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Abstract 

A growing body of research has linked air pollution with a myriad of chronic and acute 

health conditions. However, the relationship between air pollution and one widespread and 

increasingly common condition, type 2 diabetes, has yet to be rigorously tested. This project 

aims to fill this crucial gap by assessing relationships between particulate matter 2.5 (PM2.5) and 

diabetes prevalence in California, USA, using a cross sectional and panel data approach. The 

two model types assess the years 2014 through 2017 to understand the possible relationship 

between diabetes and PM2.5 in the state. 

Cross sectional linear models for the years 2014 through 2016 show a positive 

association between PM2.5 and diabetes prevalence (0.06 increase in diabetes prevalence with 

1 ug/m3 increase of PM2.5). Results from our fixed effects analysis are qualitatively similar (0.04 

increase in diabetes prevalence with 1 ug/m3 increase of PM2.5). The 2017 cross-sectional 

model and the fixed effects model with all years (2014-2017) is near null and not significant. We 

explore possible explanations for the 2017 results relating to changes in socioeconomic 

conditions and the possibility of non-linear relationships between PM2.5 and diabetes. The 

relationship between PM2.5 and diabetes is complex and could vary depending on functional 

form and timescale of the interaction.  



 

 

 

Executive Summary 

Public health initiatives have long focused on health behaviors and lifestyle factors that 

contribute to the incidence of non-communicable diseases, but now environmental conditions 

are also being examined. In particular, air pollution has been associated with a range of 

negative health impacts including heart disease, stroke, chronic obstructive pulmonary disease, 

lung disease, and lower respiratory infections in children. Air pollution also contributed to 2.7 

million deaths worldwide in 2012 (Kelly and Fussell, 2015). Entities including the United Nations 

and World Health Organization have now placed air pollution as one of their risk factors for non-

communicable diseases (Linou et al., 2018).  

One non-communicable and preventable disease that has been increasing in prevalence 

since the end of the 20th century is type 2 diabetes. Within the US, one in ten people are 

diagnosed with diabetes, which cost the United States $327 billion in 2017 alone (ADA, 2018). 

Type 2 diabetes, which represents 95% of all cases, is known to be influenced by a range of 

factors including environmental conditions, socioeconomic status, and health behaviors (WHO, 

2016). Research on environmental conditions has focused on air pollution, specifically 

particulate matter 2.5 (PM2.5). One longitudinal cohort study on PM2.5’s effects on diabetes 

prevalence projected that ambient PM2.5 contributed to 3.2 million cases of type 2 diabetes 

globally (Bowe et al., 2018).  

Air pollution has proven to be a more widespread issue in California compared to other 

states. The 2019 American Lung Association “State of the Air” report compiled data from the 

U.S. Environmental Protection Agency to rank the cities with the highest levels of air pollution. 

The report found that California continues to dominate this list, containing six of the 10 most 

polluted cities in the country (American Lung Association, 2017). Our project will target a gap in 

literature by assessing the relationship between PM2.5, a major air pollutant, and type 2 

diabetes, an increasingly prevalent disease, in a state that has high rates of both. 

Understanding if and how environmental factors are associated with diabetes can allow 

healthcare providers in California to more effectively implement prevention techniques that go 

beyond diet, exercise, and prescriptions. 

 In this project we combine publicly available datasets that include PM2.5 concentrations 

from the California Air Resource Board, diabetes prevalence from the Centers of Disease 

Control, and sociodemographic variables from the Census Bureau’s American Community 

Survey for the years 2014 through 2017. The PM2.5 data was recorded as daily or hourly 

measurements from air quality monitors throughout the state, while diabetes prevalence and 

socioeconomic variables were recorded by census tract. Because of this, we first needed to 

wrangle the PM2.5 data by averaging observations each year and interpolating these 

concentrations across the state. This allowed us to assign a PM2.5 concentration at each census 

tract. After wrangling all datasets, we retained observations for 5,084 census tracts across 

California. 

 We used both cross sectional and fixed effects models to analyze data from 2014 

through 2017. The cross sectional models assess the relationship between diabetes and PM2.5, 



 

 

 

along with various sociodemographic variables, to compare these relationships in each year of 

study. As a more statistically rigorous test, we also run a fixed effects model that uses panel 

data of these same variables to control for time-invariant factors that are not accounted for in 

the cross sectional models.  

 Among the cross sectional models, we see a positive and significant association 

between diabetes prevalence and PM2.5 concentration when sociodemographic variables are 

included for the years 2014, 2015, and 2016 (~0.06, p<0.001). In the year 2017 there is no 

significant association. Likewise, when we run the fixed effects model across the years 2014-

2016 we find a significantly positive association between diabetes prevalence and PM2.5. 

However, when the fixed effects model encompasses data from 2014-2017 there is no 

association.  

 We hypothesize that these conflicting results could be attributed to a range of factors. In 

2017, major wildfires were located close to census tracts incorporated in our analysis. However, 

since PM2.5 values are an annual average concentration, the effects of fires should be 

minimized in our PM2.5 value. Socioeconomic conditions like access to healthcare, 

unemployment rate and poverty rate, across California improved steadily across the years of 

study. Finally, in the literature the overall time scale at which air pollution and health conditions 

are associated is unknown. It is possible that the chronic effects of high PM2.5 concentrations on 

health would not be observed over the four years of study.  

 In this relatively new body of research where public health meets environmental science, 

there is room for new research to build on our analysis. Our results show a possible association 

between PM2.5 and diabetes in California that can be further explored to assess the consistency 

of trends and to better understand the timescale of this interaction. 
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I. Introduction 

Diabetes is an increasingly widespread disease with negative health and economic 

impacts. Within the US, one in ten people are diagnosed with the disease, which cost the United 

States $327 billion in 2017 alone (ADA, 2018). Diabetes occurs when the pancreas does not 

produce enough insulin (type 1), or when the body cannot effectively use the insulin it produces 

(type 2). Diabetes of either type can lead to blindness, amputations, strokes, heart attacks, and 

other serious health events (WHO, 2016). Type 2 diabetes, which represents 95% of all cases, 

is known to be influenced by a range of factors including socioeconomic status and health 

behaviors (ADA, 2015). Specific risk factors include smoking, obesity, physical inactivity, high 

blood pressure, high cholesterol and high blood glucose (Division of Diabetes Translation, 

2017). 

A growing body of research is examining the links between environmental factors, 

including pollution exposure, and diabetes rates. According to the literature, pollutants of 

concern include air pollution (particulate matter, nitrogen dioxide, etc.), drinking water pollution 

(accumulative arsenic exposure, inorganic arsenic drinking water), proximity to hazardous waste 

(persistent organic pollutants) and pesticide exposure (insecticides, herbicides, fungicides, 

rodenticides, and molluscicides) (Huang et al., 2011; Navas-Acien et al., 2008; Kouznetsova, M. 

et al., 2007; Juntarawijit et al., 2018). Of these, air pollution from very fine particulate matter 

shows the most strongly supported association with diabetes (Navas-Acien et al., 2008; 

Steinmaus et al., 2009; Saldana et al., 2007; Kouznetsova, I. et al., 2007; Sergeev and 

Carpenter, 2005).  

Fine particulate matter is made up of a mixture of organic chemicals, dust, soot and 

metals (AirNow, 2017). The particulate matter particles of the greatest health and regulatory 

concern are those with a diameter of 2.5 micrometers (PM2.5), which is less than the thickness 

of a human hair (Rodriguez and Zeise, 2017). The small size allows these particles to be 

inhaled, deposited in the lungs, and passed into the bloodstream (Canadian Centre for 

Occupational Health, 2019). They can also transport other toxic chemicals into the bloodstream 

that are harmful to human health (CARB, 2015). PM2.5 is released into the atmosphere from a 

range of anthropogenic sources. These sources include cars and trucks, factories, and burning 

wood (EPA, 2019). Natural sources of PM2.5 include dust from the wind erosion of natural 

surfaces, sea salt, wildland fires, and primary biological aerosol particles (EPA, 2019).  

 PM2.5 has previously been linked to a range of negative health impacts ranging from 

Alzheimer’s and dementia to heart attacks (Jung et al., 2015, Rajagopalan et al., 2018). For this 

reason, PM2.5 is a U.S. EPA criteria air pollutant (EPA, 2017) and is regulated on both the state 

and federal level. However, based on the available scientific evidence, air quality analyses and 

risk assessments, the current primary annual standard for PM2.5 of 12 µg/m3 may not be 

adequate to avoid severe health impacts (EPA, 2019). 

The specific mechanism in which air pollution might interact with type 2 diabetes is still 

not fully understood, especially at the molecular and cellular level. Broadly speaking, PM2.5 

particulates act as foreign bodies in the bloodstream and trigger an inflammatory response. 
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Some studies suggest PM2.5 may stimulate oxidative and inflammatory responses in the lungs 

that affect the function of other organs (Xing et al, 2016), while others suggest particulates may 

be translocated to central nervous system receptors (Dimakakou et al., 2018).  

The timescale of health outcomes between PM2.5 exposure and diabetes are still being 

explored. A report released by the EPA demonstrated that adverse health effects were 

observed with lags ranging from one or two days to several months for different health 

outcomes (EPA, 2019). Seasonality further plays a role, as researchers from the University of 

Windsor also reported that cool and dry weather increased the adverse effects of PM2.5 on 

human health, whereas warm and humid weather decreased the effect (Miller, et al, 2018). We 

did not find any literature on the specific time lags of  PM2.5 and diabetes prevalence.  

Similarly, the functional form between PM2.5 and diabetes is not well understood. Even 

short-term (acute) exposure to PM is known to cause exacerbations of diabetes leading to 

hospitalizations and death (Andersen et al., 2012). Some studies looking at PM2.5 and disease 

outcomes strongly suggest that health effects have no threshold within the studied range of 

ambient concentrations and can occur at levels close to PM2.5 background concentrations. A 

meta-analysis of seven studies on PM2.5 explored this linear relationship by showing that with 

every 10 μg/m3 increase in PM2.5 concentration, diabetes risk increased by 25% with chronic 

long-term exposure (He et al., 2017) 

In California, 55% percent of all adults have diabetes, prediabetes, or undiagnosed 

diabetes, costing the state more than $27 billion annually, with $19 billion of that spent on direct 

medical care for diabetes (Babey et al., 2016). California is also home to six of the 10 most 

polluted cities in the country which are home to around 20% of the state’s population (American 

Lung Association, 2019). The state further struggles with an unequal distribution of air pollution 

based on one's socioeconomic or demographic status (Table A2, Boyd-Barret, 2019). Diabetes 

prevalence throughout California is also not distributed evenly. Type 2 diabetes prevalence 

among Mexican-origin Latino adults (18%) is nearly double than that among non-Latino whites 

(9.6%) (CDC 2016). Latinos of any race have a higher diabetes prevalence rate (11.8%) than 

non-Hispanic whites (8.1%) across California (Health Rankings, 2019). High pollution, along 

with high diabetes prevalence and equity concerns make California a compelling state to 

explore the possible association of these two variables.  

Currently, there are no state-wide California studies exploring this association even 

though the state struggles with air pollution and diabetes. Our literature review revealed that 

investigations into this possible association have been sparse. Existing research has been 

conducted in developed nations in North America and Europe but has not yet been explored in 

California. California has struggled with high levels of air pollution since the second half of the 

20th century, and as a result has a comprehensive network of air monitoring stations,  

particularly in urban areas compared to other states, making it an ideal location to study.  Five 

studies investigating PM2.5 and diabetes in various locations do show a positive association 

(Table A1), however these studies used different methods of calculating PM2.5 exposure than 

our methodology. Notably, in previous studies PM2.5 data is interpolated at the zip code level 

and typically averaged over a multi-year period. Given our access to census tract-level diabetes 

http://f1000.com/work/citation?ids=7847876&pre=&suf=&sa=0
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data in the state and the robust air monitoring network in California, we are able to explore this 

association at a more granular level than some of the studies in the literature (Table A1).  

Within California, rural areas have lower rates of diabetes prevalence than the national 

average, while in suburban and urban areas diabetes prevalence is higher than the national 

average (2% and 0.6% higher respectively) (Health Rankings, 2018). Urban dwellers in 

California appear to have the highest risk of diabetes, making them an important population to 

study. As such, understanding the relationship between urban air pollution and diabetes 

prevalence is of fundamental concern both socially and economically. Our analysis therefore 

focuses on the most populated areas of the state and seeks to fill this gap by leveraging 

detailed, publicly available air quality and diabetes data. 

Specifically, we address the following questions: 

1. What are the yearly average PM2.5 concentrations at the census-tract level in California? 

2. What is the relationship between these PM2.5 concentrations and diabetes prevalence in 

California?  

3. Is there heterogeneity in results based on thresholds to exposure levels and ethnicity?  

II. Methods  

We used both a cross sectional and panel data approach to assess relationships 

between PM2.5 and diabetes prevalence in California, USA. Daily and hourly PM2.5   

measurements were leveraged from the California Air Resource Board (CARB) and 

CalEnviroScreen (CES) in combination with diabetes prevalence data from the Centers for 

Disease Control for approximately 5,000 census tracts across California. Sociodemographic 

variables from the Census Bureau’s American Community Survey (ACS) were also incorporated 

into the models. This analysis provides an exploration of the possible relationship between 

diabetes prevalence and PM2.5 at the census-tract level, accounting for demographic and 

socioeconomic factors statewide. 

Data 

Diabetes data for the years 2014-2017 were collected from the Centers for Disease 

Control and Prevention (CDC)’s 500 Cities database. These datasets were published in the 

2016-2019 releases of 500 Cities, respectively. The CDC’s 500 Cities database is an initiative to 

provide health-related data for the most populated 500 cities in the United States. Diabetes 

rates are given as model-based estimates of crude prevalence of diagnosed diabetes among 

adults, which are calculated based on the Behavior Risk Factor Surveillance System (BRFSS). 

This database includes diabetes prevalence within a census tract in populated cities throughout 

California. Diabetes prevalence represents a percent of the adult population in a census tract 

diagnosed with diabetes. On average, the population of a census tract in the 500 cities 

database in California was 4,269 people. 

Socio-demographic data is obtained from the American Community Survey (ACS). ACS 

is an ongoing survey conducted by the U.S.Census Bureau that produces a dataset each year 
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with demographic, economic, and social data based on 35 million households' responses. In 

this study, we selected the unemployment rate, educational attainment (percent of people who 

do not have a high school degree), and poverty rate (percentage of people with income less 

than the federal poverty level) for further analysis. 

PM2.5 data is collected from all monitoring stations within the CARB monitoring network. 

There are around 180 air monitoring stations placed throughout the state (Figure 1). This 

dataset contained daily PM2.5 observations from two types of monitors, Beta Attenuation Method 

Monitors (BAM) and Federal Reference Method Monitors (FRM). BAM monitors measure air 

quality continuously. Hourly measurements from these monitors are averaged over a 24-hour 

period to provide daily observations. FRM monitors contain a filter that collects PM2.5, which is 

then manually taken out of the monitor and weighed. Daily PM2.5 observations from both types 

of monitors are included in datasets for years 2000-2018.  

 

Figure 1.  PM2.5 Air Monitoring Stations in California. Of the ~190 monitors across California, 59 
federal reference monitors measure daily observations, while 131 beta attenuation and speciation 
monitors measure PM2.5 continuously.   

These daily observations were averaged over each year of interest. Because PM2.5 has 
pronounced seasonality, FRM monitoring stations that record daily observations operate on a 
variable sampling schedule. During the winter, these monitors record observations once every 
three days, and during the remainder of the year once every six days. To minimize seasonal 
bias, we averaged daily observations by quarter and then by year. This followed the protocol 
used by CARB to generate PM2.5 maps for CES, a California state tool released by the Office of 
Health Hazard Assessment (Tran et al., 2008). 
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The data we have on diabetes are limited to the years 2014-2017. For this reason, we 

began our analysis of PM2.5 values for those same years. We created a continuous PM2.5 

surface between air quality monitoring stations over California using fixed-radius ordinary kriging 

using ArcGIS 10.7.1 (Figure A1). This method was used and verified for PM2.5 interpolation in a 

range of other studies (Rivera-Gonzalez et. al 2015) (Wu and Hung, 2016). The search radius 

parameter was set at 50km (Tran et al., 2008). If a monitoring station was not found within 

50km, the value from the next nearest monitoring station was used.  

The assigned PM2.5 value was the average value for the entire census tract (Figure 2). A 

simplified version of the model in ArcGIS is included in Appendix 4. 

 

Figure 2. 2014 -2017 PM2.5 in California. The blue values identify census tracts with PM2.5 
concentrations below the National Air Quality Standards (NAAQS) established by the EPA. The brown 
values identify the PM2.5 concentration above the NAAQS established by the EPA. Hotspots are located in 
Plumas County, the Central Valley and Los Angeles.  
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The results from the above methodology were compared to an existing dataset from 

CES to ensure that our model accurately interpolated PM2.5 values across census tracts. The 

CES data contained PM2.5 values at the census tract level averaged over three years and thus 

were not compatible with our cross sectional and fixed effects approaches (Figure A3). 

However, they provided a way to validate our interpolation methodology. Following the above 

methodology, we created a comparable dataset for 2012-2014 from the raw CARB data (Figure 

A4). Although data from more monitoring stations were included in our interpolation from raw 

CARB data, 90% of our data points were still less than 13% different than CES data, with a 

maximum absolute difference of 5.4 µg/m3 (Figures A5 and A6). 

Areas on the outskirts of cities are typically where census tracts have a higher percent 

difference between our data and CES. In densely populated areas, there are many air quality 

monitors placed, so the addition of several extra monitors does not affect the results of kriging. 

On the outskirts of cities where there are fewer monitors overall, additional monitors will have a 

greater impact on kriging results and therefore lead to a discrepancy between our data and CES 

data. In areas like Bakersfield, CA, which lies inland from Los Angeles, all monitoring stations in 

our data and CES data were the same and the percent difference between values was less than 

10% (Figures A7 and A8). 

Cross Sectional Models 

We created a series of cross-sectional models to investigate relationships between 

annual PM2.5 concentration and diabetes prevalence. Cross sectional models contain variables 

that are all associated with the same single period in time. We chose specific sociodemographic 

variables (educational attainment, poverty rate, unemployment rate, and race/ethnicity) from a 

larger suite of sociodemographic variables to reduce collinearity (Figure A9).  

  Each cross section was analyzed using a multivariate linear model with diabetes as a 

linear function of PM2.5 concentration and various combinations of sociodemographic variables. 

To do so, we used contemporaneous measures of diabetes, PM2.5 and demographic 

characteristics. In addition, we applied the same model to examine the CES data as a model 

robustness test. In this test we paired PM2.5 concentrations from CES 2.0 (2009-2011) with 

diabetes and sociodemographic variables from 2014. We also paired PM2.5 concentrations from 

CES 3.0 (2012-2014) with diabetes and socioeconomic variables from 2016. An example of the 

multivariate linear model equation is: 

Diabetes Prevalence i = β1 PM2.5 i + ... + ei  

Fixed Effects Models 

Besides using cross sections to assess relationships between PM2.5 and diabetes 

prevalence, we also take a panel data approach to identify the relationships in a time series, 

using annual data from 2014-2017. A fixed effects model controls for variables that are unique 

to a census tract and are time invariant. For the fixed effects model, there is one observation for 

PM2.5, diabetes prevalence, and each socioeconomic variable for each census tract each year. 

Based on the results from the cross-sectional analysis, we ran the fixed effects model on all 



 

 

7 

years (2014-2017) and a subset of years (2014-2016). Prior to running our fixed effects 

analysis, we assessed the variation in the PM2.5 and diabetes datasets. This was done by 

calculating the standard deviation of linear model residuals. We confirmed that there is variation 

in both the PM2.5 dataset from CES and diabetes prevalence dataset from the CDC that is not 

purely a function of census tract and time and allowed us to move forward with our fixed effects 

model. 

To explore the impact of socioeconomic indicators, we ran the fixed effects model twice, 

once on a model that did not include sociodemographic variables and once on a model that did 

include these. Both linear models incorporated cluster robust standard errors to allow for 

heteroscedasticity and spatial autocorrelation of the errors (Vogelsang, 2012). The basic model 

analyzed the changes in PM2.5 and diabetes alone that occurred in a census tract over three or 

four years of study, where subscripts I is a given census tract and t is time. We tested models 

including the same sociodemographic variables, as in the cross sectional models.  

Diabetes Prevalence it = β1PM2.5  it + Census Tract i  + Year t + e it  

Threshold Analysis 

PM2.5 concentrations used in the models thus far were recorded as annual average 

concentrations in µg/m3. These values were then incorporated in linear models. The literature is 

unclear on the functional form of the relationship between PM2.5 and health conditions, 

therefore, we also wanted to explore the possibility of non-linear relationships into our analysis. 

In this introductory look at non-linear relationships, we calculate the proportion of observations 

that exceed the EPA’s National Ambient Air Quality Standards (NAAQs) of 12 µg/m3at a given 

location.  

 

First, we selected monitoring locations with hourly monitors that recorded at least 300 

days of observations for that year. This translates to 106 monitor locations across the state. We 

calculated the proportion of observations at each station that are above 12 µg/m3 and 

incorporated that value in our ordinary kriging model in GIS; the same way we used kriging with 

the average PM2.5 concentrations. Kriging assigns one PM2.5 proportion per census tract. We 

then repeated our methodology of cross sectional and fixed effects models using this proportion 

as the PM2.5 value. We included the same sociodemographic variables that were used in our 

original fixed effects analysis.  

Latino Subgroup Analysis 

 To assess if there is a different relationship between PM2.5 and diabetes in areas that are 

more or less populated by Latinos, we conducted a subgroup analysis, splitting our sample into 

high and low Latino-populated census tracts before running the fixed effects model. The median 

percentage of the population identifying as Latino across all census tracts with diabetes data 

was 33%. We created a binary operator where “1” was assigned to any census tract that was 

equal to or over 33% Latino of any race in 2014, and “0” was assigned to any census tract that 

was less than 33% Latino of any race in 2014. The binary assigned to a census tract in 2014 

remained for all years of study, 2014-2017, regardless of whether the census tract had changes 
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in demographics. We repeated this process using bins of under 50% Latino and over 50% 

Latino corresponding with binary operators of “0” and “1” respectively. We removed all 

continuous racial demographic variables and retained only the Latino binary variable in the 

model to reduce collinearity between variables. We then ran the fixed effects models as 

described above, using both average concentrations and threshold proportions for PM2.5 values, 

on the high and low Latino binary subgroups.  

Leave-One-Out Analysis 

To better understand our fixed-effects results, we explored how each county affects the 

aggregate coefficient. To do this we grouped the data by county and ran the fixed effects 

models leaving out one county each time. The model equation was the same as above sections 

but had different sample sizes depending on which county was left out of the model. We ran this 

analysis twice, first using the average concentration as the PM2.5 value and second using the 

threshold proportions as the PM2.5 value. By analyzing and comparing the leave-one-out 

coefficients with the original all-county coefficient, we can explore which counties that have the 

largest impacts on the original model coefficient. 

III. Results 

Cross Sectional and Fixed Effect Model Results 

In the series of cross sectional models from 2014 to 2016, we see similar positive 

relationships between PM2.5 and diabetes at each year controlling for sociodemographic 

variables. The coefficient β1 is approximately 0.048 (+/- 0.011, p <0.001) in 2014, 0.071 (+/- 

0.013, p <0.001) in 2015, and 0.059 (+/- 0.015, p <0.001) in 2016 when socioeconomic 

variables are included in the cross section (Figure 3 and Figure 4). A coefficient of 0.059 

represents a 0.059 percentage point increase in diabetes crude prevalence when PM2.5 

concentration increases by one unit (ug/m3). For 2017 we find a different pattern entirely. Here, 

the cross sectional coefficient is much smaller than the previous years (β1=0.015, +/- 0.016, p 

<0.001) and it is not significantly positive (Figure 4). To verify the integrity of our PM2.5 dataset, 

we compared model coefficients between cross sections using CES PM2.5 values and saw 

similar coefficients regardless of data source. Additional results are provided in the 

Supplemental Information (SI).  

Fixed effects models are a more statistically rigorous method to explore the relationship 

between diabetes prevalence and PM2.5 values using panel data. With panel data we can 

control for time-invariant factors that are unobserved or unmeasured, resolving omitted variable 

bias that could be incorporated in the cross sectional models. The coefficient association 

between PM2.5 and diabetes prevalence resulting from the fixed effects model across 2014-2016 

is approximately 0.034 (+/-0.006, p <0.001) when sociodemographic variables are included and 

0.037 (+/-0.007, p <0.001) when they are excluded (Figure 3). This represents a 0.04 

percentage point increase in diabetes crude prevalence when PM2.5 concentration increases by 

one unit (ug/m3). When the 2017 data is incorporated in the fixed effects model, meaning the 

panel of data is now from 2014-2017, the coefficient becomes <0.001 (+/- 0.006, P > 0.05) 
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(Figure 4).  

 

Figure 3. Cross Sectional and Fixed Effects Results 2014 - 2016. The coefficient association between 
PM2.5

 and diabetes prevalence shows a small but significant positive association between PM2.5 
concentration and diabetes prevalence in both the cross sectional and fixed effect models.  

 

Figure 4. Cross Section and Fixed Effects Results 2014 - 2017. The coefficient association between 
PM2.5

 and diabetes prevalence is much smaller in 2017 than previous years. Incorporating a panel of data 
from 2014-2017 in the fixed effects model also results in no association between PM2.5 and diabetes 
prevalence. 

Table 1. Fixed Effects Model Output. In the fixed effects models using a panel of data from 2014-2016, 
there is a small but positive association between PM2.5 and diabetes prevalence that is significant. In the 
fixed effects model incorporating 2017 data into the panel, there is no significant association.  

Panel Model Type Coefficient Standard Error P Value CI Low CI High 
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2014-2016 Socio 0.034 0.006  <0.001   0.023 0.044 

2014-2016 PM2.5 Only 0.037 0.007 <0.001  0.024  0.050 

2014-2017 Socio 0.003 0.005   0.593   -0.006 0.011 

2014-2017 PM2.5 Only 0.004 0.006 0.428 -0.006 0.015 

 

Threshold Analysis 

This nonlinear method is a basic exploration that needs to be refined to draw more 

dependable results. However, we see a positive and significant association between diabetes 

prevalence and proportion of days in exceedance for each of the years 2014-2017 (Figure 5). 

Our fixed effects model incorporating a panel of data from 2014-2017 with socioeconomic 

variables shows a positive association (β1= 0.552 +/- 0.0495, p < 0.001). Our fixed effects model 

incorporating a panel of data from 2014-2016 with socioeconomic variables also shows a 

positive association (β1= 0.622 +/- 0.0508, p < 0.001). Additional model results can be found in 

the SI. This means that a ten percentage point increase in the proportion of days in exceedance 

is associated with a 0.062 percentage point increase in diabetes prevalence.   

 

Figure 5. Cross Sectional and Fixed Effects Results Using Thresholds. The coefficient association 

between PM2.5
 and diabetes prevalence shows a small but significant positive association in both the 

cross sectional and fixed effect models. All models include socioeconomic variables.  

Latino Subgroup Analysis 

We explored interactions between PM2.5 and Latino populations to assess if the 

relationship between air pollution and diabetes prevalence is more or less strong among areas 

that are heavily populated by Latinos. We first classified census tracts as either high percentage 

Latino or low percentage Latino. General summary statistics show that diabetes prevalence, 

PM2.5 concentration and sociodemographic variables are larger in high Latino census tracts 
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(Table 2 & Table 3).  

Table 2. Yearly Average Values for Census Tracts Above the Median Percent Latino. Yearly average 

values for census tracts divided into high and low percent Latino. Census tracts >33% Latino were classified 

as high Latino census tracts.  

 2014 2015 2016 2017 

 Low High Low High Low High Low High 

Diabetes 8.63 11.53 8.22 11.19 8.49 11.15 8.4 11.06 

PM2.5 10.58 11.90 9.59 10.91 9.48 10.63 10.63 11.53 

Unemployment 5.96 8.50 5.33 7.62 4.69 6.69 4.13 5.83 

Education 8.84 31.71 8.68 31.17 8.57 30.70 8.38 29.88 

Poverty 11.47 23.41 11.36 23.20 11.10 22.48 10.74 21.12 

 

Table 3. Yearly Average Values for Census Tracts with a Majority Percent Latino. Yearly average 

values for census tracts divided into high and low percent Latino. Census tracts with a majority Latino 

population (>50%) were classified as high Latino census tracts.  

 2014 2015 2016 2017 

 Low High Low High Low High Low High 

Diabetes 9.07 12.15 8.68 11.81 8.92 11.66 8.83 11.57 

PM2.5 10.78 12.17 9.81 11.16 9.66 10.86 10.78 11.70 

Unemployment 6.48 8.78 5.80 7.87 5.10 6.89 4.48 6.01 

Education 11.61 38.07 11.41 37.42 11.26 36.82 11.00 35.83 

Poverty 13.26 26.03 13.16 25.74 12.80 24.97 12.30 23.36 

 

Then we ran the fixed effects model on each of these subgroups. When we use average 

PM2.5 concentration in the model, there was no significant association (p > 0.05) between PM2.5 

and diabetes prevalence among any subgroup (Figure 6). When we ran this analysis 

incorporating the proportion of days in exceedance as the PM2.5 value, the coefficient 

association between PM2.5 and diabetes prevalence is larger among the high Latino subgroups 

(Figure 7).  
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Figure 6. Latino Subgroup Fixed Effects Results 2014 - 2017. The coefficient association between 
average concentration of PM2.5

 and diabetes prevalence was null for high and low Latino census tracts, 
using both the majority and median values as the cutoff.  

 

Figure 7. Latino Subgroup Fixed Effects Results 2014 - 2017 Using Thresholds. The coefficient 
association between proportion of exceedances of PM2.5 and diabetes prevalence was more positive 
among high Latino census tracts.  

Leave-One-Out Analysis 

Our leave-one-out analysis explored the robustness of our fixed-effects results. We ran a 

series of fixed effects models for the 2014-2016 and 2014-2017 time frames, leaving out a 

specific county at a time. In all cases, this analysis highlighted the weight that Los Angeles 

County has on our result. When we use average concentration as the PM2.5 value, in the 2014-

2016 dataset our significant positive association became negative when Los Angeles County 

was removed from the model (β1= -0.036, +/- 0.0058, p <0.001) (Figure 8). In the 2014-2017 

time frame, the coefficient association is consistently close to zero, while leaving Los Angeles 

County out again shifts the coefficient to be negative (β1= -0.093, +/- 0.0043, p <0.001) (Figure 
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9). It is evident that our results are strongly influenced by Los Angeles County. Additionally, the 

negative and significant effect in the remaining observations suggests a potential omitted 

variable bias or model misspecification that was not addressed by our fixed effects analysis.  

 
Figure 8. Leave-one-out Fixed Effects Results 2014 - 2016. Removing Los Angeles County shifts the 

coefficient to be negative while removing other counties maintains a positive coefficient. 

 
Figure 9. Leave-One-Out Fixed Effects Results 2014 - 2017. The coefficient maintains a null 

relationship even when counties are removed. This indicates the insignificant result in models 

incorporating 2017 data is not due to one particular county. 

When we use proportion of exceedances as the PM2.5 value, we still see the significant 

weight Los Angeles County has in the model. In the 2014-2016 dataset the coefficient 

association is consistently positive but becomes negative when Los Angeles County was 

removed from the model (β1= -0.293, +/- 0.0679, p <0.001)(Figure 10). In the 2014-2017 time 
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frame, leaving Los Angeles County out again shifts the coefficient to be negative (β1= -0.341, +/- 

0.059, p <0.001)(Figure 11). 

Figure 10. Leave-one-out Fixed Effects Results 2014 - 2016 Using Thresholds. Removing Los 

Angeles County shifts the coefficient to be negative while removing other counties maintains a positive 

coefficient. 

 

Figure 11. Leave-One-Out Fixed Effects Results 2014 - 2017 Using Thresholds. Removing Los 

Angeles County shifts the coefficient to be negative while removing other counties maintains a positive 

coefficient. 
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IV. Discussion 

Our project aimed to assess the relationship between PM2.5 and diabetes prevalence in 

California, USA, using a cross sectional and panel data approach. The two model types 

examined the years 2014 through 2017 to understand the possible association between 

diabetes and PM2.5 in urban areas across the state.  

Type 2 diabetes has been increasing in prevalence since the end of the 20th century.  

California is an especially interesting area to study diabetes and environmental factors because 

the state has high diabetes prevalence, high air pollution concentrations and an unequal 

distribution of pollution exposure. Understanding how and if environmental factors, such as air 

pollution, are associated with diabetes would allow healthcare providers in California to more 

effectively implement prevention techniques that go beyond diet, exercise, and prescriptions. 

Our analysis returned several results. Cross sectional linear models for the years 2014-

2016 show a positive association between average concentration of PM2.5 and diabetes 

prevalence. Results from our fixed effects analysis are quantitatively similar. The 2017 cross 

sectional and 2014-2017 fixed effects model’s results show no significant association.  

The cross sectional model explored the relationship between PM2.5 and diabetes by 

comparing across locations. The results from our cross sectional models in 2014, 2015, and 

2016 indicate a positive relationship between average concentration of PM2.5 and diabetes 

prevalence, with a 1 ug/m3 increase in PM2.5 increasing diabetes prevalence by approximately 

0.06 percentage points. There are around 3 million people in California with diabetes, so a 0.06 

percentage point increase in prevalence translates to around 1,800 additional cases (Health 

Rankings, 2019). The average annual medical expenditures of an individual with diabetes that 

can be attributed to the disease are $8,000 (Division of Diabetes Translation, 2017). Therefore, 

1,800 additional cases of diabetes translates to an additional $14.5 million in healthcare costs 

statewide. However, comparing across locations using a cross sectional model is prone to 

omitted variable bias. To account for this bias, our analysis moved forward with a fixed effects 

model that incorporated a panel of data across multiple years.  

Our initial fixed effects model used data from 2014-2016 and assessed the changes in 

average PM2.5 concentration and diabetes that occurred within a given census tract. The fixed 

effects model returned coefficients of approximately 0.04. This means from every 1 ug/m3 

increase in PM2.5, there is a 0.04 percentage point increase in diabetes prevalence. A 0.04 

percentage point increase in prevalence translates to around 1,200 additional cases of diabetes 

(Health Rankings, 2019). This corresponds with $9.6 million in additional healthcare costs 

(Division of Diabetes Translation, 2017).  

Interestingly, when we incorporated 2017 datasets, we saw a change in our results. Our 

cross sectional coefficient for the year 2017 shifted much closer to zero, with a value of 0.015. 

When this value was incorporated into our fixed effects model, the model results showed no 

significant association between PM2.5 and diabetes prevalence. We hypothesize that several 

factors unique to 2017 could be responsible for this change.  
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In 2014-2016 the average statewide diabetes prevalence and PM2.5 concentration values 

were decreasing on similar scales, while in 2017 diabetes prevalence kept decreasing and 

PM2.5 increased, possibly leading to our result showing no association between the two 

variables. With two of the largest and deadliest wildfires on record, 2017 was an unusual year 

regarding PM2.5 in California. Fires led to extreme spikes in PM2.5 levels during the fall months of 

2017 around Ventura, Los Angeles and Sonoma County (Census Bureau, 2017). However, we 

averaged these observations across the entire year which removed PM2.5 spikes from the 

dataset and performed a sensitivity analysis that did not suggest the anomalies in 2017 were 

localized to any particular county, contradicting the idea that wildfires are responsible for the 

model results. It is still possible that those exposed to PM2.5 in the fall wildfires did not have 

adequate time before the end of the year to report their diabetes cases to their doctor. More 

recent diabetes data is needed to assess the impacts of these wildfires.  

Socioeconomic conditions also improved significantly from 2016 to 2017. Across all 

census tracts there was nearly a 1% decrease in the percent of people living in poverty as well 

as nearly a 1% decrease in unemployment. While we control for several sociodemographic 

conditions, we may not have captured all relevant drivers of diabetes that may be correlated 

with PM2.5. These conditions would affect results from the cross sectional model in 2017, and 

fixed effects models. With a fixed effects model, we assume that unobserved characteristics are 

time-invariant at a given census tract and would thus drop out of the model. Unobserved 

socioeconomic conditions within a census tract that change significantly by 2017 would not drop 

out of the model and would affect results. Among lower income groups in particular, we see 

improvements in economic conditions by 2017.  

In California, the Medicaid program expanded in 2014, causing the percentage of people 

without insurance to decline. In 2013, 17.2% of the state was uninsured, while only 7.2% were 

uninsured in 2017 (ACS, 2019). It is possible that this policy change and increased accessibility 

of healthcare, particularly among those with lower incomes, would decrease diabetes 

prevalence at specific census tracts in a dramatic way by the year 2017 that would cause 

conflicting model results when 2017 data is incorporated (Appendix 7). It is also possible that 

increased access to healthcare would increase access to screenings where people could be 

diagnosed with diabetes, leading to an increase in diabetes prevalence. Finally, it is important to 

note that Medicaid only covers documented individuals, thus excluding many Latinos. 

There is also inconclusive literature on the timescale between air pollution and health 

outcomes, specifically PM2.5. A report released by the EPA demonstrated that adverse health 

effects from PM were observed with lags ranging from days to years for different health 

outcomes (EPA, 2019). Due to the shorter time period of our study and a lack of information on 

the timescale of impacts, we might not be capturing an increase in diabetes cases from the 

2017 wildfires within the same year. To further explore timescales, it would be useful to include 

a range of different time lags in future studies. Similarly, misspecification of the functional form 

of this relationship could be influential. 

The literature is ambiguous with regard to the existence or magnitude of threshold 

values of exposure. In the cross sectional and fixed effects models, PM2.5 is given as an annual 
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average concentration for each census tract, but it is also possible that what matters is 

exceedances of a particular threshold. Studies related to the functional form of PM2.5 and health 

effects are not conclusive. Some research finds that chronic exposure to PM2.5 at any level can 

lead to health impacts (Andersen, et al., 2015). Other studies show a non-linear response 

suggesting that the overall acute effects consist of two discrete patterns: a short-term response 

(2 to 15 days) where mortality risks decrease to near null values after the air-pollution event; or 

an intermediate timescale pattern (16 to 55 days) where mortality risk climbs to positive levels 

weeks after the event (Valari, et al). We sought to explore the possibility of thresholds as peaks 

of elevated PM2.5 using the number of daily observations at a monitoring location that exceed 

NAAQs. We found that in all cross sectional and fixed effects models from 2014-2017 that PM2.5 

and diabetes prevalence had a significantly positive association. 

Diabetes is discriminatory, disproportionately impacting Latinos in crude prevalence and 

mortality (Division of Diabetes Translation, 2017, Golden et al., 2012). We explored interactions 

between PM2.5 and Latino populations to assess if the association between PM2.5 changes with 

demographics. We found in our subgroup analysis that when we incorporate PM2.5 as a 

proportion of days in exceedance of the NAAQs, that the coefficient association is larger among 

census tracts with large Latino populations. However, this subgroup analysis is a preliminary 

look at possible relationships incorporating race/ethnicity. This should be further explored in 

additional models using interaction effects or different functional forms. 

Our leave-one-out analysis provided interesting insights. Our 2014-2017 average 

concentration analysis showed that even when leaving out certain counties, the resulting 

coefficients were still insignificant. This indicates that the insignificant relationship is not due to 

one particular county. In all analyses, leaving Los Angeles County out of the fixed effects 

models caused the coefficient to shift to a significantly negative association. This result may 

have been influenced by the high proportion of census tracts belonging to Los Angeles County 

in our dataset. However, this interesting result highlights the need for further exploration into the 

association in Los Angeles County, and why it is driving our coefficient outcome statewide. 

Misspecification of the relevant time of exposure could explain why the results are so strongly 

influenced by Los Angeles County and why counterintuitive negative coefficients are observed 

when Los Angeles County is removed from the analysis. 

Our results showed significant positive associations between diabetes prevalence and 

PM2.5 concentration in most models, and no association under others. We hypothesize that 

these conflicting trends could be due to changes in PM2.5 distribution or socioeconomic 

conditions in 2017, or due to time lags that affect health outcomes. There are many different 

directions that additional studies could take in developing more robust models that incorporate 

PM2.5 and diabetes.  
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V. Conclusion 

Diabetes is a global epidemic. In the U.S., nearly 1 in 10 Americans (9.4% of the population 

or 30.3 million people) live with diabetes (95% of which is type 2 diabetes), with 1.5 million more 

diagnosed every year (ADA, 2018). Diabetes is the seventh leading cause of death in the U.S. In 

2017, diagnosed diabetes cost the U.S. $327 billion (ADA, 2018). In our analysis we assessed the 

relationship between PM2.5 and diabetes prevalence in California using a cross sectional and panel 

data approach. 

Our results suggest a possible positive relationship between exposure to PM2.5 and 

diabetes prevalence in California. In 2014-2016 we see a significant positive association 

between average concentration of PM2.5 and diabetes prevalence  while in models incorporating 

2017 data we see no relationship. Further, changes in socioeconomics from 2017 could have an 

influence. There is also an unknown timescale of the interaction between diabetes and PM2.5 

and because of the short time period of our study, it is possible that we are not capturing the 

effects of  PM2.5 on diabetes. Although these results are preliminary, when we use the 

proportion of observations in exceedance of NAAQs as the PM2.5 measurement we do see 

consistently positive associations.   

There is plenty of room for new and more robust research in this area. Future studies 

could explore thresholds and the associations between spikes of PM2.5 and diabetes prevalence 

in a more powerful way. Research could also focus on the association in Los Angeles County. 

Additional years of diabetes prevalence data will be released under 500 Cities and will allow 

future studies to capture different time lags and functional forms. In California, diabetes and air 

pollution have continuously been at the forefront of health and environmental initiatives. 

Understanding the possible relationship between diabetes and environmental factors could have 

important implications for prevention and treatment initiatives in the future. 
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VII. Appendix  

Appendix 1 

PM2.5  and Diabetes Prevalence  

Table A1. Literature Review Exploring Relationships Between PM2.5  and Diabetes Prevalence. 

Rows in green found a positive association between PM2.5 and diabetes prevalence. Rows in yellow show 

studies where results were partly consistent with a link between long-term exposure to air pollution and 

the risk of diabetes. Red highlighted studies display no evidence of an association between the two 

variables. 

Title, Author, Date Location of Study Sample Size 

Brook RD, Cakmak S, Turner MC, et al. Long‐term fine 

particulate matter exposure and mortality from diabetes in 

Canada. Diabetes Care 2013; 36: 3313–3320. Canada 

2,145, 400 

participants 

Chen H, Burnett RT, Kwong JC, et al. Risk of incident 

diabetes in relation to long‐term exposure to fine particulate 

matter in Ontario, Canada. Environ Health Perspect 2013; 

121: 804–810. Ontario, Canada 

6,310 incident cases 

of diabetes over 

484,644 total person-

years of follow-up 

Coogan PF, White LF, Jerrett M, et al. Air pollution and 

incidence of hypertension and diabetes mellitus in black 

women living in Los Angeles. Circulation 2012; 125: 767–

772. Los Angeles, Ca 

3,992 participants - 

all African American 

To T, Zhu J, Villeneuve PJ, et al. Chronic disease prevalence 

in women and air pollution‐A 30‐year longitudinal cohort 

study. Environ Int 2015; 80: 26–32. Ontario, Canada 

29,549 participants - 

women only 

Weinmayr G, Hennig F, Fuks K, et al. Long‐term exposure to 

fine particulate matter and incidence of type 2 diabetes 

mellitus in a cohort study: effects of total and traffic‐specific 

air pollution. Environ Health 2015; 19: 53. Heinz Nixdorf, Germany 3,607 participants 

Park SK, Adar SD, O'Neill MS, et al. Long‐term exposure to 

air pollution and type 2 diabetes mellitus in a multiethnic 

cohort. Am J Epidemiol 2015; 181: 327–336. 

Chicago, New York, and St. 

Paul, USA 5,839 participants 

Hu H, Ha S, Henderson BH, et al. Association of Atmospheric 

Particulate Matter and Ozone with Gestational Diabetes 

Mellitus. Environ Health Perspect 2015; 123: 853–859. Florida, USA 

410,267 women - 

gestational diabetes 

Robledo CA, Mendola P, Yeung E, et al. Preconception and 

early pregnancy air pollution exposures and risk of 

gestational diabetes mellitus. Environ Res 2015; 137: 316– 

322. 

Springfield, Massachusetts; 

Los Angeles, California; 

Newark, DE; Washington, DC; 

Indianapolis, Indiana; Salt 

Lake City, Utah; Brooklyn, 

New York; Cleveland, Ohio; 

Akron, Ohio 219,952 women 
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Fleisch AF, Kloog I, Luttmann‐Gibson H, et al. Air pollution 

exposure and gestational diabetes mellitus among pregnant 

women in Massachusetts: a cohort study. Environ Health 

2016; 24: 40. Massachusetts, USA 

gestational diabetes - 

159,373 women 

Fleisch AF, Gold DR, Rifas-Shiman SL, et al. Air pollution 

exposure and abnormal glucose tolerance during 

pregnancy: the project Viva cohort. Environ Health Perspect 

2014; 122: 378–383. Boston, USA 

2,093 

women 

Puett RC, Hart JE, Schwartz J, et al. Are particulate matter 

exposures associated with risk of type 2 diabetes? Environ 

Health Perspect 2011; 119: 384–389. 

Northeastern and Midwestern, 

USA 74,412 participants 

 

Appendix 2 

Diabetes by Race in California   

Table A2. Diabetes Prevalence by Race, California vs. National Averages. Racial/ethnic groups do 

not include Hispanic/Latinos, except for Hispanics/Latinos of any race (Health Rankings, 2019).  

Racial Group Diabetes Prevalence 
California 

Diabetes Prevalence  
United States 

Overall 10.4% 10.9% 

White/Caucasian 8.1% 10.7% 

Black/African American 14.8% 14.9% 

Asian 10.6% 9.2% 

Native American/Alaska Native 24% 11.7% 

Hispanic/Latino of Any Race 11.8% 11.3% 
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Appendix 3 

Kriging Surface in GIS 

 

Figure A1. Example of Continuous Kriging Surface Over California. Once this surface was created, 

values were averaged over each census tract and the average was attached to the census tract centroid.  

Appendix 4 

GIS Model 

 

Figure A2. ArcGIS Ordinary Kriging Spatial Interpolation Model of PM2.5 data. Monitoring station data 

was provided with latitude and longitude coordinates. These stations were mapped, then reprojected into 

NAD 1983 Teale Albers (m). Ordinary kriging was used with a search parameter of a 50 km radius. If no 

monitoring station was found within 50 km, the next nearest station was used. 
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Appendix 5 

Model Verification Figures and Results 

 

 
Figure A3. CES 3.0 PM2.5 Values for 2012-2014. Concentration of PM2.5 in each census tract calculated 

as an average from 2012-2014. We used this dataset for comparison of our kriging methodology. Source: 

CES 3.0  

 
Figure A4. Calculated PM2.5 Values for 2012-2014. We averaged our PM2.5 dataset across 2012-2014 

and used kriging in GIS to calculate one average PM2.5 concentration per census tract.  
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Figure A5. Percent Difference Between Dataset and CES PM2.5. Points represent the centroid of 

census tracts where we have both PM2.5 data and diabetes data. Red values represent a difference in 

concentrations given by CES and our results above 12.86%. 

 

 
Figure A6. Case Study LA area: Percent Difference Between Dataset and CES PM2.5 Values. Points 
represent the centroid of census tracts where we have both PM2.5 data and diabetes data within the Los 
Angeles area.  
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Figure A7. Case Study LA area: Percent Difference Between Dataset and CES PM2.5 Values. 50km 

buffers are drawn around our dataset’s additional air monitoring stations. 

 

Figure A8. Case Study LA area: Percent difference between dataset and CES PM2.5 Values. Solid 

lines represent a 50 km radius drawn around common (both our dataset and CES) air monitoring stations. 

Dotted lines represent a 50 km radius of our additional air monitoring stations.  
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Appendix 6 

Collinearity among Socioeconomic Variables 

 
Figure A9.  Collinearity among Socioeconomic Variables 2014. In 2014, there is the highest positive 

collinearity between education and linguistic isolation. There is not much of a collinear relationship with 

PM2.5 and the sociodemographic variables. These trends are the same in the 2015, 2016, and 2017 

datasets. 

Appendix 7 

Changes in Socioeconomic Variables 2014-2017 

 

Figure A10. Trends in Health Insurance Coverage. In 2014, California expanded their Medicaid 

program under the Affordable Care Act. The percent of Californians with Medicaid increased dramatically 

after this policy change, corresponding with a decrease in the percent of Californians with no insurance. 
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Supplemental Information 

Diabetes 

Diabetes is a threat to human health around the world and its prevalence is increasing. 

Globally, an estimated 422 million adults were living with diabetes in 2014, compared to 108 

million in 1980 (WHO, 2016). In 36 years, global diabetes prevalence almost doubled from 4.7% 

(1980) to 8.5% (2014) (WHO, 2016). Diabetes arises when the pancreas does not produce 

enough insulin, or when the body cannot effectively use the insulin it produces (WHO, 2016). 

This defect causes blood glucose (sugar) levels to rise higher than normal.  

In 2015, there were 250,000 diabetes-related deaths recorded and on average the 

disease decreases life expectancy by 8.5 years (Division of Diabetes Translation, 2017). 

Diabetes and its complications bring about substantial economic loss to people with diabetes, 

their families, health systems and national economies through direct medical costs and loss of 

work and wages (WHO, 2016). While very serious, type 2 diabetes can be prevented and 

successfully managed. Current treatments include environmental adjustments, lifestyle 

changes, oral medications, and insulin injections. Behavioral and social factors that influence 

diabetes prevalence are well-known (Figure S1).  

Environmental conditions are becoming an increasingly studied potential risk factor. To 

better visualize the interactions between risk factors, Figure S1 outlines the complexities of the 

environmental and behavioral actions that lead to an increased risk of diabetes (Dendup et al., 

2018). 

Diabetes in California  

Compared to the rest of the U.S. which has an overall diabetes rate of 10.9%, California 

shows slightly lower levels of diabetes at 10.4% (Health Rankings, 2019). However, over the 

last ten years, diabetes prevalence increased by 35% throughout the state (Health Rankings, 

2018). Education seems to be associated with diabetes prevalence. The group of adults with the 

highest diabetes rate in California (18.4%) has an education level of “less than high school”. 

This educational attainment group makes up 17.5% of California’s population (Health Rankings, 

2019). It is also significantly more common in adults living below 100% of the federal poverty 

level (FPL) than in those with incomes at or above 300% FPL (7.8% vs. 4.5% respectively) 

(Diamant et al., 2003).  

Trends also differ by race/ethnicity. Nationally, Hispanics have higher rates of end-stage 

renal disease caused by diabetes, and they are 40% more likely to die from diabetes than non-

Hispanic whites (Office of Minority Health, 2016). Furthermore, Latinos are more highly affected 

than non-Hispanic whites within each age group (Diamant et al., 2003).  



 

 

27 

 
Figure S1. Schematic Diagram of Possible Pathways that Influence Diabetes Prevalence. Literature 

has explored a variety of relationships between environmental, health, and demographic indicators 

associated with diabetes. We will explore the pathway highlighted in blue by focusing on PM2.5 pollution. 

Source: Dendup et al. 2018. 

 

Proposed Mechanisms of PM2.5 Effects on Diabetes 

The specific mechanism in which air pollution interacts with type 2 diabetes is still not 

fully understood, especially at the molecular and cellular level. The timeline of impacts is also 

not understood in the literature. PM2.5 may stimulate oxidative and inflammatory responses in 

the lungs that affect the function of other organs, or particulates may be translocated to central 

nervous system receptors (Dimakakou et al., 2018). One study suggests that at a cellular level, 

PM2.5 contributes to insulin resistance and type 2 diabetes through disrupting the CC-chemokine 

receptor 2 pathway which regulates visceral adipose inflammation and by triggering the 

“unfolding protein response” within a cell’s endoplasmic reticulum (Feng et al., 2016).  

PM2.5  State and Federal Air Quality Standards  

Currently, annual National Ambient Air Quality Standards (NAAQS) for PM2.5 across the 

U.S.are 12 (μg/m3). Policy documents are now taking note of the effects that low levels of PM2.5 

could have on health. The EPA recently released a Policy Assessment of the NAAQS for PM in 

September 2019. This draft states that based on the available scientific evidence, air quality 

analyses and risk assessments, the current primary annual standard for PM2.5 may not be 

adequate (EPA, 2019). 

PM2.5 particles are released into the atmosphere from a range of anthropogenic sources. 

These sources include cars and trucks, factories, and burning wood (USEPA, 2019). Natural 

http://f1000.com/work/citation?ids=7847876&pre=&suf=&sa=0
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sources of PM include dust from the wind erosion of natural surfaces, sea salt, wildland fires, 

and primary biological aerosol particles (Figure S2).  

 
Figure S2. Percent Contribution of PM2.5 Emissions by Source. Significant emissions of PM2.5 come 

from both anthropogenic and natural sources. Source: 2014 National Emissions Inventory 

 

PM2.5 and Other Health Impacts  

In addition to diabetes, particulate matter exposure has been associated with a range of 

other health impacts. Particulate matter exposure in the workplace has been associated with 

neurodegenerative diseases such as Alzheimer’s and dementia (Jung et al., 2015). Short term 

increases of PM2.5 raise the incidence of acute cardiovascular events like heart attacks by 1-3% 

within a few days; with long term exposure, this number increases to 10% and the development 

of chronic cardiovascular diseases like hypertension increase (Rajagopalan et al., 2018).   

In 2019 the EPA released a report that analyzed health outcomes where evidence 

supports either a causal, likely to be causal or a suggestive relationship with PM2.5. Between the 

years of 2009 and 2018, none of the listed causal relationships between PM2.5 and a given 

health outcome have been downgraded, while cancer, nervous system effects, and metabolic 

effects have seen a strengthening in causality determinations (Table S1).  

 

Table S1. Key Causality Determinations for PM2.5 in 2009 and 2018. Exposures to PM2.5 have been 

associated with a range of health outcomes. In 2018, metabolic effects (which includes diabetes) are now 

considered to have a suggestive relationship with PM2.5 (EPA, 2019). 

Health Outcome  Exposure Duration  2009 2018 

Mortality  Long-term  Causal Causal 

 Short-term Causal Causal 

Cardiovascular Effects Long-term  Causal Causal 

 Short-term Causal Causal 
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Respiratory Effects Long-term  Likely to be causal Likely to be causal 

 Short-term Likely to be causal Likely to be causal 

Cancer Long-term  Suggestive of, but not 
sufficient to infer  

Likely to be causal 

Nervous System Effects  Long-term  --- Likely to be causal 

 Short-term Inadequate  Suggestive of, but not 
sufficient to infer 

Metabolic Effects  Long-term  --- Suggestive of, but not 
sufficient to infer  

 Short-term --- Suggestive of, but not 
sufficient to infer  

Reproduction and Fertility  Long-term  Suggestive of, but not 
sufficient to infer  

Suggestive of, but not 
sufficient to infer  

 Short-term Suggestive of, but not 
sufficient to infer  

Suggestive of, but not 
sufficient to infer  

 

Assessment of Residuals  

We used a fixed effects panel regression as a more statistically rigorous method than 

cross sectional models to explore the relationship between diabetes prevalence and PM2.5 

values. In order to run a fixed effects model, there must be variation in the PM2.5 and diabetes 

prevalence datasets that are not purely a function of census tract and time. A linear model was 

used to compare CES 2.0/3.0 and CDC data from 2014/2016 incorporating time, then census 

tract and time. Only census tracts with diabetes data are included in the model. The format of 

these linear models is reported below. 

First, we assess whether there is variation in the PM2.5 and diabetes datasets that is not 

purely a function of time. We would expect this to be true because certain areas of California 

have consistently higher concentrations of PM2.5 than others. This step is not important for 

model verification but serves as a quantitative check on our understanding of PM2.5 distribution 

across the state. We used the following linear models showing PM2.5 or diabetes prevalence as 

a function of time: 

PM2.5 t = β1 CES Version t  

Diabetes Prevalence t = β1 Year t  

Next, we assess whether there is variation in the PM2.5 and diabetes datasets that is not 

purely a function of time and location. This needs to be true in order for the fixed effects model 

to return accurate results. The fixed effects model will analyze variation within each census tract 

across the years in which we have panel data. The variables that do not change considerably 
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within a census tract across the years of study will be dropped. We used the following linear 

model showing PM2.5 or diabetes prevalence as a function of location and time: 

PM2.5 it = β1 CES Version t + β2 Census Tract i 

Diabetes Prevalence it = β1 Year t + β2 Census Tract i  

Calculating the standard deviation of linear model residuals indicates that there is 

variation in both the PM2.5 dataset from CES and diabetes prevalence dataset from CDC that is 

not purely a function of census tract and time. The standard deviation of residuals when the 

location is controlled for is much less than the standard deviation of residuals when only time is 

considered in the model. This is expected because, during the same year, different locations in 

the state have very different PM2.5 concentrations and diabetes prevalence. These findings 

indicate the fixed effects model is likely to be reasonably statistically precise (Table S2).  

Table S2. Standard Deviation of Residuals in PM2.5 and Diabetes Data. There is significant variation 

in PM2.5 concentration and diabetes prevalence that exists within a census tract between years, which 

justifies our choice in using a fixed effects model.  

 PM2.5 Diabetes 

SD 2.29 2.83 

SD of Residuals (year) 2.28 2.82 

SD of Residuals (census tract + year) 0.523 0.395 

 

Comparison of sociodemographic Variables in Cross-Sectional Model  

Cross sectional models allow us to explore the relationship between PM2.5, diabetes and 

combinations of socioeconomic variables with minimal data wrangling. We examine how 

coefficient β1 changes when different sociodemographic variables are included. However, since 

the cross sectional models examine data from only one year at a time, the results are more 

prone to omitted variable bias. For each cross section, two types of linear models are shown in 

the coefficient plot: 

1. PM2.5 - this model assessed diabetes prevalence at a census tract as a function of 

PM2.5 concentration at that census tract. 

2. PM2.5 + socioeconomic - this model assessed diabetes prevalence at a census 

tract as a function of PM2.5 concentration and the following sociodemographic 

variables: 

- Educational attainment 

- Poverty rate 

- Unemployment rate 

- Race (African American, Native American, and Latino of any race) 

We see this coefficient is largest (β1=~0.25) when no sociodemographic variables are 

incorporated into the model but remains positive when they are (Figure S3). A coefficient of 0.25 
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represents a 0.25 percentage point increase in diabetes crude prevalence when PM2.5 

concentration increases by one unit (ug/m3). This value is in line with and on the same order of 

magnitude of other associations between PM2.5
 and diabetes prevalence reported in the 

literature (Pearson et al., 2010). The coefficient is reduced to approximately 0.06 when 

sociodemographic variables are included in the cross section (Figure S3). A coefficient of 0.06 

represents a 0.06 percentage point increase in diabetes crude prevalence when PM2.5 

concentration increases by one unit (ug/m3). When we incorporate socioeconomic variables into 

the cross sectional model, we see the coefficient decrease due to a positive association 

between socioeconomic indicators like poverty rate and unemployment rate with PM2.5 that is 

not accounted for in the basic cross section. Among all cross sections except for 2017 with 

socioeconomic variables, the PM2.5 coefficient indicates a positive association between PM2.5 

concentration and diabetes prevalence even when standard error, represented as the 95% 

confidence interval, is incorporated.  

 
Figure S3. Coefficient Plot Comparison Between Cross Sections with and without 

Sociodemographic Variables. When no sociodemographic variables are included in the cross sectional 

model, coefficient associations are more positive than when sociodemographic variables are incorporated 

into the model.  

 

 This nonlinear method is a basic exploration that needs to be refined to draw more 

dependable results. Using ordinary kriging as a spatial interpolation method on annual 

proportions is not the ideal methodology, however due to time constraints other methods were 

not feasible. It would be more appropriate to use kriging on each day of the year and then 

combine these daily values to find a single annual value that could be incorporated into the 

models. Thresholds can be a useful way to look at non-linear relationships between diabetes 

prevalence and PM2.5, however, conclusive results require using a more robust methodology. 
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