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ABSTRACT 
 
Climate change has fueled an increase in wildfire frequency and intensity in California, having 
profound impacts on communities across the state. The Santa Barbara County Fire Department 
(SBCFD) currently enforces defensible space regulations, which require homeowners to  
maintain a buffer zone around their homes free of combustible vegetation. These regulations 
mitigate the spread of wildfire to structures and allow firefighters to more safely defend homes. 
This project investigated the feasibility of using remotely sensed satellite imagery from Planet 
Labs in a machine learning model to determine property compliance with defensible space 
regulations. Our team determined that, at the imagery resolution currently available to us, our 
model can not predict compliance at a reliable rate. In addition, because the fire department 
may not have full access to inspected properties, we suspect that some homes are mistakenly 
marked as compliant based on only the portion of the property visible from the street. Next 
steps for improving the model include using a training set with higher resolution imagery, 
manually classifying images as compliant and non-compliant, and continuing to add and remove 
variables from the training data. We also recommend the fire department provide explicit 
reasons for why a property was marked as compliant or non-compliant during their inspections. 
We hope these insights will provide researchers with the next steps to create a defensible space 
machine learning model and help SBCFD with future inspection efforts. 
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EXECUTIVE SUMMARY 

As wildfires become more common in the face of climate change, wildfire preparedness in 
wildland-urban interface zones is increasingly critical for community safety. Dead brush, trees, 
and other vegetation surrounding structures can fuel wildfires, allowing fire to jump from 
vegetation to human structures. Creating a defensible space involves removing, or trimming 
vegetation and other combustible fuels in the area around a structure to mitigate the spread of 
wildfire. Defensible space also provides firefighters with the clearance to defend properties 
from wildfire more safely and effectively. 

Figure 1: Defensible Space Zones 
There are 3 defensible space zones around a structure: Zone 0, 0 - 5 ft, no ground vegetation or overhanging tree 
limbs;  Zone 1, 0 - 30 ft, remove dead vegetation and keep vegetation trimmed; and Zone 2, 30 - 100 ft, maintain 
annual grasses at no more than 4 inches, and create space between grasses, shrubs, and trees. This is not a 
complete description of each zone’s defensible space requirements. For a complete list please visit 
https://sbfiresafecouncil.org/defensible-space/. For this project we are only concerned with Zones 1 and 2. 2022 
Santa Barbara County Fire Department, Defensible Space Diagram  
 

The state of California mandates that all areas under state jurisdiction be classified into Fire 
Hazard Severity Zones of Moderate, High, or Very High. Since defensible space is an effective 
and cost efficient way to reduce risk to firefighters and potential damage to structures, the state 
of California has implemented defensible space requirements for residents who live in the Very 
High Fire Hazard Severity Zone of the Local Responsibility Area. These requirements include a 
30-foot buffer around a structure free of any overhanging vegetation, and a 100-foot buffer free 
of any dead or dense vegetation (Fig. 1). In California, any building designed to house people, 
animals, or property over 120 square feet is considered a structure. Local fire departments are 

6 



 

tasked with ensuring all structures within their jurisdiction are compliant with state guidelines 
on defensible space.  

Our project focuses on Santa Barbara County where the Santa Barbara County Fire Department 
(SBCFD) is tasked with conducting annual field inspections to ensure every structure within their 
jurisdiction is compliant with state defensible space regulations. However, these inspections are 
time-consuming and resource intensive as they require the dispatch of SBCFD personnel across 
the county, inspecting thousands of structures.  

Motivated by increasing fire dangers, an interdisciplinary team of researchers at the Bren School 
of Environmental Science and Management wanted to determine how effective mailing  
information on defensible space guidelines to property owners living within fire prone areas of 
Santa Barbara County would be on increasing rates of defensible space compliance. They also 
hoped increasing compliance rates would decrease the enforcement workload for SBCFD. They 
have enlisted our help with the construction of a machine learning model that would identify 
compliance with defensible space regulations at the property level.  

This project had two main objectives:  

1.​ Use remote sensing imagery in a machine learning model to identify areas within Santa 
Barbara County with high levels of non-compliance with defensible space regulations.  

2.​ Use the predictions from the machine learning model to increase the efficiency of  
SBCFD annual inspections. 

To achieve these objectives, our team built a predictive classification model. A predictive 
classification model is a type of machine learning model that uses data with known 
classifications (in this case, Compliant or Non-Compliant) to learn patterns and relationships 
within that data. Once trained, it can accurately classify new data it has not seen before.  

The SBCFD provided us with defensible space inspection data from 2018 to 2023, which we 
used to train a random forest model to predict defensible space compliance. A random forest 
model is a type of machine learning model composed of many decision trees. A decision tree is 
an algorithm in which a computer repeatedly asks questions about how to categorize its given 
data into two categories. Much like how a tree branches out, it then recursively splits the data 
into subsets with similar qualities until reaching some end condition. The resulting model is able 
to determine whether a given row in the data, in this case a property, is either compliant or 
non-compliant. 

Our team determined that, at the imagery resolution currently available to us, our model can 
not predict compliance at a reliable rate. In addition, because the fire department may not have 
full access to inspected properties, we suspect that some homes are mistakenly marked as 
compliant based on only the portion of the property visible from the street.  

Next steps for improving the model include using a training set with higher resolution imagery, 
manually classifying images as compliant and non-compliant, and continuing to add and remove 
variables from the training data. We also recommend the fire department provide explicit 
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reasons for why a property was marked as compliant or non-compliant during their inspections. 
We hope these insights will provide researchers with the next steps to create a defensible space 
machine learning model and help SBCFD with future inspection efforts. 
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I.​ APPROACH 
 
This project was completed in three main phases: 1) Data Preparation, 2) Model Creation, and 
3) Reproducible Pipeline. These three phases are outlined in Figure 2 below. 
 
The Data Preparation phase involved accessing, cleaning, and storing the data used in the 
project, including inspections data from the Santa Barbara County Fire Department, county 
parcel and structure boundaries, and satellite imagery. Additional variables calculated include 
Normalized Difference Vegetation Index (NDVI; a measure of greenness), regional precipitation, 
and landcover type. Using these variables, a dataset was compiled for each structure that had 
been inspected by SBCFD and used to train a machine learning model. 
 
In the Model Creation phase, a Random Forest Model was then initiated and run on the training 
dataset, generating a binary compliance prediction. We then tested the model  for accuracy 
based on known compliant or non-compliant properties, and corresponding changes to 
parameters and predictors were made and re-tested as necessary. 
 
The Random Forest model is ideal for this analysis as new variables can easily be added, and the 
model generates a score for each of the variables’ importance to the model’s results. These 
scores show which variables have the greatest influence on the model’s predictions, guiding us 
toward the most effective ways to refine and improve the model’s performance. 
 
The Reproducible Pipeline phase involved carefully documenting the project workflow for future 
researchers. A user guide for how to use the model to generate new predictions on unseen data 
was also written. Data visualizations were designed to display predictions from the model about 
which properties are presently in compliance.  
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Figure 2: Project Approach Flowchart, depicting data sources, storage, & preparation; model creation; data 
visualization; and reproducible pipeline process. 
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II.​ METHODS 
 
2.1 ​ Data Sources 
 
Please see the following for a table of all data (with sources) used in this project. 
 
Table 1: Data Summary 

Dataset 
Type, 

Approx. Size 
Source & Citation Use 

SBCFD Defensible Space 

Inspections (2019 - 2023) 
.shp, .gdb. (1.89 

GB) Provided by SBCFD 

Model training data 

(Compliance status labels, 

inspection points) 

Defensible Space Data 

Dictionary .xlsx (102 KB) Provided by SBCFD 
Metadata, variable 

definitions 

Planet Labs Satellite Imagery 

(Basemaps) & Metadata 
.tif, .json (111 

GB) 

Planet Labs PBC. (2019-2023). 

Planet application program 

interface: In space for life on 

Earth. Planet. 

https://api.planet.com 

Model training data 

(random convolutional 

features) 

Planet Labs Satellite Imagery 

(Analytic Surface 

Reflectance) & Metadata 
.tif, .json (760 

GB) 

Planet Labs PBC. (2019-2023). 

Planet application program 

interface: In space for life on 

Earth. Planet. 

https://api.planet.com 
Model training data 

(average NDVI) 

Sentinel-2 L2A Multispectral 

Imagery NA 

Microsoft Planetary Computer 

(2018-2023). Sentinel 2 Level 2A. 

Microsoft. 

https://planetarycomputer.micro

soft.com/api/stac/v1/collections/

sentinel-2-l2a 

Model training data 

(average NDVI) 

Parcels .gdb (268 MB) 

Santa Barbara County Assessor. 

(2020). Santa Barbara County 

Assessor Tax Parcels Layer. 

https://databasin.org/datasets/0

08da0ba3dc14be18aa3bcfd90dc

9615/ Model training data 

California Building Footprints .geojson (3.5GB) 

Bing Maps Team. (2018). 

Computer generated building 

footprints for the United States. Model training data 
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Microsoft 

Santa Barbara County 

Boundary .shp (3.5 MB) 
U.S. Census Bureau. (2020). 

TIGER/Line geodatabases. Model training data 

Rainfall data .xslx (2.2 GB) 
Santa Barbara County Hydrology 

Section 
Model training data 

(average rainfall) 

LANDFIRE Terrestrial 

Ecosystems Data .csv (40 KB) 

U.S. Geological Survey Gap 

Analysis Project. (2016). 

GAP/LANDFIRE National 

Terrestrial Ecosystems 2011. U.S. 

Geological Survey. 

https://doi.org/10.5066/F7ZS2T

M0 

Model training data 

(landcover type) 

 
 
SBCFD Defensible Space Inspections 
This project relies on defensible space compliance inspections data produced by SBCFD, for 
years 2019 to 2023 (“Defensible Space Inspections 2019-2023”, referred to as “inspections”). 
Along with the inspections datasets for each year, our clients provided a data dictionary 
(“Defensible Space Data Dictionary”) containing definitions and clarifications associated with 
variables from the inspections data. These data contain compliance status, structure type, year 
and day of inspection, and more data collected during the fire department’s yearly inspections. 

 
Figure 3: Location of non-compliant inspections (red points) superimposed on a map of Santa Barbara County, for 
years 2019-2023. 
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Planetscope Orthorectified Surface Reflectance Imagery (PSScene ortho_analytic_4b_sr) 
Our imagery (“Planet Labs Satellite Imagery”) was obtained using the Planet Labs Orders API. 
 
Communication with the Planet API requires an HTTP authentication and API key, the former 
accomplished with HTTPBasicAuth() from python’s requests package, and the ladder being 
found on the dashboard page for one’s Planet Labs account. Planet has several types of APIs, 
two of which were used in this step (Data API and Orders API). They can be accessed through 
the URLs “https://api.planet.com/data/v1” and 
“https://api.planet.com/compute/ops/orders/v2” respectively. Pinging either API should return 
a “200” response, if communicating with the API correctly. 
 
Planet APIs accept filters to specify which scenes to return upon a request to the Data API. We 
provided the following filters: geometry, asset, date range, and cloud cover range. The geometry 
filter selects for scenes that intersect with a specified AOI. We used an AOI consisting of 
approximately 60 polygons and over 40 vertices that encompass nearly every parcel. This can be 
found in code/utils/geojson_io.geojson, within the data-preparation repository.  
 
The asset filter selects for imagery that contains the asset type “ortho_analytic_4b”, where 
ortho_analytic refers to analysis ready orthorectified imagery and 4b refers to 4 band imagery. 
This filter is necessary because otherwise the API will attempt to return orthorectified 4 band 
imagery for scenes where such imagery does not exist, causing an error. The date range and 
cloud cover filters simply selects for imagery within specified ranges of each, with the cloud 
cover imagery selecting for <1% cloud cover, and the date range filter iterating through each 
month in each year. 
 
The filters were combined  with a specification for the product bundle of interest 
(PSScene/PlanetScope) and made a request  to the data API to fetch all scene IDs that fall within 
the filter specifications in a list format. These scenes are then taken and funneled into the 
Orders API for ordering. 
 
The Orders API also supports image processing at the point of download through its tools 
feature. The imagery was then masked using the clip tool by specified AOIs, and the reproject 
tool to reproject the images to EPSG:3310/NAD83/California Albers. 
 
Orders that have finished successfully can then be downloaded in a zip format. Zip files can be 
downloaded by pinging the Orders API for order IDs, then using the Planet library to request a 
download to a given local filepath, for each order. 
 
This workflow also includes error handling and retry logic, as it will frequently stall and error 
without such. Errors of note include JSONDecodeError and ChunkedEncodingError. Such errors 
are often a result of connection slowdowns and interruptions with the API. While the code 
more often than not handles these errors to prevent interruption of the workflow, it’s not fully 
resilient to stopping due to these errors and may still require some degree of supervision. 
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Future Research 
API errors can be handled with an exponential backoff in a try/except block, in which the 
workflow waits an amount of time before retrying a ping that increases exponentially after each 
failure. Handing the API thousands of small polygons rather than several larger ones is likely bad 
practice, as it resulted in Planet returning incomplete data. 
 
2.2​ PHASE I: Data Preparation and Training Set Creation 
 
Cleaning Inspections Data 
The “status” column for each year’s inspection data was simplified to either “Compliant”, 
“Non-Compliant” or “Other”, and then observations labeled “Other” were removed. Each 
inspection was then assigned an unique identifier.  
 
Defensible Space Training Geometries 
Cleaned inspection coordinates were spatially joined to the Microsoft Building Footprint 
Dataset. For inspections without buildings, rectangular polygons were created with an area 
equal to the average area of all inspections with buildings. These were then assigned to the 
inspection points missing building geometries.  
 
Hundred-foot buffers were created around each building to represent the Zone 1 and Zone 2 
defensible space buffer inspected by the fire department for compliance. To accurately establish 
property owner responsibility, each buffer was clipped to County Assessor parcel boundaries. 
For buildings overlapping parcel boundaries, they were assigned to the parcel that contained 
the greatest proportion of building area. This ensures that each clipped training geometry 
represents the area inspected by the SBCFD as closely as possible.  
 
Image Featurization 
To investigate whether or not satellite imagery alone could be used to predict compliance, visual 
spectrum imagery was downloaded. For this method, unclipped training geometries were used 
that had the potential to overlap neighboring properties. This is because the image featurization 
algorithm requires standardized shapes of geometries, and the process of clipping each buffer 
by parcel geometry results in more irregular polygons.  
 
For each observation, the satellite image was clipped from the month prior for each training 
geometry. Because Planet Basemaps are monthly aggregates, and inspections occur at irregular 
times throughout the month, picking the month prior ensures that the satellite image would 
correspond to the state of the property’s vegetation in the period preceding each inspection.  
 
Using these clipped images, a featurization function borrowed from the MOSAIKS process was 
used to construct random convolution features (RCFs). RCFs capture a flexible measure of 
similarity between every sub-image across every pair of images into a K-dimensional feature 
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vector.1 This process converts attributes from visual imagery into tabular data format. The 
features are joined back to the inspections using their unique identifier. 
 
Microsoft Planetary Computer Sentinel-2 Level 2A Imagery 
The satellite imagery used to calculate NDVI for each property was sourced using Microsoft 
Planetary Computer’s data catalog. Level 2A Data from the Sentinel-2 satellite was chosen for its 
global multispectral (13-band) imagery, its resolution, and temporal coverage. The red and 
near-infrared (NIR) bands necessary for calculating NDVI both have 10m resolution and global 
coverage every 10 days.  
 
Tiles of multispectral Sentinel-2 Level 2A data was sourced using Python from the Planetary 
Computer STAC API. A function was constructed to iterate through the inspections dataset, find 
imagery tiles that intersected each individual inspection geometry, crop to that geometry, and 
calculate the mean NDVI across the cropped image. This function uses the inspection training 
geometries, mentioned earlier.  
 
The function automatically collects the values from the ‘year’ and ‘month’ columns of each 
inspection to query the Planetary Computer catalog. After sourcing a multispectral image with 
<25% cloud cover and cropping it to the inspection geometry, it then pulls the red and 
near-infrared bands from the image and calculates an average NDVI value across that image. 
The value is then appended to the original inspections dataset, and the function continues to 
the next inspection. Each queried image is approximately 30x30m, significantly cutting down on 
processing time. 
 
This function is also built to input ‘NaN’ values to any row that encounters an error, such as 
RasterIOError (when the rasterio package fails to read a raster image), or APIError (when the API 
times out). In all, the function inputs less than 100 ‘NaN’ values as a result of these errors, out 
of the 67,580 inspections in the dataset.  
 
Code is also included for this function to subset large datasets into more manageable sections, 
writing .csv files for each, containing only the inspection identifier and the mean NDVI value. 
These files can then be concatenated into a single large .csv file using the notebook 
ndvi_concat.ipynb in the Data-Preparation repository. This is done to avoid runtime timeouts, 
as the functions can take time to iterate through and calculate NDVI for every inspection. 
 
These functions are reproducible so long as each inspection in the dataset has an associated 
geographic point. They can be found in the Data-Preparation Repository under the folder 
07_ndvi_pystac in the Data-Preparation repository. 
 

1 Rolf, E., Proctor, J., Carleton, T. et al. A generalizable and accessible approach to machine learning with global 
satellite imagery. Nat Commun 12, 4392 (2021). https://doi.org/10.1038/s41467-021-24638-z 
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Training Set Creation 
For our training set, the geometries clipped to the parcel boundaries were used to calculate 
spatially-derived attributes for our rainfall and landcover predictors. For NDVI, mean NDVI for 
each training geometry was calculated. For rainfall, precipitation data was obtained for the 
nearest rain gauge. For land cover classification, the number of pixels were counted from the 
landcover raster data that fell within each parcel boundary, and the majority landcover class 
was identified. 
 
Each of these predictors were compiled into a tabular dataset, and joined with the unique 
identifier column from our inspections data.  
 
2.3​ PHASE II: Defensible Space Compliance Model  
 
Model Selection 
Our initial model was a Random Forest Classifier model. While many types of models must 
sacrifice predictive power for flexibility or vice versa, random forest models strike a strong 
balance between both. Its structure also makes it easier to add data parameters in the future.  
An 80-20 training-to-test split was used on the data for modeling.  
 
Model Tuning 
To improve model accuracy, model hyperparameters were tuned using cross validation, with the 
functions GridSearchCV() and HalvingSearchCV(). The cross validation searches test many 
different combinations of hyperparameters on the training and test data, and selects which 
combinations result in the best model performance.  
 

III.​ RESULTS REPORT ​  

3.1​ Training Dataset Creation 

The training dataset was built from several different .csv files that contained the unique 
inspection identifier and the calculated results from each predictor. For example, the landcover 
classification .csv file contains only two columns: the unique identifier and the landcover 
classification code. These .csv files were then joined using the unique identifier, where every 
row represented a distinct inspection and the calculated predictors.  
 
3.2​ Initial Compliance Machine Learning Models 

Initial trials of the Random Forest Classifier model were run on a downsampled subset of the 
training data to address the class imbalance, increasing the proportion of non-compliant 
observations to 25%. The idea behind this was to increase the ratio of non-compliant properties 
to compliant, as the original dataset contained >99% compliant properties. This resulted in an 
accuracy score of 74% (defining overall prediction correctness), and precision score of 40% 
(defining correctness of non-compliant predictions). Precision assesses the model’s ability to 
correctly identify non-compliant properties and reduce false-positives, and is therefore the 
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most important metric for our model. Precision can be improved by tuning model 
hyperparameters and/or rebalancing the input data. 

3.3​ Final Compliance Machine Learning Models 

3.3.1​ Data Sampling  
 
The initial Random Forest Classifier model was fit to a downsampled subset, removing majority 
class (compliant) rows from the data until minority class (non-compliant) rows made up 25% of 
the training data. Because non-compliant rows made up <1% of the dataset, this significantly 
reduced the amount of training data for the model and produced some of the weakest results.  
 
Final models used an approach where the majority class was downsampled by 10%, and the 
minority class was upsampled to be 5% of the number of rows from that downsampled majority 
class. This increased the number of correct minority class predictions, although misclassified 
more than half of the majority class. In testing different quantities of upsampled/downsampled 
rows, no combination was found that eliminated false positives.  
 
3.3.2​ Random Forest Classifier Model 
 
A Random Forest Classifier model was fit on an upsampled dataset, as opposed to the initial 
downsampling approach. This dataset upsampled the number of non-compliant properties in 
the training data to be 25% of the total, instead of the initial 0.06%. Fitting the model, the 
Random Forest was able to classify compliant inspections well, but failed to classify any 
inspections as non-compliant.  
​  
To refine this model, the sklearn HalvingRandomSearchCV method was used to identify the best 
hyperparameters. This method works by fitting the model on smaller subsets of the data, 
finding the most promising hyperparameters quickly, and dropping the least promising ones. 
Through multiple iterations of training using different combinations of hyperparameters, only 
the best combinations remain and the highest performing combination is selected. The model is 
then fit a final time on that best combination.  
 
After using HalvingRandomSearchCV, this model showed little to no improvement, and still 
failed to classify any inspections as non-compliant.  
 
3.3.3​ XGBoost Classifier Model 
 
Another strong choice for this dataset was the XGBoost Classifier, as it can handle NA values and 
mixed-type features. This model works by creating many simple decision trees and recursively 
checks the errors of the previous tree, attempting to correct those errors with each tree. This 
model was fit to an identical upsampled dataset as the Random Forest Classifier.  
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After refining with HalvingRandomSearchCV, this model produced nearly exactly the same result 
as the Random Forest Classifier, classifying compliant inspections well, but failing to classify any 
inspections as non-compliant.  
 
3.3.4​ Machine Learning Models Conclusion 
 
Both the Random Forest and XGBoost Classifiers failed to classify any non-compliant inspections 
correctly, with a default threshold of confidence. Adjusting this threshold to 90% confidence 
allowed us to correctly classify some non-compliant properties, but also misclassifying a greater 
number of compliant properties as non-compliant. When visualizing model results using a ROC 
AUC (area under curve), both models did not achieve higher than an AUC score of 0.70, where 
random guessing has an AUC score of 0.50.  
 
It is possible that the models could be improved with higher resolution satellite imagery of the 
parcels, which could give more specific image classification values. Another possibility is that 
using more predictor variables specific to each parcel (such as distance to wildland interface 
zones, or topography) could improve the results. The performance of the model is also limited 
by the lack of data for non-compliant inspections.  
 
3.4​ Reproducibility 

The Python notebooks for the Random Forest Classifier and XGBoost models are both available 
in the Modeling Github repository. Both are built to accept a new data file, and the desired 
columns to input into the model can be selected in the following code chunk. Both notebooks 
include code to upsample the minority class, downsample the majority class, or both at once. 
Running the entire notebook on a given dataset will print a ROC AUC Curve and a Confusion 
Matrix for the predictions.  
 
3.2​ Limitations 
 
The compliance dataset contained a significant class imbalance problem, with compliant 
properties making up the majority of the data at over 99%. The lack of data for non-compliant 
properties severely impeded the model’s training data, causing it to be overfamiliar with 
compliant parcels. However, this model could be more effective in other counties or regions 
that have higher rates of non-compliance with defensible space. 
 
The geographic specificity of this model creates inherent generalizability constraints. The 
trained model reflects local patterns of compliance influenced by the accuracy of the fire 
department’s classifications. SBCFD conducts these inspections via truck, with inspectors often 
examining the property from the truck or public street, which limits their ability to assess brush 
clearance as the majority of a property may not be visible. While our model incorporates 
numerous features that we believe may be characteristic of a compliant property, the 
uncertainty generated during the inspections process limits this model’s generalizability and 
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accuracy. We were unable to incorporate other qualitative compliance determinants (such as 
property owner attitudes) that could be significant predictors of compliance. 
 
 

IV.​ PRODUCT DESCRIPTION  
 
4.1​ Data Management Pipeline to Compile Training Data 
 
After receiving inspections data from 2018-2023 from SBCFD, a Python script was written to 
clean and concatenate them into a single dataframe. A unique identifying number (inspection 
ID)  was then given to each individual inspection.  
 
Using the locations, parcel geometries, and satellite imagery of each property, variables for 
landcover type, local precipitation total, and NDVI were calculated in Python. These variables 
were then written to individual .csv files, containing only the inspection ID and the calculated 
variable. These .csv files were then merged by the unique identifier into the training dataset, 
with each column representing a calculated variable for the given inspection ID. Section 4.3 - 
Updating Models and Outputs will describe which specific notebooks should be run to replicate 
this process. 
 
4.2​ Modeling Code 
 
The model used in this project is a Random Forest Classifier model, using the sklearn package in 
Python. The model is designed to split the dataset into two subsets: a training subset containing 
70% of the data, and a testing subset containing 30%. At this point, initial model predictions are 
made. The model can then be refined by adjusting the model’s hyperparameters, such as the 
number of decision trees, the maximum depth of each tree, and the number of samples 
required to split a node. Hyperparameter tuning for our model was done using a randomized 
search and cross validation, to test different hyperparameter combinations and find the 
combination with the best predictive performance. Once the best hyperparameter combination 
is incorporated into the model, it is re-trained and evaluated using metrics like Accuracy, 
Precision, Recall, Receiver Operating Characteristic (ROC), and Area Under Curve (AUC). Finally, 
the importance scores of each variable in the dataset are examined to see which variables most 
influence predictions.  
 
4.3​ Workflows to Update Models and Outputs 
 
Adding Additional Inspections Data 
To add additional years of inspections data to the model, inspections should first be cleaned and 
processed following the notebooks in the data preparation repository. The “status” column that 
indicates compliance status should simplify observations to either “Compliant” or 
“Non-Compliant”, with inspections not falling under either category removed. Then, a unique 
identifier should be added, with the ID sequentially following the last number in the 
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“inspection_id” column.  This process occurs in the 
“data-preparation/code/00_label_data/00_clean_inspections.ipynb” notebook. 
 
Next, buildings data should be joined to inspections using the workflow outlined in the 
“data-preparation/code/00_label_data/03_building_polygons.ipynb” notebook. To calculate 
buffer geometries around each building, follow the workflow in the 
“data-preparation/code/00_label_data/04_buffer_geometry.ipynb” notebook. Once buffer 
geometries are calculated for each inspection, concatenate the new year of inspections data to 
the prior years using the workflow in 
“data-preparation/code/00_label_data/05_concatenate_inspections.ipynb”. ​
 
Computing Features on New Inspections Data 
To compute random convolutional features on new years of inspections data, first download 
new years of Planet Basemaps imagery using the workflow detailed in 
“data-preparation/code/01_satellite_imagery/00_download_basemaps.ipynb”. Next, clip 
downloaded imagery using the process detailed in 
“data-preparation/code/01_satellite_imagery/03_clip_basemap_images.ipynb”. Then, compute 
MOSAIKS features on these clipped images using 
“data-preparation/code/06_model_development/01_mosaiks.py”.  
 
Computing NDVI on New Inspections Data 
To compute NDVI on additional years of inspections data, follow the workflow in 
“data-preparation/code/07_ndvi_pystac/ndvi_calculate.ipynb” to access Sentinel 2 imagery and 
calculate NDVI. 
 
Updating Models with New Inspections Data 
To update models with additional years of inspections data, incorporate MOSAIKS features, and 
include new NDVI calculations, follow the workflow in 
“modeling/code/00_random_forest/04_random_forest.ipynb”. 

 
VI.​ ARCHIVE ACCESS 
 
6.1​ Shared data folder 
 
Data for this project was hosted on the Bren School’s “workbench-2” server. Non-imagery data 
(inspections, building data, etc) was stored under “/capstone/wildfire_prep/data”, while 
imagery data was stored under “/data/wildfire_prep”. Below are the file trees for each of these 
directories. 
. 
├── buffer_geometries 
├── ca_counties 
│   └── tl_2023_06083_roads 
├── features 
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│   └── features_mosaiks_4000.feather 
├── inspections_data 
│   ├── 2018_defensible_space_inspections_SBC 
│   ├── 2019_defensible_space_inspections_SBC 
│   ├── 2020_defensible_space_inspections_SBC 
│   ├── 2021_defensible_space_inspections_SBC 
│   ├── 2022_defensible_space_inspections_SBC 
│   ├── 2023_defensible_space_inspections_SBC.gdb 
│   ├── cleaned_status 
│   ├── correspondence with SB Fire re data.pdf 
│   └── Defensible Space Data Dictionary (variables)_Marsh edit 2.0.xlsx 
├── joined_inspections_buildings 
├── joined_inspections_parcels 
├── metadata 
│   ├── landcover_codes.csv 
│   └── structuretype_codes.csv 
├── microsoft_buildings 
├── parcel_boundaries 
├── parcel_data 
│   └── Defensible_Space_2024_address_points.gdb 
├── Parcel_Maps_SpatialIndex_2024 
├── PUZZLE_PIECES 
│   ├── assemble_puzzle.ipynb 
│   ├── assembled_puzzle.csv 
│   ├── inspection_id_features.csv 
│   ├── inspection_id_landcover_buffer_geometries.csv 
│   ├── inspection_id_landcover_training_geometries.csv 
│   ├── inspections_id_compliance_status.csv 
│   ├── inspections_id_structure_type.csv 
│   ├── inspections_master_training_geometries.geojson 
│   └── inspections_master.geojson 
├── sb_rain_gauges 
├── sb_roads_2023 
└── training_geometries 
 
Figure 4: ASCII Tree file structure for this project’s main data folder, located on UCSB Bren’s `workbench-2` server at 
`/capstone/wildfire_prep/data` 

. 
├── basemaps 
├── clipped_basemaps 
├── full_planet 
 
Figure 5: ASCII Tree file structure for this project’s imagery data folder, located on UCSB Bren’s `workbench-2` server 
at `/data/wildfire_prep` 

​ ​  
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6.2​ Github Organization: WildfirePrep 
 
Information about this project, as well as all the following repositories are housed in the 
“wildfire-prep” GitHub organization, located at https://github.com/wildfire-prep. Additional 
information, including project summary, data sources, and authors & contributors can be found 
in the organization’s README.md. 
 
6.3​ Github Repository: Data Preparation 
 
This repository, located at https://github.com/wildfire-prep/data-preparation contains code and 
workflows used in Phase I of our project. This repository is split into directories for labeling and 
cleaning data, retrieving satellite imagery, clipping and calculating variables from satellite 
imagery, processing rainfall & landcover data, and feature extraction. Additionally, it contains 
utility and configuration files for storing commonly used variables, custom functions, and 
environment setup.  
 
6.3​ Github Repository: Modeling  
 
This repository, located at https://github.com/wildfire-prep/modeling contains code for 
different modeling attempts used in Phase II of our project. This repository is split into 
directories for the different types of models tested, and different combinations of predictors 
incorporated. 
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