for resource management: 1) Identify the state of the resource; 2) make a decision 
about how to respond; and 3) determine how often this process will be repeated. The initial 
analysis prioritized the steps that most closely followed this framework: Detailed Assessment, 
Harvest Control Rules, and Implementation and Adaptation. Reference Points was included 
based on a hypothesis that updating reference points to account for productivity changes 
would have a strong influence on fishery outcomes. 
 
D. Model 
A model was developed to analyze the impacts of different management actions over a 
range of climate impacts. The model consisted of three components: a biological model, a 
climate model, and a management model.  
 
Biological Model 
The underlying fish stock was tracked through a dynamic Pella Tomlinson surplus production 
model (Equation 1). Surplus is calculated as net change in total biomass:  
 

Equation 1:     𝑆𝑃!,# =	𝐵!,#$% −	𝐵!,# + 𝐶!,# 
 

where surplus production for stock i over time t (𝑆𝑃!,#) is the difference between the biomass 
of stock i in time t+1 and time t (𝐵!,#$%	𝑎𝑛𝑑	𝐵!,#, respectively) and the catch of stock i between 
time t and time t+1 (𝐶!,#). The Pella Tomlinson model includes a shape parameter (p) which 
allows it to replicate either a Fox or Schaefer production model (Equation 2) (Free et al. 
2019): 
 

Equation 2:     𝑆𝑃!,# = ,&!,#
'
- ×	𝐵!,# 	× /	1 −	/

(!,#
)!,#
1
'
1 

 
where 𝑟!,#*% is the intrinsic growth rate of stock i in time t and 𝐾!,# is the carrying capacity of 
stock i in time t. The time variable is included to reflect the changes to stock productivity and 
ranges from climate change over time. The shape parameter used in the model maximizes 
productivity at 40% of carrying capacity (p = 0.2), which is the meta-analytic mean for fish 
(Free et al 2019). The model calculates biomass of stock i in each time step as a function of 
the previous biomass, the growth, and the catch for the 100-years of the simulation (Equation 
3): 
 

Equation 3:     𝐵!,# =	𝐵!,#*% + 4,
&!,#$%
'
- ×	𝐵!,#*% 	× /	1 −	/

(!,#$%
)!,#$%

1
'
15 −	𝑐!,#*% 
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where catch is calculated for stock i using fishing mortality and biomass in time t (Equation 4): 

 
Equation 4:     𝑐!,# =	𝑓!,# ×	𝐵!,# 

 
Climate Model 
Three kinds of climate influences were tracked in the model: gradual productivity changes, 
gradual range shifts, and shock events. Gradual productivity changes to stock i were 
represented as a compounding annual decrease or increase in productivity (Equation 5):  
 

Equation 5:     𝑟!,# =	𝑟!,#*% + (𝑟+ 	× 	𝑟!,#*%) 
 
where 𝑟+ is a slope term representing the percent change in productivity per year.  
 
In the same way gradual range shifts for stock i were included in the model as a 
compounding annual increase or decrease in carrying capacity (Equation 6): 
 

Equation 6:     𝐾!,# =	𝐾!,#*% + (𝐾+ 	× 	𝐾!,#*%) 
 
where the 𝐾+ term is a slope term representing a percent change in range per year. We 
assume that changes to a species range are proportional to a change in the carrying capacity 
(Gaines et al 2018). For example, if the species range decreases by 15%, we assume the 
carrying capacity declines by 15%. Gradual productivity changes and gradual range shifts 
were not evaluated in the same model. 
 
Shock events were represented in the same manner as gradual productivity changes, 
through a change to the 𝑟!,# term. Rather than a gradual slope, however, shock events were 
applied as single-year productivity decreases that did not carry over to the following year.  
 
Management Model 
The management aspect of the model reflects the decisions being made using the FISHE 
process and depend on the chosen performance indicators. The performance indicators are 
selected based on the goals of the fishery and used to track progress in meeting those goals. 
This analysis was conducted assuming the management goal is maximum sustainable yield 
(MSY), a common practice in fisheries management. In this model, the performance indicator 
is the ratio of fishing mortality for stock i (𝑓!) to the fishing mortality that would provide 
maximum sustainable yield for stock i (𝑓,-.,!), hereafter called the f-ratio (Equation 7): 
 

Equation 7:  𝑓 − 𝑟𝑎𝑡𝑖𝑜 = 	 /!
/&'(,!
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Initial fishing mortality was calculated assuming the initial biomass is the result of an 
equilibrium where catch is equal to surplus production (Equation 8): 
 

Equation 8:     𝑓!0!#!12,! =	 ,
&),!
'
-	× ,	1 −	,(),!

)!
-
'
- 

 
where 𝑟3,! is the intrinsic growth rate of stock i before any climate influences and 𝐵3,! is the 
initial biomass of stock i at the start of the simulation. The fishing mortality rate that produces 
MSY is calculated using the growth rate and the shape parameter (Equation 9): 
 

Equation 9: 𝑓,-.,4 = 𝑟!,# 	× 	
%

(%$')
  

  
where 𝑟!,# is the growth rate of species i in time t. As climate change alters productivity, 𝑓,-.,4 
for stock i will also change.  
 
After selecting and calculating reference points, the management model contains three 
additional parts: sampling error, assessment intervals, and a management decision.  
 
Sampling Error 
The sampling error reflects the uncertainty around estimating the status of the stock using the 
chosen performance indicators. The model tracks the true f-ratio and updates it every year 
based on the changes in productivity (r). A second variable is used to track the fisheries 
manager’s perceptions of the f-ratio (hereafter called the perceived f-ratio). In the initial tests, 
the perceived f-ratio does not account for the changes in biological productivity from gradual 
climate change or shock events (Equation 10):  
 

Equation 10: 𝑝𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑	𝑓 − 𝑟𝑎𝑡𝑖𝑜 = 	 /!,#
/&'(,!,%

  
 
where 𝑓!,# is the fishing mortality rate of stock i in time t and 𝑓,-.,!,% is the fishing mortality rate 
that would produce MSY in Year 1, using the initial growth rate of species i. For later 
experiments two versions of tracking productivity were tested. The first updated 𝑓,-.	in every 
time step based on changes in underlying productivity from gradual climate change and 
shock events (Equation 11):  
 

Equation 11: 𝑝𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑	𝑓 − 𝑟𝑎𝑡𝑖𝑜 = 	 /!,#
/&'(,!,#

  
 
where 𝑓,-. for stock i is based on productivity (r) in time t.   
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The management decision is made based on an estimate of the perceived f-ratio with error 
that is randomly drawn from a lognormal distribution using the rlnorm function in R (Equation 
12): 
 

Equation 12:  𝑓 − 𝑟𝑎𝑡𝑖𝑜 − 𝑒𝑟𝑟𝑜𝑟 = 𝑟𝑙𝑜𝑟𝑚(𝜇, 𝜎) 
 
where the mean (𝜇) is the log transformed perceived f-ratio (Equation 13) and the standard 
deviation (𝜎) is the log transformed coefficient of variation (Equation 14): 
 

Equation 13:      𝜇 = log	(𝑝𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑	𝑓 − 𝑟𝑎𝑡𝑖𝑜) 
 
Equation 14:  𝜎 = 	Hlog	(𝑐𝑣7 + 1) 

 
The coefficient of variation (𝑐𝑣) is the amount of error being tested.  
 
Assessment Intervals  
Assessment intervals dictate when management decisions are made. Management actions 
are carried through until the next assessment. An assessment is always conducted in Year 1 
and then varied depending on the frequency being tested. For example, for a five-year 
assessment interval, an in initial assessment is completed in Year 1 and the management 
action is carried through until the next assessment in Year 5. The management decision made 
in Year 5 is carried through until Year 10, and so on until Year 100.  
 
Management Decision 
The management decision is based on an observation of the chosen performance indicator 
(f-ratio with error) compared to the reference points. A target reference point represents the 
ideal amount of fishing pressure while the limit reference point is the maximum allowable 
fishing pressure. The initial analysis set the target f-ratio to one, meaning fishing mortality 
would be exactly the rate that produces MSY. The limit f-ratio was placed at two, meaning 
fishing mortality would be twice as high as the rate that would produce MSY. Fisheries 
managers would take a different management action depending on where their observation 
with sampling error places them relative to the target and limit (Figure 2).  
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The management decision is made in the beginning of the assessment year and the change 
in fishing pressure is applied to the fishing mortality rate in that year. For example, if the f-
ratio with error places the fishery in between the target and limit, fishing mortality would be 
calculated as a function of the harvest control rule (Equation 15): 
 

Equation 15: 𝑓!,# = (1 − ℎ𝑐𝑟) ×	𝑓!,#*% 
 

where 𝑓!,# is the new fishing mortality rate for stock i in time t, the ℎ𝑐𝑟 is the amount by which 
fishing pressure will be reduced (i.e. 0.10), and 𝑓!,#*% is the previous fishing mortality rate of 
stock i. For example, if the harvest control rule is to reduce fishing pressure by 10%, then the 
new fishing mortality rate is 90% of the previous fishing mortality rate.  
  
E. Model Inputs and Data Generation 
The FISHE framework was designed to be applied to a broad diversity of fisheries in many 
geographic locations. As such, the model was designed to incorporate a range of each 
parameter to represent the various situations in which FISHE might be applied (see Table 2).  

 
 
 
 
 
 
 

Figure 2. Management Decision Framework. Example of the general management decision 
framework utilized in the FISHE process. 
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Parameter Description Range of Values 

B0  Initial biomass 1500, 4000, 60001 

r Intrinsic growth rate 0.1 to 0.82 
 

K Carrying capacity 10,000 

p Shape parameter 0.22 

rs Percent change in growth per year  -0.01767 to 0.014332 

Ks Percent change in range per year -0.045 to -0.0013 

ai Assessment interval  1, 5, 10, 15, 20, 100 

e Error 0.1, 0.3, 0.5 

hcr Harvest control rule  0.05 to 0.50 
    Sources: 1. Ye 2011; 2. Free et al 2019; 3. Gaines et al 2018 

 
Biological Model 
Biological model parameters include initial biomass (B0), intrinsic growth rate (r), and carrying 
capacity (K). Three initial biomasses were chosen to represent the different status of fisheries 
prior to implementation of FISHE. Classifications for fishery status were determined using the 
Food and Agriculture Organization’s definitions of overfished (15% of carrying capacity), fully 
fished (40% of carrying capacity), and healthy (60% of carrying capacity) fisheries (Ye 2011). A 
range of intrinsic growth rates was chosen to represent different life history traits from slow 
growing species to fast growing species. A single carrying capacity was selected and applied 
across all the species. The carrying capacity was used to calculate relative starting biomasses 
and could be adjusted for a specific species in a future analysis.  
 
Climate Model 
The climate model inputs were two slope values rs and Ks, representing a compounding 
annual change in productivity and species ranges, respectively. The lower bound (30% 
decline) and upper bound (33% increase) of productivity changes per degree (°C) of sea 
surface temperature change were gathered from Free et al 2019. The pace of climate change 
(°C/year) was taken from two different Representative Concentration Pathways (RCP) and 
scaled to match the length of our simulation (100 years). Under RCP 4.5, a single degree of 
temperature change occurs over 33 years (Hoegh-Guldberg et al 2014), and there would be 

Table 2. Parameters. Gives the range of values for each model. 
input.  
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an approximately 3°C change over 100 years. For RCP 8.5, one degree of warming occurs 
every 20 years (Hoegh-Guldberg et al 2014) for a total of 5°C over 100 years. The rs and 
associated productivity changes under the two RCPs are given in Table 3. 
 
 

rs Productivity Change (RCP 
8.5)1 

Productivity Change (RCP 
4.5)2 

- 0.01767 - 30% -45% 
-0.01567 - 27% -40% 
-0.01367 -24% -37% 
-0.01167 - 21% -32% 
-0.00967 -18% -27% 
-0.00767 -15% -22% 
-0.00567 -11% -17% 
-0.00376 -7% -11% 
-0.00167 -3% -5% 

+0.00033 +1% +1% 
+0.00233 +5% +8% 
+0.00433 +9% +15% 
+0.00633 +13% +23% 
+0.00833 +18% +31% 
+0.01033 +23% +40% 
+0.01233 +28% +50% 
+0.01433 +33% +60% 

1 Based on 5 °C warming over 100 years  
2 Based on 3 °C warming over 100 years  
  Source: Hoegh-Guldberg et al 2014 
 

Species range shifts are also dependent on the pace of climate change (Gaines et al 2018). 
Due to the high uncertainty about how far species ranges will shift under any given pace of 
climate change and the dependence on geographic location, we explored a wide range of 
potential shifts. On the lower boundary we used a narrow range shift of 5% over 100 years 
and the upper boundary represents a significant shift of 95% over 100 years.  
 
Management Model 
The management model includes three different inputs: assessment intervals, error, and 
harvest control rules (HCRs). Assessing every year represents perfect implementation of 
FISHE as an adaptive management tool. However, from interviews with EDF reassessment 
every year is rare. Intervals of 5, 10, 15, and 20 years were chosen to mimic more realistic 

Table 3. Productivity Changes. The change in productivity per degree Celsius (°C) of sea 
surface temperature (SST) change associated with the slope term (rs ) used in the model 
under Representative Concentration Pathways (RCPs) 8.5 and 4.5. 
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frequencies of implementation. Assessing once every 100 years represents a fishery that 
implements FISHE once but never repeats the process. Three levels of error were chosen to 
represent the three tiers of data availability in FISHE. Tier 1 represents less than one year of 
data from a single data stream, which corresponds to the highest error (0.5) tested in the 
model. Tier 2 fisheries have at least one year of data from a single source, which is the 
moderate error scenario (0.3) in the model. A Tier 3 fishery has more than one year of data 
from more than one data stream and corresponds to the lowest error scenario (0.1) tested in 
the model. A range of harvest control rules were tested from a 5% reduction in fishing 
pressure through a 50% reduction in fishing pressure if the f-ratio with error fell between the 
target and limit reference points.  
 
Data Generation 
Every combination of parameters was fed through the model to generate the data to analyze 
the influence of different management actions on fishery outcomes. A flow-chart generating 
one combination of data for a single model run is illustrated in Figure 3. 
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Figure 3. Model Run Example. Illustrates a single pathway through the model starting with the two static 
biological parameters and then selecting one value from every box of climate and management 
parameters. All combinations of inputs were run through the model for a total of 61,200 combinations.  
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F. Model Outputs 
The model tracked eight outputs in every year of the 100-year simulation (Table 4). The 
growth rate (r) or carrying capacity (K), the fishing mortality rate at MSY (fmsy), and the true f-
ratio are updated every year based on the changes to productivity or ranges from climate 
change. In assessment years, the perceived f-ratio is updated and a new f-ratio is drawn with 
random error. Based on the management decision made in the assessment, the fishing 
mortality rate (f) is updated and then held constant until the next assessment year. These 
outputs were used to analyze biomass in the final year of simulation and compare outcomes 
across the different scenarios.  

 
 

Parameter Description 

B Biomass 

C Catch 

r1 Growth rate 

K1 Carrying capacity 

f Fishing mortality rate 

fmsy Fishing mortality rate at maximum sustainable yield 

f-ratio Ratio of fishing mortality to fishing mortality at maximum sustainable yield  

f-ratio-p Ratio of fishing mortality to fishing mortality at maximum sustainable yield 
perceived by the fisheries manager 

f-ratio-err Perceived ratio of fishing mortality to fishing mortality at maximum 
sustainable yield drawn randomly from lognormal sampling error 

1 Either the growth rate (r) or carrying capacity (K) were tracked in the outputs, depending on the type of climate influence being 
tested in the model run. 

 
 
 
 
 
 

Table 4. Model Outputs. Lists the variables and description for model outputs.  
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SECTION VI: RESULTS 
 
A. Overview 
First, our results explore the effectiveness of the FISHE framework with and without climate 
change. The individual management actions in the model (sampling error, assessment 
intervals, harvest control rules, and tracking productivity) are then isolated to understand the 
individual influence of each action on fishery outcomes. Once these independent effects are 
explored, we combined actions to examine tradeoffs that achieve similar outcomes using a 
case study format.  
 
B. No Climate Change vs. Climate Change 
The FISHE framework is designed to be an adaptive management tool and ideal 
management using FISHE would repeat the process every year. When FISHE is implemented 
annually there is not a dramatic difference between the fishery’s performance over the 100-
year time period under moderate climate change and no climate change. One specific 
simulation to illustrate this general trend is shown in Figure 4A. Moderate climate change 
corresponds to either a 22% or a 15% decrease in productivity per °C under RCP 4.5 or 8.5, 
respectively (Table 3). However, FISHE is not often implemented annually and more realistic 
management using the framework occurs on 5- to 20-year timescales. Fishery biomass over 
time in moderate climate change and no climate change using a 10-year assessment interval 
had more significant variation. One specific simulation to illustrate this trend is shown in 
Figure 4B.  
 
 
 

 

 

 
 

Figure 4. FISHE Management Comparison. Fishery biomass is tracked over a 100-year time period without climate change 
(blue line) and with moderate climate change (green line). A biomass at maximum sustainable yield is shown in red. Figure 3A 
compares a fishery where the FISHE framework is implemented every year and Figure 3B compares a fishery that assesses every 
10 years. All scenarios use a 30% harvest control rule, 10% sampling error, a growth rate of 0.4, and an initial biomass of 1500.  
 

A B 
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C. Management Actions 
The following results examine the effect of each individual management action on fishery 
outcomes. Outcomes are calculated as a proportion of closed or overfished fisheries. A 
closed fishery represents a management decision to stop fishing because the observed 
reference point with error was greater than the limit value (i.e. the perceived f-ratio was 
greater than 2), representing severe overfishing. An overfished, but open, fishery represents 
a simulation in which the biomass drops below 10% of the carrying capacity by year 100.  
 
Sampling Error  
The effects of sampling error were tested across the full range of climate scenarios, harvest 
control rules, assessment intervals, starting biomasses, and growth rates. This process was 
repeated five times for a total of 122,400 simulations at each level of error. Any changes to 

underlying productivity of 
the species from climate 
change were not 
accounted for in these 
simulations. At the highest 
sampling error (0.5), a total 
of 39.8% of fisheries had 
undesirable outcomes in 
year 100 of the simulation 
with 10.9% being 
overfished and 28.9% 
closed. With a moderate 
sampling error (0.3), a total 
of 27.3% of fisheries were 
closed or overfished in 
year 100 (16.9% overfished 
and 10.3% closed). 
Simulations with the lowest 
sampling error (0.1) had a 

total of 24.3% closed and overfished fisheries in year 100, with 23.5% overfished and 0.8% 
closed. Overall, the proportion of closed or overfished fisheries declines as sampling error 
improves (Figure 5). While there is only a slight improvement in the total proportion of 
closed/overfished fisheries between the moderate and low sampling error scenarios, the 
proportion of closed fisheries continued to decline (Figure 5).  
 
 
 
 

Figure 5. Sampling Error Outcome Comparison. Displays the proportion of closed 
or overfished fisheries in Year 100 of the simulation for the levels of sampling error. 
Closed fisheries, shown in green, are closed due a management decision to stop 
fishing, while overfished fisheries, shown in blue, are those with less than 10% of the 
carrying capacity at the end of the simulation. 
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Assessment Intervals 
Assessment intervals 
were likewise evaluated 
across the full range of 
combinations of 
parameters and the 
model runs were 
repeated five times. A 
total of 61,200 
simulations were run at 
the 20-, 15-, 10-, and 5-
year assessment 
intervals, and 48,960 
simulations were run for 
the one-year 
assessment interval. 
Simulations assumed 
that managers were 
not accounting for any 
changes to the productivity of the species from climate change. When a fishery was assessed 
on 20-year intervals it had the lowest total of undesirable outcomes at 27.6%, with 16.39% 
being overfished and 11.21% closed (Figure 6). On 15-year intervals 16.11% of fisheries were 
overfished in year 100 and 13.06% of fisheries were closed, for a total of 29.17% (Figure 6). 
With 10-year assessment intervals 30.83% of fisheries had bad outcomes, with 16.25% and 
15.48% overfished and closed, respectively (Figure 6). Both 5-year and 1-year assessments 
had very similar outcomes with 34.17% of fisheries on 5-year assessment intervals and 
34.19% of fisheries of annual assessments being closed or overfished in year 100 (Figure 6). 
The breakdown of overfished and closed fisheries was also comparable in the two 
simulations. Overfished fisheries made up 15.13% and 15.11% of the 5-year and 1-year 
assessments, respectively, while 19.04% and 19.08% were closed in 5-year and annual 
intervals, respectively. 
 
Harvest Control Rules 
Harvest control rules (HCRs) were evaluated across all combinations of input parameters and 
repeated five times for a total of 36,720 simulations per HCR. Percent reduction indicates the 
amount of the cutback if the observed reference point with error falls between the target and 
limit values. In these simulations the fisheries managers are not updating their reference 
points based on changes to productivity from climate change. Higher cutbacks resulted in a 
lower overall proportion of simulations ending as closed or overfished (Figure 7). While the 
proportion of the cases with overfishing decrease with higher cutbacks, they change far less 

Figure 6. Assessment Interval Outcome Comparison. Displays the proportion of 
closed or overfished fisheries in Year 100 of the simulation for the different 
assessment intervals. Closed fisheries, shown in green, are closed due a 
management decision to stop fishing, while overfished fisheries, shown in blue, 
are those with less than 10% of the carrying capacity at the end of the simulation. 
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between the lowest 
cutback (19.69%) and 
the highest cutback 
(12.49%), than do the 
proportion of fisheries 
that are closed 
(28.44% and 5.5%, 
respectively; Figure 7).   
 
Tracking Productivity 
Tracking productivity 
simulated fisheries 
managers who had a 
means of updating 
their estimates of the 
reference point in 
assessment years 
based on changes in 
underlying 
productivity from 
gradual climate change. The same three actions explored above (sampling error, assessment 
intervals, and harvest control rules) were re-run across all the combinations of inputs. A total 
of 816 simulations were run at each level of sampling error and for each harvest control rule. 
A total of 1,224 simulations were run at each assessment interval. In general, across all three 
actions, the proportion of closed or overfished fisheries in year 100 was lower when 
productivity changes were accounted for (Figure 8).  
 
While at the highest level of sampling error (0.5) the proportion of bad outcomes is higher 
than in the previous scenario, is not significantly different given the amount of error involved. 
However, for both the moderate and low error scenarios (0.3 and 0.1, respectively), the total 
proportion of simulations ending as closed or overfished is lower than the previous scenario, 
with the low error scenario exhibiting the largest difference in the overall proportion of bad 
outcomes (Figure 8A). While the total proportion is lower (10.0% compared to 24.3%), the 
proportion of those outcomes that are closed is higher when productivity changes are 
tracked compared to when they are not (9.93% and 0.89%, respectively). When productivity 
is tracked, only a single run ended with an overfished fishery in year 100 at each of the error 
levels.  
 

Figure 7. Harvest Control Rule Outcome Comparison. Displays the proportion of closed 
or overfished fisheries in Year 100 of the simulation for the different harvest control rules. 
Reduction amount is the percent cutback in fishing mortality. Closed fisheries, shown in 
green, are closed due a management decision to stop fishing, while overfished fisheries, 
shown in blue, are those with less than 10% of the carrying capacity at the end of the 
simulation. 
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When underlying changes in productivity are tracked, the trend seen under the constant 
scenario for assessment intervals is reversed. The 20-year interval had the highest overall 
proportion of closed or overfished fisheries in year 100 (13.07%) which continued to decline 
as the frequency of assessment increased. The 10-, 5- and 1-year intervals all had total 
proportions below 5% (4.98%, 1.31%, and 0.98%, respectively). Further, the number of runs 
ending with an overfished fishery in year 100, were comparable between the 15-, 10-, 5-, and 
1-year assessment intervals. At every interval, the proportion of bad outcomes was 
substantially lower than the previous constant productivity scenario, with 1- and 5-year 
assessments showing the largest change (Figure 8B). 
 
Similarly, tracking productivity resulted in a lower overall proportion of bad outcomes. At 
lowest HCR (5%), tracking productivity lowered the total proportion of closed or overfished 
fisheries in year 100 by about half (from 48.13% to 24.87%). The change between the 
constant and updating scenarios for the other HCRs was greater than 50%. The largest 

Figure 8. Tracking Productivity Outcome Comparison. 
Changes in the proportion of closed or overfished 
fisheries in Year 100 for the different A) error levels, B) 
assessment intervals, and C) harvest control rules. The 
constant scenario outcomes are shown in blue and the 
outcomes when managers track changes to productivity 
are shown in red.  

A B 

C 
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change in overall proportion of bad outcomes under the tracking productivity scenario is 
made when moving from a 5% cutback to a 10% cutback (from 24.87% to 9.69%). As all HCRs 
had below one percent of runs end as overfished, these changes come from a lower number 
of closed fisheries in year 100. When reducing by 20% or more, none of the runs ended with 
closed fisheries in year 100 (Figure 8C). 
 
These results indicate that as a single action, tracking productivity has the greatest 
improvement in fishery outcomes compared to reducing sampling error, increasing the 
frequency of assessment, or increasing the cutback of the HCR. However, tracking underlying 
productivity changes is challenging in any real-world scenario. The initial growth rate of a 
species is rarely known, let alone how quickly the growth rate is changing due to various 
climate impacts. For this reason, the following case study focuses on the other three 
management actions, which can be easily used and implemented by fisheries managing use 
FISHE.  
 
D. Case Study 
A case study format was used to explore how combining the above management actions 
could lead to improved fishery outcomes. Data used in the case study were generated using 
every combination of model inputs for a total of 367,200 model runs, which equates to 60 
runs for any given combination of inputs. In each phase of the case study there are three 
individual actions available to the fishery manager: 1) Invest in collecting more diverse data 
to reduce sampling error (i.e. move from a high error level to the moderate error level); 2) 
Invest in more frequent assessments (i.e. moving from a 20-year assessment interval to a 15-
year assessment interval); and 3) Implementing a more aggressive HCR (i.e. moving from a 
5% cutback to a 10% cutback). This case study used a slow growing species (0.1 < r0 < 0.3) 
that is already severely depleted (B0 = 1500) in a moderate climate scenario. Moderate 
climate change corresponds to either a 22% or a 15% decrease in productivity per °C under 
RCP 4.5 or 8.5, respectively (Table 3). This scenario also assumes changes in species 
productivity from climate influences are not being accounted for in management decisions. 
At the beginning of the case study, we assume managers begin by implementing a low HCR 
(5% cutback), have a high level of sampling error (0.5), and reassess relatively infrequently 
(20-year intervals). This combination of infrequent assessment, a low cutback, and high error 
leads to approximately 95% of the runs ending with a closed or overfished fishery (Figure 9, 
Red).  
 
First, we looked at how the proportion of closed and overfished fisheries would change if the 
manager only improves upon one of the three actions: reducing sampling error, more 
frequent assessments, or a more aggressive harvest control rule. By moving from a high error 
level to a moderate error level, the overall closed and overfished outcomes is reduced to 
86.67%. More frequent assessments on 10-year intervals actually worsens the probability of 
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ending with a closed or overfished fishery to 100 percent. This is likely because the increased 
frequency is not enough to offset the poor combination of high error and a low HCR. 
Increasing the HCR from 5% to 15%, yielded the best reduction in bad outcomes, down to 
71.67% (Figure 9, Yellow). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
At the beginning of the next step, the fishery manager is starting with a high error, 20-year 
assessment interval, and now a 15% HCR. The manager now examines how to further 
improve outcomes using the same three possible actions. This time, investing in diversifying 
the data streams to reduce sampling error from high to moderate has the largest impact on 

Figure 9. Case Study Example Scenarios. Three scenarios of management actions using 
the FISHE Framework. The outcomes, or X% fail, corresponds to the proportion of 
simulations under these conditions that either A) Close due to a management decision, or 
B) are overfished by year 100.  
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improving overall outcomes. The proportion of closed and overfished fisheries in year 100 is 
reduced from the previous 71.67% to 36.67%, compared to 58.33% from instituting a 20% 
cutback, and 81.67% from increasing the assessment interval to 15 years (Figure 9, Purple).   
 
The combination of increasing the harvest control rule to 15% and reducing the sampling 
error down to a moderate level (0.3), lowers the overall proportion of bad outcomes from the 
initial 95% down to 36.67%. While this is a significant improvement it might not be as good as 
the managers would like. By further investing in reducing sampling error to the low level 
(0.1), the proportion of closed and overfished fisheries in year 100 reduces to nearly zero. 
Maintaining the 20-year assessment interval and the low level of error, the fisheries manager 
could actually 
decrease the HCR 
back down to 10% 
and still have a 
proportion of bad 
outcomes that is 
about 5%. 
However, this 
could be 
expensive or for 
other reasons, not 
practical for a 
given fishery.  
 
Examining other 
combinations of 
actions yields a 
few additional 
options that 
provide relatively 
comparable 
outcomes. At the 
moderate 
sampling error, 
increasing the assessment interval to every 15 years and the HCR to 30% can still reduce the 
proportion of bad outcomes to 13.56% (Figure 10, Pink). Or keeping a moderate sampling 
error, increasing the frequency to every 5 years with a slightly lower HCR of 25% would 
reduce the proportion of bad outcomes to 26.67% (Figure 10, Blue).  
 
 

Figure 10. Alternative Combinations of Management Decisions. When it is not possible to 
reduce sampling error further, there are other combinations of management actions that still 
perform fairly well under moderate climate change. This is an example of a trade-off, as these 
options may be less effective as reducing error further, but they are likely less expensive.   
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SECTION VII: DISCUSSION 
 
Studies on the influence of climate change on fisheries have found that human responses 
have the ability to increase abundance of fish biomass, reduce overfished stock recovery 
time, and raise profits (Free et al 2019; Gaines et al 2018; Costello et al 2016). While many of 
these studies were completed for data-rich fisheries, our results indicate the same 
conclusions may be true in data-limited situations. By simulating fishery outcomes by 
prioritizing alternate management actions, we show there are multiple combinations of 
actions that can make fisheries more climate resilient.  
 
Taken individually, these results indicate that the single best option to improve fishery 
outcomes is to track changes in underlying productivity. However, in practice this is 
challenging, particularly for data-limited fisheries. It requires not only an understanding of the 
biological growth rate of the target species, but also an estimate of the decline in productivity 
and a projection for the pace of climate change in a given area. The best alternative single 
action is implementing a drastic HCR, however, this would likely have significant economic 
implications and in many cases may not be feasible. A drastic HCR creates years with 
dramatic declines in catch whenever it is implemented. However, as seen through the case 
study, combinations of these actions can lower the proportion of closed or overfished 
fisheries. The purpose of the case study is not to determine which set of actions is best or 
what level of closed and overfished fisheries is acceptable, rather, it illustrates how multiple 
combinations of actions can achieve comparable outcomes. Costs and benefits of different 
sets of management actions are context dependent and this research provides a framework 
for exploring the tradeoffs between different sets of actions which can lead to similar overall 
outcomes.  
 
While most of our results are focused on the negative impacts of climate change, positive 
effects were also analyzed. Specifically, our model took inputs ranging from 1% to 60% 
increases in growth rate per degree increase in temperature (RCP 4.5 and 8.5). While EDF is 
primarily concerned with negative effects of warming, positive effects were included after 
recent research found that historical warming trends have actually benefited the productivity 
of several species. Those benefiting species were those existing at the cooler ends of their 
thermal niches (Free et al. 2019), primarily in temperate waters. 
 
The FISHE framework is primarily used in tropical regions where climate effects are 
overwhelmingly negative. Cheung et al., 2010 found that climate change may lead to large-
scale redistribution of global catch potential, with an average of 30-70% increase in high-
latitude regions and a drop in 40% in the tropics from present day to 2055. Regions near the 
equator will see the largest decline in catch potential (apart from the Antarctic), while 
temperate regions, such as the North Atlantic, generally see an increase in catch potential 
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through mid-century. Free et al (2019) also noted that if warming were to continue, an 
increase in productivity would begin to decline as temperatures reached the warmer end of 
the organism’s thermal niche. This is supported by a FAO report (2018), which found that the 
North Atlantic and other temperate regions would see a decline in productivity in the latter 
half of the century under RCP 8.5.   
 
Our results showed that with strategic adaptive management and improved data collection, it 
is possible to sustain fisheries under moderate climate scenarios (RCP 4.5 – RCP 6.0). 
However, the optimism of many studies on the future of global fisheries is contingent on the 
pace and magnitude of climate change (Gaines et al 2018, Free et al 2019). Free et. all (2020) 
looks at regional effects of climate change under three different RCPs and found that under 
the most severe climate scenario (RCP 8.5), 51 countries will likely see reductions in 
productivity at a magnitude of a 50-100% decline in MSY. Notably, all 18 nations in West 
Africa (south of Senegal and north of Angola) are expected to experience losses in MSY 
greater than 85%. The Indo-Pacific and South America were also found to experience 
dramatic losses in MSY. These findings are cause for even greater concern, as these regions 
are also areas which currently lack the resources required to enact the monitoring programs 
needed to quantify changes in fish distribution and productivity.  
 
Our results corroborate these findings by showing that under severe climate change, very 
few combinations of management actions we explored were able to produce a majority of 
good outcomes. Severe climate change in this study is based on RCP 8.5 (a 5°C warming 
over 100 years) and defined as an 18-30% decline in productivity per degree (°C) of sea 
surface temperature change (Table 3).  
 
A few key analytic constraints imply that the negative impacts of climate change on fisheries 
may be overestimated in this analysis. Due to time constraints, the model does not currently 
account for the effort required to catch the number of fish specified in each year. As the 
biomass of fish decreases fishers will be forced to exit the fishery. This provides some degree 
of natural decline in fishing pressure that cannot be accounted for in this model, leading to 
perhaps an overestimate of negative outcomes. The inclusion of effort would also be critical 
for analyzing the economic potential between different sets of management decisions. 
Further, once a fishery was closed due a management decision it was never reopened for the 
remainder of the simulation. The FISHE framework currently does not provide a 
recommendation for a quantitative threshold to re-open a fishery and this decision is left to 
the discretion of fishery managers. However, by not re-opening fisheries, the proportion of 
closed fisheries in year 100 is likely higher than it would be otherwise. Determining a 
quantitative mechanism for re-opening also has economic implications and would be an 
important addition to the model for analyzing yields over time. 
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Our approach represents a wide-range of potential climate impacts based on their 
fundamental influence on the physiology of the fish stock. While this limits the model by 
generalizing all climate impacts into affecting species growth rates, a more complex 
underlying model could be used instead. For example, using an age-structured model could 
allow for increased specificity around if a climate influence would affect recruitment vs. adult 
natural mortality. However, by using a simplified model, we have created a method for 
evaluating climate effects on fisheries that is particularly useful in data-limited contexts. The 
model does not require specific knowledge about the exact climate influences or precise 
predictions of the pace of climate change, which makes it broadly applicable to different 
geographic locations and useful despite high levels of uncertainty surrounding climate 
predictions.  
 
While this analysis incorporated only four main management actions from the FISHE 
framework, we have created a process by which any of the steps within FISHE can be 
translated and analyzed in a modeling environment. This framework is flexible enough to 
provide insights into the trends of fishery outcomes based on any starting stock size, growth 
rate, and existing management actions. This process can also be leveraged to test new 
methods for enhancing the climate resilience of fisheries. For example, the model could be 
used to test the effect of implementing a more complex set of reference points where there 
are two HCRs depending on if the fishery falls closer to the target or closer to the limit. 
Analyzing the change in overall outcomes dependent on initial stock size, life-history, or 
climate change pace can suggest under what circumstances this method might be effective. 
Further, the framework could be used to test the implications of making generalized 
estimates of productivity change or anticipating increased El Nino events. With this approach, 
additional questions can be addressed, such as: can assuming a simple rate of decline in 
productivity be enough to capture the benefit shown by the tracking productivity results? 
How accurate does that general estimate need to be? Does implementing a more drastic 
HCR every five years cushion a fishery from potential major productivity declines from El Nino 
events?  
  
Recent research highlights that including human response when analyzing the impacts of 
climate change on fisheries is critical as the actions of fisheries managers have the potential 
to either exacerbate or mitigate the effects of climate change (Free et al in prep/in press, 
Holsman et al 2019, Gaines et al 2018). The Environmental Defense Fund uses the FISHE 
framework to assist with fisheries management in some of the regions where climate impacts 
are expected to be the most severe. Given that human response has the potential to offset 
the negative effects of climate change, it is critical that the FISHE framework integrates 
climate-effective management actions.  Based on our results, there are a number of 
combinations of actions which already exist in the FISHE framework that produce fairly good 
overall outcomes. However, it appears that even frequent assessment, low error, and 
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aggressive HCRs might not be enough for resilient fisheries in severe climate change. We 
recommend EDF begin by pursuing additional analysis of the potential new actions (general 
productivity estimates and preemptive shock event cutbacks), which we have outlined above. 
This project provides EDF with a process to accomplish this and to test any number of new 
and existing management actions in the FISHE framework to boost the climate resilience of 
data-poor fisheries. 
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SECTION IX: APPENDIX 
 
After submitting the final report to the Bren School of Environmental Science & Management, 
our team continued to work on improving our analysis based on feedback from the 
Environmental Defense Fund. We focused on two main areas of improvement, 1) the model’s 
response to a fishery exceeding the “limit” reference point, and thus initiating a closure, and 
2) testing if a regional proxy for tracking productivity may be an effective precautionary step 
for data-limited fisheries unable to accurately track productivity changes stemming from 
global climate change. 
 
A. No Full Closures 
The purpose of our model is to simulate a fishery over time while using FISHE to guide all 
management decisions. Our first iteration of the model assumed that if the fishing pressure 
was beyond the limit reference point (f-ratio greater than 2), then the fishery would close 
indefinitely. This set-up led to a model limitation resulting in higher frequency of assessments 
having higher proportions of closed and overfished fisheries, which is counter to what we had 
anticipated based on our literature review.  
 
A second iteration of the model was 
developed to address this limitation 
through simulating a more realistic 
response to fisheries that are over 
the limit. In this second version, the 
model maintains a small level of 
fishing activity until the next 
assessment year. For example, for a 
fishery that samples annually found 
to be over the limit in year y, the 
model will cut back the catch in 
year y by 95%. This cutback lasts a 
single year and the fishing pressure 
(f) in year y+1 will be the same as 
year y. This change resulted in the 
previous trend reversing to be in the 
anticipated direction, though the 
effect was still not as dramatic as 
anticipated based on similar studies. 
 
 
 

Figure 11. No Closure. While this trend is subtle the second iteration of our 
model gives more logical assessment interval results. Fisheries that are 
assessed more frequently have a high proportion of remaining in a “healthy” 
range than those assessed less frequently.     
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B. Taking a Precautionary Approach to Climate Change 
Our results indicate that regardless of the management action, anticipating the effects of 
climate change by tracking the underlying productivity of a fishery improves outcomes more 
effectively than any other action. However, understanding how fish are responding to climate 
change is challenging in any real-world scenario, especially data-limited ones. Thus, it seems 
unrealistic to expect a fishery guided by FISHE to accurately track and act upon underlying 
productivity changes due to global climate change.  
 
Due to this challenge, our team worked to determine if FISHE could be adapted to capture 
the benefits from anticipating productivity changes.  To test this, we created a proxy for 
tracking productivity, which represents an estimate made by the fishery manager of how 
climate change will affect the fishery's productivity. We tested a range of assumed declines 
(from 0.5% to 1.5%) per year. We found when tested against the full range of negative climate 

change scenarios, assuming a 1% 
decline in productivity per year 
achieved over 85%of the benefits seen 
from being able to perfect track 
underlying productive of a fishery.  
 
  
 

 

 

Figure 12. Productivity Proxy. These graphs 
illustrate that assuming a 1% decline in 
productivity per year can yield better outcomes 
in the face of climate change than when no 
precautionary actions are take.  
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C. Recommendations 
We recommend that EDF incorporate an additional management question into FISHE: How is 
climate change affecting your resource? Different geographies will experience different 
levels of climate effects. As a result, the severity of those effects will vary for any given region. 
Taking a precautionary approach, fisheries managers can institute a climate change 
anticipation "proxy" - an assumed change in the growth of the fish stock - that is scaled to the 
expected severity of climate change in their region. 
 

 
 
 
Climate change is affecting how fast fish grow and where they can be found, but how quickly 
and severely these impacts are occurring is uncertain and varies across species and regions.  
However, by incorporating a new step into FISHE, managers have the opportunity to consider 
the context-specific impacts of climate change. This knowledge can then be taken into 
account as unique precautionary management strategies are developed, and thus, promote 
more effective approaches to managing data-limited fisheries in the face of global climate 
change. 
 
 
 
 
 
  
 
 
 


