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ABSTRACT

Climate change has fueled an increase in wildfire frequency and intensity in California, having
profound impacts on communities across the state. The Santa Barbara County Fire Department
(SBCFD) currently enforces defensible space regulations, which require homeowners to
maintain a buffer zone around their homes free of combustible vegetation. These regulations
mitigate the spread of wildfire to structures and allow firefighters to more safely defend homes.
This project investigated the feasibility of using remotely sensed satellite imagery from Planet
Labs in a machine learning model to determine property compliance with defensible space
regulations. Our team determined that, at the imagery resolution currently available to us, our
model can not predict compliance at a reliable rate. In addition, because the fire department
may not have full access to inspected properties, we suspect that some homes are mistakenly
marked as compliant based on only the portion of the property visible from the street. Next
steps for improving the model include using a training set with higher resolution imagery,
manually classifying images as compliant and non-compliant, and continuing to add and remove
variables from the training data. We also recommend the fire department provide explicit
reasons for why a property was marked as compliant or non-compliant during their inspections.
We hope these insights will provide researchers with the next steps to create a defensible space
machine learning model and help SBCFD with future inspection efforts.
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EXECUTIVE SUMMARY

As wildfires become more common in the face of climate change, wildfire preparedness in
wildland-urban interface zones is increasingly critical for community safety. Dead brush, trees,
and other vegetation surrounding structures can fuel wildfires, allowing fire to jump from
vegetation to human structures. Creating a defensible space involves removing, or trimming
vegetation and other combustible fuels in the area around a structure to mitigate the spread of
wildfire. Defensible space also provides firefighters with the clearance to defend properties
from wildfire more safely and effectively.

Figure 1: Defensible Space Zones

There are 3 defensible space zones around a structure: Zone 0, 0 - 5 ft, no ground vegetation or overhanging tree
limbs; Zone 1, 0 - 30 ft, remove dead vegetation and keep vegetation trimmed; and Zone 2, 30 - 100 ft, maintain
annual grasses at no more than 4 inches, and create space between grasses, shrubs, and trees. This is not a
complete description of each zone’s defensible space requirements. For a complete list please visit
https://sbfiresafecouncil.org/defensible-space/. For this project we are only concerned with Zones 1 and 2. 2022
Santa Barbara County Fire Department, Defensible Space Diagram

The state of California mandates that all areas under state jurisdiction be classified into Fire
Hazard Severity Zones of Moderate, High, or Very High. Since defensible space is an effective
and cost efficient way to reduce risk to firefighters and potential damage to structures, the state
of California has implemented defensible space requirements for residents who live in the Very
High Fire Hazard Severity Zone of the Local Responsibility Area. These requirements include a
30-foot buffer around a structure free of any overhanging vegetation, and a 100-foot buffer free
of any dead or dense vegetation (Fig. 1). In California, any building designed to house people,
animals, or property over 120 square feet is considered a structure. Local fire departments are



tasked with ensuring all structures within their jurisdiction are compliant with state guidelines
on defensible space.

Our project focuses on Santa Barbara County where the Santa Barbara County Fire Department
(SBCFD) is tasked with conducting annual field inspections to ensure every structure within their
jurisdiction is compliant with state defensible space regulations. However, these inspections are
time-consuming and resource intensive as they require the dispatch of SBCFD personnel across
the county, inspecting thousands of structures.

Motivated by increasing fire dangers, an interdisciplinary team of researchers at the Bren School
of Environmental Science and Management wanted to determine how effective mailing
information on defensible space guidelines to property owners living within fire prone areas of
Santa Barbara County would be on increasing rates of defensible space compliance. They also
hoped increasing compliance rates would decrease the enforcement workload for SBCFD. They
have enlisted our help with the construction of a machine learning model that would identify
compliance with defensible space regulations at the property level.

This project had two main objectives:

1. Use remote sensing imagery in a machine learning model to identify areas within Santa
Barbara County with high levels of non-compliance with defensible space regulations.

2. Use the predictions from the machine learning model to increase the efficiency of
SBCFD annual inspections.

To achieve these objectives, our team built a predictive classification model. A predictive
classification model is a type of machine learning model that uses data with known
classifications (in this case, Compliant or Non-Compliant) to learn patterns and relationships
within that data. Once trained, it can accurately classify new data it has not seen before.

The SBCFD provided us with defensible space inspection data from 2018 to 2023, which we
used to train a random forest model to predict defensible space compliance. A random forest
model is a type of machine learning model composed of many decision trees. A decision tree is
an algorithm in which a computer repeatedly asks questions about how to categorize its given
data into two categories. Much like how a tree branches out, it then recursively splits the data
into subsets with similar qualities until reaching some end condition. The resulting model is able
to determine whether a given row in the data, in this case a property, is either compliant or
non-compliant.

Our team determined that, at the imagery resolution currently available to us, our model can
not predict compliance at a reliable rate. In addition, because the fire department may not have
full access to inspected properties, we suspect that some homes are mistakenly marked as
compliant based on only the portion of the property visible from the street.

Next steps for improving the model include using a training set with higher resolution imagery,
manually classifying images as compliant and non-compliant, and continuing to add and remove
variables from the training data. We also recommend the fire department provide explicit



reasons for why a property was marked as compliant or non-compliant during their inspections.
We hope these insights will provide researchers with the next steps to create a defensible space
machine learning model and help SBCFD with future inspection efforts.



. APPROACH

This project was completed in three main phases: 1) Data Preparation, 2) Model Creation, and
3) Reproducible Pipeline. These three phases are outlined in Figure 2 below.

The Data Preparation phase involved accessing, cleaning, and storing the data used in the
project, including inspections data from the Santa Barbara County Fire Department, county
parcel and structure boundaries, and satellite imagery. Additional variables calculated include
Normalized Difference Vegetation Index (NDVI; a measure of greenness), regional precipitation,
and landcover type. Using these variables, a dataset was compiled for each structure that had
been inspected by SBCFD and used to train a machine learning model.

In the Model Creation phase, a Random Forest Model was then initiated and run on the training
dataset, generating a binary compliance prediction. We then tested the model for accuracy
based on known compliant or non-compliant properties, and corresponding changes to
parameters and predictors were made and re-tested as necessary.

The Random Forest model is ideal for this analysis as new variables can easily be added, and the
model generates a score for each of the variables’ importance to the model’s results. These
scores show which variables have the greatest influence on the model’s predictions, guiding us
toward the most effective ways to refine and improve the model’s performance.

The Reproducible Pipeline phase involved carefully documenting the project workflow for future
researchers. A user guide for how to use the model to generate new predictions on unseen data
was also written. Data visualizations were designed to display predictions from the model about
which properties are presently in compliance.
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Figure 2: Project Approach Flowchart, depicting data sources, storage, & preparation; model creation; data

visualization; and reproducible pipeline process.
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. METHODS

2.1 Data Sources

Please see the following for a table of all data (with sources) used in this project.

Table 1: Data Summary

Dataset

Type,
Approx. Size

Source & Citation

Use

SBCFD Defensible Space
Inspections (2019 - 2023)

.shp, .gdb. (1.89
GB)

Provided by SBCFD

Model training data

(Compliance status labels,

inspection points)

Defensible Space Data
Dictionary

Xlsx (102 KB)

Provided by SBCFD

Metadata, variable
definitions

Planet Labs Satellite Imagery
(Basemaps) & Metadata

tif, .json (111
GB)

Planet Labs PBC. (2019-2023).
Planet application program
interface: In space for life on
Earth. Planet.
https://api.planet.com

Model training data
(random convolutional
features)

Planet Labs Satellite Imagery
(Analytic Surface
Reflectance) & Metadata

tif, .json (760
GB)

Planet Labs PBC. (2019-2023).
Planet application program
interface: In space for life on
Earth. Planet.
https://api.planet.com

Model training data
(average NDVI)

Sentinel-2 L2A Multispectral
Imagery

NA

Microsoft Planetary Computer
(2018-2023). Sentinel 2 Level 2A.
Microsoft.
https://planetarycomputer.micro

soft.com/api/stac/vl/collections/

sentinel-2-12a

Model training data
(average NDVI)

Parcels

.gdb (268 MB)

Santa Barbara County Assessor.
(2020). Santa Barbara County
Assessor Tax Parcels Layer.
https://databasin.org/datasets/0
08da0ba3dc14bel8aa3bcfd90dc
9615/

Model training data

California Building Footprints

.geojson (3.5GB)

Bing Maps Team. (2018).
Computer generated building
footprints for the United States.

Model training data
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https://databasin.org/datasets/008da0ba3dc14be18aa3bcfd90dc9615/

Microsoft

Santa Barbara County

U.S. Census Bureau. (2020).

Boundary .shp (3.5 MB) TIGER/Line geodatabases. Model training data
Santa Barbara County Hydrology |Model training data
Rainfall data Xslx (2.2 GB) Section (average rainfall)
U.S. Geological Survey Gap
Analysis Project. (2016).
GAP/LANDFIRE National
Terrestrial Ecosystems 2011. U.S.
Geological Survey.
LANDFIRE Terrestrial https://doi.org/10.5066/F7ZS2T |Model training data
Ecosystems Data .csv (40 KB) MO (landcover type)

SBCFD Defensible Space Inspections

This project relies on defensible space compliance inspections data produced by SBCFD, for
years 2019 to 2023 (“Defensible Space Inspections 2019-2023", referred to as “inspections”).
Along with the inspections datasets for each year, our clients provided a data dictionary
(“Defensible Space Data Dictionary”) containing definitions and clarifications associated with
variables from the inspections data. These data contain compliance status, structure type, year
and day of inspection, and more data collected during the fire department’s yearly inspections.

Year: 2019

Year: 2020

Year: 2021

(€) OpenStreetMap contributors.

Year: 2022

" (C).OpensStreetMapicontributors " l(C).OpensStreetMapicontributors

Year: 2023

(C) OpenStreetMap contributors:

" (C).OpenStreetMap contributors

Figure 3: Location of non-compliant inspections (red points) superimposed on a map of Santa Barbara County, for

years 2019-2023.
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Planetscope Orthorectified Surface Reflectance Imagery (PSScene ortho_analytic_4b_sr)

Our imagery (“Planet Labs Satellite Imagery”) was obtained using the Planet Labs Orders API.

Communication with the Planet API requires an HTTP authentication and API key, the former
accomplished with HTTPBasicAuth() from python’s requests package, and the ladder being
found on the dashboard page for one’s Planet Labs account. Planet has several types of APIs,
two of which were used in this step (Data APl and Orders API). They can be accessed through
the URLs “https://api.planet.com/data/v1” and
“https://api.planet.com/compute/ops/orders/v2” respectively. Pinging either APl should return
a “200" response, if communicating with the API correctly.

Planet APIs accept filters to specify which scenes to return upon a request to the Data API. We
provided the following filters: geometry, asset, date range, and cloud cover range. The geometry
filter selects for scenes that intersect with a specified AOl. We used an AOI consisting of
approximately 60 polygons and over 40 vertices that encompass nearly every parcel. This can be
found in code/utils/geojson_io.geojson, within the data-preparation repository.

The asset filter selects for imagery that contains the asset type “ortho_analytic_4b”, where
ortho_analytic refers to analysis ready orthorectified imagery and 4b refers to 4 band imagery.
This filter is necessary because otherwise the API will attempt to return orthorectified 4 band
imagery for scenes where such imagery does not exist, causing an error. The date range and
cloud cover filters simply selects for imagery within specified ranges of each, with the cloud
cover imagery selecting for <1% cloud cover, and the date range filter iterating through each
month in each year.

The filters were combined with a specification for the product bundle of interest
(PSScene/PlanetScope) and made a request to the data API to fetch all scene IDs that fall within
the filter specifications in a list format. These scenes are then taken and funneled into the
Orders API for ordering.

The Orders APl also supports image processing at the point of download through its tools
feature. The imagery was then masked using the clip tool by specified AOls, and the reproject
tool to reproject the images to EPSG:3310/NAD83/California Albers.

Orders that have finished successfully can then be downloaded in a zip format. Zip files can be
downloaded by pinging the Orders API for order IDs, then using the Planet library to request a
download to a given local filepath, for each order.

This workflow also includes error handling and retry logic, as it will frequently stall and error
without such. Errors of note include JSONDecodeError and ChunkedEncodingError. Such errors
are often a result of connection slowdowns and interruptions with the APl. While the code
more often than not handles these errors to prevent interruption of the workflow, it’s not fully
resilient to stopping due to these errors and may still require some degree of supervision.

13
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Euture Research

API errors can be handled with an exponential backoff in a try/except block, in which the
workflow waits an amount of time before retrying a ping that increases exponentially after each
failure. Handing the API thousands of small polygons rather than several larger ones is likely bad
practice, as it resulted in Planet returning incomplete data.

2.2 PHASE I: Data Preparation and Training Set Creation

Cleaning Inspections Data

The “status” column for each year’s inspection data was simplified to either “Compliant”,
“Non-Compliant” or “Other”, and then observations labeled “Other” were removed. Each
inspection was then assigned an unique identifier.

Defensible Space Training Geometries

Cleaned inspection coordinates were spatially joined to the Microsoft Building Footprint
Dataset. For inspections without buildings, rectangular polygons were created with an area
equal to the average area of all inspections with buildings. These were then assigned to the
inspection points missing building geometries.

Hundred-foot buffers were created around each building to represent the Zone 1 and Zone 2
defensible space buffer inspected by the fire department for compliance. To accurately establish
property owner responsibility, each buffer was clipped to County Assessor parcel boundaries.
For buildings overlapping parcel boundaries, they were assigned to the parcel that contained
the greatest proportion of building area. This ensures that each clipped training geometry
represents the area inspected by the SBCFD as closely as possible.

Image Featurization
To investigate whether or not satellite imagery alone could be used to predict compliance, visual

spectrum imagery was downloaded. For this method, unclipped training geometries were used
that had the potential to overlap neighboring properties. This is because the image featurization
algorithm requires standardized shapes of geometries, and the process of clipping each buffer
by parcel geometry results in more irregular polygons.

For each observation, the satellite image was clipped from the month prior for each training
geometry. Because Planet Basemaps are monthly aggregates, and inspections occur at irregular
times throughout the month, picking the month prior ensures that the satellite image would
correspond to the state of the property’s vegetation in the period preceding each inspection.

Using these clipped images, a featurization function borrowed from the MOSAIKS process was

used to construct random convolution features (RCFs). RCFs capture a flexible measure of
similarity between every sub-image across every pair of images into a K-dimensional feature

14



vector.® This process converts attributes from visual imagery into tabular data format. The
features are joined back to the inspections using their unique identifier.

Microsoft Planetary Computer Sentinel-2 Level 2A Imagery

The satellite imagery used to calculate NDVI for each property was sourced using Microsoft
Planetary Computer’s data catalog. Level 2A Data from the Sentinel-2 satellite was chosen for its
global multispectral (13-band) imagery, its resolution, and temporal coverage. The red and
near-infrared (NIR) bands necessary for calculating NDVI both have 10m resolution and global
coverage every 10 days.

Tiles of multispectral Sentinel-2 Level 2A data was sourced using Python from the Planetary
Computer STAC API. A function was constructed to iterate through the inspections dataset, find
imagery tiles that intersected each individual inspection geometry, crop to that geometry, and
calculate the mean NDVI across the cropped image. This function uses the inspection training
geometries, mentioned earlier.

The function automatically collects the values from the ‘year’ and ‘month’ columns of each
inspection to query the Planetary Computer catalog. After sourcing a multispectral image with
<25% cloud cover and cropping it to the inspection geometry, it then pulls the red and
near-infrared bands from the image and calculates an average NDVI value across that image.
The value is then appended to the original inspections dataset, and the function continues to
the next inspection. Each queried image is approximately 30x30m, significantly cutting down on
processing time.

This function is also built to input ‘NaN’ values to any row that encounters an error, such as
RasterlOError (when the rasterio package fails to read a raster image), or APIError (when the API
times out). In all, the function inputs less than 100 ‘NaN’ values as a result of these errors, out
of the 67,580 inspections in the dataset.

Code is also included for this function to subset large datasets into more manageable sections,
writing .csv files for each, containing only the inspection identifier and the mean NDVI value.
These files can then be concatenated into a single large .csv file using the notebook
ndvi_concat.ipynb in the Data-Preparation repository. This is done to avoid runtime timeouts,
as the functions can take time to iterate through and calculate NDVI for every inspection.

These functions are reproducible so long as each inspection in the dataset has an associated
geographic point. They can be found in the Data-Preparation Repository under the folder
07_ndvi_pystac in the Data-Preparation repository.

! Rolf, E., Proctor, J., Carleton, T. et al. A generalizable and accessible approach to machine learning with global
satellite imagery. Nat Commun 12, 4392 (2021). https://doi.org/10.1038/s41467-021-24638-z
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Training Set Creation
For our training set, the geometries clipped to the parcel boundaries were used to calculate

spatially-derived attributes for our rainfall and landcover predictors. For NDVI, mean NDVI for
each training geometry was calculated. For rainfall, precipitation data was obtained for the
nearest rain gauge. For land cover classification, the number of pixels were counted from the
landcover raster data that fell within each parcel boundary, and the majority landcover class
was identified.

Each of these predictors were compiled into a tabular dataset, and joined with the unique
identifier column from our inspections data.

2.3 PHASE II: Defensible Space Compliance Model

Model Selection

Our initial model was a Random Forest Classifier model. While many types of models must
sacrifice predictive power for flexibility or vice versa, random forest models strike a strong
balance between both. Its structure also makes it easier to add data parameters in the future.
An 80-20 training-to-test split was used on the data for modeling.

Model Tuning
To improve model accuracy, model hyperparameters were tuned using cross validation, with the

functions GridSearchCV() and HalvingSearchCV(). The cross validation searches test many
different combinations of hyperparameters on the training and test data, and selects which
combinations result in the best model performance.

ll. RESULTS REPORT
3.1 Training Dataset Creation

The training dataset was built from several different .csv files that contained the unique
inspection identifier and the calculated results from each predictor. For example, the landcover
classification .csv file contains only two columns: the unique identifier and the landcover
classification code. These .csv files were then joined using the unique identifier, where every
row represented a distinct inspection and the calculated predictors.

3.2 Initial Compliance Machine Learning Models

Initial trials of the Random Forest Classifier model were run on a downsampled subset of the
training data to address the class imbalance, increasing the proportion of non-compliant
observations to 25%. The idea behind this was to increase the ratio of non-compliant properties
to compliant, as the original dataset contained >99% compliant properties. This resulted in an
accuracy score of 74% (defining overall prediction correctness), and precision score of 40%
(defining correctness of non-compliant predictions). Precision assesses the model’s ability to
correctly identify non-compliant properties and reduce false-positives, and is therefore the
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most important metric for our model. Precision can be improved by tuning model
hyperparameters and/or rebalancing the input data.

3.3 Final Compliance Machine Learning Models
3.3.1 Data Sampling

The initial Random Forest Classifier model was fit to a downsampled subset, removing majority
class (compliant) rows from the data until minority class (non-compliant) rows made up 25% of
the training data. Because non-compliant rows made up <1% of the dataset, this significantly
reduced the amount of training data for the model and produced some of the weakest results.

Final models used an approach where the majority class was downsampled by 10%, and the
minority class was upsampled to be 5% of the number of rows from that downsampled majority
class. This increased the number of correct minority class predictions, although misclassified
more than half of the majority class. In testing different quantities of upsampled/downsampled
rows, no combination was found that eliminated false positives.

3.3.2 Random Forest Classifier Model

A Random Forest Classifier model was fit on an upsampled dataset, as opposed to the initial
downsampling approach. This dataset upsampled the number of non-compliant properties in
the training data to be 25% of the total, instead of the initial 0.06%. Fitting the model, the
Random Forest was able to classify compliant inspections well, but failed to classify any
inspections as non-compliant.

To refine this model, the sklearn HalvingRandomSearchCV method was used to identify the best
hyperparameters. This method works by fitting the model on smaller subsets of the data,
finding the most promising hyperparameters quickly, and dropping the least promising ones.
Through multiple iterations of training using different combinations of hyperparameters, only
the best combinations remain and the highest performing combination is selected. The model is
then fit a final time on that best combination.

After using HalvingRandomSearchCV, this model showed little to no improvement, and still
failed to classify any inspections as non-compliant.

3.3.3 XGBoost Classifier Model

Another strong choice for this dataset was the XGBoost Classifier, as it can handle NA values and
mixed-type features. This model works by creating many simple decision trees and recursively
checks the errors of the previous tree, attempting to correct those errors with each tree. This
model was fit to an identical upsampled dataset as the Random Forest Classifier.
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After refining with HalvingRandomSearchCV, this model produced nearly exactly the same result
as the Random Forest Classifier, classifying compliant inspections well, but failing to classify any
inspections as non-compliant.

3.3.4 Machine Learning Models Conclusion

Both the Random Forest and XGBoost Classifiers failed to classify any non-compliant inspections
correctly, with a default threshold of confidence. Adjusting this threshold to 90% confidence
allowed us to correctly classify some non-compliant properties, but also misclassifying a greater
number of compliant properties as non-compliant. When visualizing model results using a ROC
AUC (area under curve), both models did not achieve higher than an AUC score of 0.70, where
random guessing has an AUC score of 0.50.

It is possible that the models could be improved with higher resolution satellite imagery of the
parcels, which could give more specific image classification values. Another possibility is that
using more predictor variables specific to each parcel (such as distance to wildland interface
zones, or topography) could improve the results. The performance of the model is also limited
by the lack of data for non-compliant inspections.

3.4 Reproducibility

The Python notebooks for the Random Forest Classifier and XGBoost models are both available
in the Modeling Github repository. Both are built to accept a new data file, and the desired
columns to input into the model can be selected in the following code chunk. Both notebooks
include code to upsample the minority class, downsample the majority class, or both at once.
Running the entire notebook on a given dataset will print a ROC AUC Curve and a Confusion
Matrix for the predictions.

3.2 Limitations

The compliance dataset contained a significant class imbalance problem, with compliant
properties making up the majority of the data at over 99%. The lack of data for non-compliant
properties severely impeded the model’s training data, causing it to be overfamiliar with
compliant parcels. However, this model could be more effective in other counties or regions
that have higher rates of non-compliance with defensible space.

The geographic specificity of this model creates inherent generalizability constraints. The
trained model reflects local patterns of compliance influenced by the accuracy of the fire
department’s classifications. SBCFD conducts these inspections via truck, with inspectors often
examining the property from the truck or public street, which limits their ability to assess brush
clearance as the majority of a property may not be visible. While our model incorporates
numerous features that we believe may be characteristic of a compliant property, the
uncertainty generated during the inspections process limits this model’s generalizability and
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accuracy. We were unable to incorporate other qualitative compliance determinants (such as
property owner attitudes) that could be significant predictors of compliance.

Iv. PRODUCT DESCRIPTION
4.1 Data Management Pipeline to Compile Training Data

After receiving inspections data from 2018-2023 from SBCFD, a Python script was written to
clean and concatenate them into a single dataframe. A unique identifying number (inspection
ID) was then given to each individual inspection.

Using the locations, parcel geometries, and satellite imagery of each property, variables for
landcover type, local precipitation total, and NDVI were calculated in Python. These variables
were then written to individual .csv files, containing only the inspection ID and the calculated
variable. These .csv files were then merged by the unique identifier into the training dataset,
with each column representing a calculated variable for the given inspection ID. Section 4.3 -
Updating Models and Outputs will describe which specific notebooks should be run to replicate
this process.

4.2 Modeling Code

The model used in this project is a Random Forest Classifier model, using the sklearn package in
Python. The model is designed to split the dataset into two subsets: a training subset containing
70% of the data, and a testing subset containing 30%. At this point, initial model predictions are
made. The model can then be refined by adjusting the model’s hyperparameters, such as the
number of decision trees, the maximum depth of each tree, and the number of samples
required to split a node. Hyperparameter tuning for our model was done using a randomized
search and cross validation, to test different hyperparameter combinations and find the
combination with the best predictive performance. Once the best hyperparameter combination
is incorporated into the model, it is re-trained and evaluated using metrics like Accuracy,
Precision, Recall, Receiver Operating Characteristic (ROC), and Area Under Curve (AUC). Finally,
the importance scores of each variable in the dataset are examined to see which variables most
influence predictions.

4.3 Workflows to Update Models and Outputs

Adding Additional Inspections Data
To add additional years of inspections data to the model, inspections should first be cleaned and

processed following the notebooks in the data preparation repository. The “status” column that
indicates compliance status should simplify observations to either “Compliant” or
“Non-Compliant”, with inspections not falling under either category removed. Then, a unique
identifier should be added, with the ID sequentially following the last number in the
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“inspection_id” column. This process occurs in the
“data-preparation/code/00_label_data/00_clean_inspections.ipynb” notebook.

Next, buildings data should be joined to inspections using the workflow outlined in the
“data-preparation/code/00_label_data/03_building_polygons.ipynb” notebook. To calculate
buffer = geometries around each building, follow the workflow in the
“data-preparation/code/00_label_data/04_buffer_geometry.ipynb” notebook. Once buffer
geometries are calculated for each inspection, concatenate the new year of inspections data to
the prior years using the workflow in
“data-preparation/code/00_label_data/05_concatenate_inspections.ipynb”.

Computing Features on New Inspections Data

To compute random convolutional features on new years of inspections data, first download
new vyears of Planet Basemaps imagery using the workflow detailed in
“data-preparation/code/01_satellite_imagery/00_download_basemaps.ipynb”. Next, clip

downloaded imagery using the process detailed in
“data-preparation/code/01_satellite_imagery/03_clip_basemap_images.ipynb”. Then, compute
MOSAIKS features on these clipped images using

“data-preparation/code/06_model_development/01_mosaiks.py”.

mputing NDVI on New In ions D
To compute NDVI on additional years of inspections data, follow the workflow in
“data-preparation/code/07_ndvi_pystac/ndvi_calculate.ipynb” to access Sentinel 2 imagery and
calculate NDVI.

Updating Models with New Inspections Data

To update models with additional years of inspections data, incorporate MOSAIKS features, and
include new NDVI calculations, follow the workflow in
“modeling/code/00 _random_forest/04 _random_forest.ipynb”.

VI.  ARCHIVE ACCESS

6.1 Shared data folder

Data for this project was hosted on the Bren School’s “workbench-2” server. Non-imagery data
(inspections, building data, etc) was stored under “/capstone/wildfire_prep/data”, while
imagery data was stored under “/data/wildfire_prep”. Below are the file trees for each of these
directories.

—— buffer_geometries
—— ca_counties
| L—1t_2023_06083_roads

I—— features
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| L features_mosaiks_4000.feather
|— inspections_data
—— 2018 _defensible_space_inspections_SBC
—— 2019_defensible_space_inspections_SBC
—— 2020_defensible_space_inspections_SBC
—— 2021 _defensible_space_inspections_SBC
2022 defensible_space_inspections_SBC
—— 2023 _defensible_space_inspections_SBC.gdb
—— cleaned_status
—— correspondence with SB Fire re data.pdf
—— Defensible Space Data Dictionary (variables) Marsh edit 2.0.xlsx
—— joined_inspections_buildings
—— joined_inspections_parcels
—— metadata
—— landcover_codes.csv
—— structuretype_codes.csv
—— microsoft_buildings
—— parcel_boundaries
—— parcel_data
L Defensible_Space 2024 address_points.gdb
—— Parcel_Maps_Spatiallndex_2024
—— PUZZLE_PIECES
—— assemble_puzzle.ipynb
—— assembled_puzzle.csv
—— inspection_id_features.csv
—— inspection_id_landcover_buffer_geometries.csv
—— inspection_id_landcover_training_geometries.csv
—— inspections_id_compliance_status.csv
—— inspections_id_structure_type.csv
—— inspections_master_training_geometries.geojson
—— inspections_master.geojson
—— sb_rain_gauges
—— sb_roads_2023
—— training_geometries

Figure 4: ASCII Tree file structure for this project’s main data folder, located on UCSB Bren’s ‘workbench-2" server at
‘/capstone/wildfire_prep/data’

—— basemaps
— clipped_basemaps
—— full_planet

Figure 5: ASCII Tree file structure for this project’s imagery data folder, located on UCSB Bren’s ‘workbench-2" server
at /data/wildfire_prep’
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6.2 Github Organization: WildfirePrep

Information about this project, as well as all the following repositories are housed in the
“wildfire-prep” GitHub organization, located at https://github.com/wildfire-prep. Additional
information, including project summary, data sources, and authors & contributors can be found
in the organization’s README.md.

6.3 Github Repository: Data Preparation

This repository, located at https://github.com/wildfire-prep/data-preparation contains code and
workflows used in Phase | of our project. This repository is split into directories for labeling and
cleaning data, retrieving satellite imagery, clipping and calculating variables from satellite
imagery, processing rainfall & landcover data, and feature extraction. Additionally, it contains
utility and configuration files for storing commonly used variables, custom functions, and
environment setup.

6.3 Github Repository: Modeling

This repository, located at https://github.com/wildfire-prep/modeling contains code for
different modeling attempts used in Phase Il of our project. This repository is split into
directories for the different types of models tested, and different combinations of predictors
incorporated.
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