
                       

EnergyChoice Final Report 
 

Developing a Toolkit to 
Optimize Community 
Choice Energy Programs 

 

 

 

 
 

By Taylor Briglio, Lily Eunhee Lee, Erica Petrofsky, Cooper Tamayo, 
and Symphony Yu and advised by Mark Buntaine, PhD 

 
A Group Project submitted in partial satisfaction for the degree of Master of 
Environmental Science and Management for the Bren School of Environmental 
Science & Management, University of California, Santa Barbara  |  June 2018 



Developing a Toolkit to Optimize 
Community Choice Energy Programs 

 
As authors of this Group Project report, we archive this report on the Bren School’s website 
such that the results of our research are available for all to read. Our signatures on the 
document signify our joint responsibility to fulfill the archiving standards set by the Bren 
School of Environmental Science & Management. 
 
 

 
       Taylor Briglio 

 
 
       Eunhee Lee 

 
 

       Erica Petrofsky 
 

 
        Cooper Tamayo 

   
 
         Symphony Yu 

 
 
The Bren School of Environmental Science & Management produces professionals with 
unrivaled training in environmental science and management who will devote their unique 
skills to the diagnosis, assessment, mitigation, prevention, and remedy of the 
environmental problems of today and the future. A guiding principal of the School is that the 
analysis of environmental problems requires quantitative training in more than one 
discipline and an awareness of the physical, biological, social, political, and economic 
consequences that arise from scientific or technological decisions. 
 
The Group Project is required of all students in the Master of Environmental Science and 
Management (MESM) Program. The project is a year-long activity in which small groups of 
students conduct focused, interdisciplinary research on the scientific, management, and 
policy dimensions of a specific environmental issue. This Group Project Final Report is 
authored by MESM students and has been reviewed and approved by: 
 
 
 

 

Dr. Mark Buntaine 
 
 

                 May 2018 
 



                       

Acknowledgements 

 
We would like to express our gratitude to the following people, who contributed substantially to 
the success of this project:  
 
Faculty Advisor 
Dr. Mark Buntaine 
 
Client Advisor 
Woody Hastings, Renewable Energy Manager, Center for Climate Protection 
 
External Advisors 
Dr. Sangwon Suh, Bren School of Environmental Science & Management 
Dawn Weisz, CEO, Marin Clean Energy 
Dr. Rick Brown, President, Terra Verde Renewable Partners 
 
Sponsor 
Yardi Systems, Inc. 
 
We would also like to thank the CCE agency staff members who helped us throughout this 

project, and the faculty and staff of the Bren School of Environmental Science & Management, 

for all of their support and assistance. 

 

Finally, we would like to extend our thanks to all the friends and family who encouraged us 

throughout this process.  



                      4 

 

Table of Contents 
Abstract 6 

Executive Summary 7 

Project Objective 8 

Project Significance 8 

Overview of CCE Agencies 8 

Toolkit Overview 10 

Selected Programs 10 

Technology Choice Model 11 

Environmental and Health Impacts 11 

Background and Overview 11 

Methods 13 

Electric Vehicle Incentives Program 15 

Background and Literature Review 15 

Methods 16 

Results & Discussion 21 

Solar Photovoltaic Financing Program 30 

Background and Overview 30 

Methods 33 

Results & Discussion 42 

Indoor Fuel Switching Program 48 

Background and Overview 48 

Methods 50 

Comparative Cost-Effectiveness 53 

Successful Practices Guide 55 

Conclusion 56 

References 57 

Appendices 65 

 



                      5 

 
Table 1. Summary of Acronyms 

Acronym Full Name 

AB Assembly Bill  

AHP Analytic hierarchy process 

BEV Battery electric vehicle 

CAISO California Independent System Operator 

CCE Community Choice Energy 

CEC California Energy Commission 

CO2e Carbon dioxide equivalent 

CPUC California Public Utilities Commission 

DALY Disability adjusted life years 

EV Electric vehicle 

GHG Greenhouse gas 

GWP Global warming potential 

HVAC Heating, ventilation, and air conditioning 

ICEV Internal combustion engine vehicle 

IOU Investor owned utility 

JPA Joint powers authority 

LCOE Levelized cost of electricity 

MTCO2e Metric ton of carbon dioxide equivalent 

MW Megawatt 

MWh Megawatt hour 

NEM Net energy metering 

NOx Oxides of nitrogen 

PG&E Pacific Gas & Electric 

PHEV Plug-in hybrid electric vehicle 

PM10 Particulate matter with diameter ≤10 microns 

PM2.5 Particulate matter with diameter ≤2.5 microns 

RPS Renewable Portfolio Standard 

SCAQMD South Coast Air Quality Management District 

SCE Southern California Edison 

SDG&E San Diego Gas & Electric 

SOx Oxides of sulfur 

TCM Technology choice model 

VOC Volatile organic compound 

ZNE Zero net energy 
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Abstract 
California’s Renewables Portfolio Standard requires 50% of its retail electricity sales to come 
from renewable sources by 2030. A growing number of local governments have taken steps to 
meet and exceed these standards by forming Community Choice Energy (CCE) agencies that 
supply higher renewable content electricity to their constituent cities and counties at lower rates 
than the investor-owned utilities. CCE agencies also provide co-benefits via community-serving 
energy programs, but lack adequate tools to evaluate and optimally design potential programs. 
This project provides tools and knowledge to help CCE agencies provide greater net benefits to 
their communities. We built an interactive toolkit that helps agencies evaluate potential electric 
vehicle rebate and residential solar photovoltaic financing programs based on economic costs 
and benefits, greenhouse gas emission reductions, and health impacts. The toolkit is built upon a 
technology choice model framework that incorporates purchase costs, operating costs, and 
variability in consumer preferences to predict program outcomes. We also compiled a guide 
containing successful practices for implementing effective energy programs based on interviews 
with industry experts, case studies, and literature review. The toolkit and successful practices 
guide will help CCE agencies identify measurable effects of their programs and inform their 
decisions when developing new programs. 
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Executive Summary 
California can increase its renewable energy portfolio at the local level by allowing communities 
within the state to engage in alternative energy supply contracts from those of investor owned 
utilities (IOUs). Community Choice Energy (CCE) agencies are not-for-profit local government 
programs that supply electricity to their constituent cities and counties. Through their energy 
procurement decisions, rate-based programs, and other programs, CCE agencies can support 
renewable energy adoption and provide additional co-benefits to their communities, such as 
improving public health, fostering environmental justice and energy democracy, alleviating 
stress on the electric grid, and providing opportunities in local resource development, asset 
ownership, and energy efficiency.  
 
Although CCE has the potential to serve as a test bed and accelerator for clean energy 
innovation, CCE agencies lack adequate tools to evaluate the cost-effectiveness of their 
programs. This makes it challenging for agencies to implement programs in ways that will be 
most beneficial to their communities. This project provides CCE agencies with tools and 
knowledge that they can use to provide greater net benefits to their communities.  
 
We built a toolkit with which agencies can evaluate potential energy programs based on three 
main metrics: economic costs and benefits, greenhouse gas reductions, and health impacts. We 
developed models from available data on CCE agency programs, other relevant energy programs 
and publicly available data, and correspondence with agency staff. Models were incorporated 
into a toolkit that quantifies the costs and benefits of certain CCE agency programs according to 
the chosen metrics. The toolkit includes models to assess programs that offer EV incentives, 
residential solar financing, and indoor fuel switching incentives. 
 
In addition, we compiled a successful practices guide for CCE agencies. We compiled successful 
practices and recommendations for developing effective energy programs through literature 
review, interviews with CCE agency staff, and interviews with employees from similar clean 
energy organizations. The toolkit and successful practices guide are expected to help CCE 
agencies identify measurable effects of their programs and inform their decisions when creating 
new programs. 
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Project Objective 

The project’s objective is to provide tools and knowledge to help Community Choice Energy 
(CCE) agencies select and design programs that will maximize net benefits to their communities. 
Our interactive assessment tool and documentation of successful practices will inform agencies 
of existing program designs and help them learn which ones will best provide a range of benefits. 
The main benefits to be assessed fall into the categories of monetary costs and benefits, 
greenhouse gas (GHG) emission reductions, and public health. This project will be useful to 
emerging and operational CCE agencies, as well as communities considering CCE. 
 

Project Significance 

CCE agencies have the potential to reduce GHG emissions and mitigate climate change by 
accelerating the transition from fossil energy to renewable energy sources, through their energy 
procurement, programs, and other activities. CCE can foster environmental justice and energy 
democracy by transferring decision-making about energy sources, rates, local energy projects, 
employment, and other matters from distant, private utility boardrooms to public local 
government meetings. Agencies can produce electricity within their jurisdictions and hire local 
workers to further increase benefits to their communities. The agencies can also alleviate stress 
on the electric grid by forming mini- or micro-grids and supporting small-scale power plants.  
 
One method for agencies to deliver benefits to their communities is by using net revenues from 
their energy sales to develop and implement clean energy programs. These programs can take 
many forms, and agencies currently lack the tools to estimate demand for the programs and to 
evaluate the potential benefits and costs of offering such programs. This project will provide 
CCE agencies with information and tools to establish effective clean energy programs and 
evaluate their benefits. This will help agencies maximize the effectiveness of their programs for 
the benefit of their communities.  
 
The client for this project is the Center for Climate Protection. Our project’s broader audience 
includes CCE agency staff, city and county elected officials and staff, and consultants. 
Additional beneficiaries might include state-level policymakers, load serving entities, energy 
analysts and project developers, clean energy and social justice advocates, and stakeholders in 
other states with CCE laws. 
 

Overview of CCE Agencies 
California authorized the creation of CCE agencies with the enactment of AB 117 in 2002, 
giving local governments a new way to procure electricity (Assembly Bill, 2002). CCE agencies 
can be created in communities served by one of California’s investor-owned utilities (IOUs): 
PG&E, SCE, or SDG&E. Under AB 117, CCE agencies are the default energy providers in their 
service areas; residents automatically receive agency-provided electricity unless they choose to 
remain with their IOU. While CCE agencies procure their own energy, the IOUs are still 
responsible for transmitting the energy to residents (Ferguson, 2016). This creates a hybrid 
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energy structure requiring close cooperation between CCE agencies and IOUs to ensure that 
communities have reliable power supplies (Xia, 2017). 
 
The first CCE agency in California launched in 2010. As of May 2017, eight CCE agencies are 
operational throughout California, serving approximately 810,000 customers, and several other 
areas are considering CCE (Table 2).  
  
The most common goals of the early CCE agencies are having competitive rates, reducing GHG 
emissions, reaping local economic and workforce benefits, increasing renewable energy usage, 
adding local renewable energy projects, maintaining stable or reliable rates, and gaining local 
control. Additional goals cited include customer choice, benefits to the community, energy 
efficiency, energy independence, and environmental justice. The agencies must reach and 
maintain financial stability to reach these goals, but beyond that they prioritize these goals over 
profitability, as not-for-profit government agencies. The agencies can progress toward these 
goals because they aggregate the purchasing power of their residents, businesses, and 
municipalities.  
 
CCE agencies have demonstrated a variety of strategies to work toward their goals. They 
generally offer higher renewable energy content electricity at lower rates compared to IOUs. All 
California CCE agencies to date set rates once per year, helping customers to anticipate their 
energy costs compared to IOUS, which set new rates more frequently. Some also have goals or 
have already accomplished projects to increase local energy generation and local building jobs. 
Most agencies already offer net metering, feed in tariffs and a 100% renewable energy option. 
Finally, net revenues generated by the agency can be put toward local energy programs, and 
several CCE agencies also promote state-run energy efficiency incentives and projects. Local 
energy programs of interest so far include local distributed energy resources development, free 
energy efficiency audits, electric vehicle (EV) incentives, and energy storage programs. 
 
Besides working toward their mission-related goals, CCE agencies implement local programs to 
demonstrate their value to their customers. The programs, as well as their ability to charge lower 
rates than IOUs, can help CCE agencies retain customers. Residents and commercial customers 
may opt out and return to IOU service at any time. If the opt-out rate is high enough, an agency 
risks having to sell off previously contracted power at a loss, or even losing the customer base 
and public mandate to appear viable (Sonoma County Water Agency, 2011). 
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Table 2. Summary of Operating CCE Agencies in California as of May 2018 

Name Area Served 
Launch 

Date 
Accounts 

Apple Valley Choice Energy Town of Apple Valley April 2017 27,000 

Clean Power Alliance Unincorporated Los Angeles County, 
Unincorporated Ventura County and the cities 
of: Agoura Hills, Alhambra, Arcadia, Beverly 

Hills, Calabasas, Camarillo, Claremont, 
Carson, Culver City, Downey, Hawaiian 
Gardens, Hawthorne, Malibu, Manhattan 

Beach, Moorpark, Ojai, Oxnard, Paramount, 
Redondo Beach, Rolling Hills Estates, Santa 
Monica, Sierra Madre, Simi Valley, South 
Pasadena, Temple City, Thousand Oaks, 
Ventura, West Hollywood, and Whittier. 

February 
2018 

1,000,000 

Clean Power SF City and County of San Francisco May 2016 78,000 

Lancaster Choice Energy City of Lancaster May 2015 50,000 

MCE Clean Energy Marin and Napa Counties, unincorporated 
Contra Costa County, and the cities of Benicia, 

Concord, Danville, El Cerrito, Lafayette, 
Martinez, Moraga, Oakley, Pinole, Pittsburg, 

Richmond, San Pablo, San Ramon, and 
Walnut Creek 

May 2010 250,000 

Monterey Bay Community 
Power 

Monterey, San Benito and Santa Cruz 
Counties 

March 2018 270,000 

Peninsula Clean Energy San Mateo County February 
2016 

210,000 

Pico Rivera Innovative 
Municipal Energy 

City of Pico Rivera September 
2017 

16,000 

Pioneer Community Energy Placer County, and cities of Auburn, Colfax, 
Lincoln, Rocklin and the town of Loomis 

February 
2018 

80,000 

Redwood Coast Energy 
Authority 

Humboldt County May 2017 66,000 

Silicon Valley Clean Energy Unincorporated Santa Clara County April 2017 235,000 

Sonoma Clean Power Sonoma & Mendocino Counties May 2014 195,000 

 

Toolkit Overview 

Selected Programs 
 
We selected three programs to model in our toolkit: 
● Electric vehicle (EV) incentives, 
● Residential solar financing, and 
● Indoor fuel switching incentives. 
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These were chosen based on correspondence with CCE agency staff and the Center for Climate 
Protection to determine which programs were being considered by agencies and which would be 
most useful to include in the toolkit. We developed the EV incentives and solar financing models 
using a technology choice model (TCM) framework, described below. These models allow a 
CCE agency user to input specifications of their planned programs. The models then predict 
uptake of each program by residents, and associated GHG emission reductions and health 
impacts. We developed a simpler fuel switching model that calculates the GHG and health 
impacts associated with switching a given number of conventional home heating systems with 
air source heat pumps.  

Technology Choice Model  
 

TCM is an economic input output model that predicts consumer choices given a number of 
purchasing options with distinct costs (Kätelhön et al., 2016). The model assumes that consumers 
always choose the lowest cost option from a set of comparable purchases, but that subjectivity, 
imperfect access to information, and other stochastic factors add uncertainty to purchasing 
behavior. Thus, the model assigns uncertainty to each cost category associated with a purchase 
option, and varies costs based on these uncertainties using Monte Carlo simulations to reflect the 
various preferences of individual consumers. 
 
Monte Carlo simulations use given probability distributions to vary the costs of each purchase 
option over thousands of iterations. This simulates the range of total costs after accounting for 
stochastic factors. The likelihood of a certain purchase option being the least cost option across 
simulations represents its final market demand.  
 
Probability distributions for cost categories can be altered to match model predictions with 
empirical data. Once calibrated, the TCM can predict changes to market demand in response to 
changes to the total cost of one or more purchase options.  
 

Environmental and Health Impacts 

Background and Overview 
The goal of this toolkit is to help CCE agencies calculate monetary, environmental, and health 
benefits of the selected clean energy programs. This section of the report provides an overview 
of the environmental and health impacts of criteria pollutant and GHG emissions, and then 
explains the methods we used to calculate the benefits of pollutant and emissions reductions 
associated with each clean energy program.  

Criteria Pollutants and Human Health 

Combusting fossil fuels for transportation and energy generation emits criteria air pollutants. The 
Clean Air Act currently regulates six criteria air pollutants: ground-level ozone, carbon 
monoxide, NOx, SOx, particulate matter, and lead. Particulate matter is further classified into 
PM10 and PM2.5 based on the particle’s diameter. Ozone is not emitted directly but formed 
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when NOx and volatile organic compounds (VOCs) react in sunlight (USEPA, 2017). VOCs are 
not a federally regulated criteria pollutant, but may be regulated at local and state levels.  
 
Exposure to criteria air pollutants significantly affects human health (USEPA, 2011). In 2013, 
5.5 million people died prematurely from air pollution, costing the world $225 billion in lost 
labor income and $5 trillion in welfare losses (World Bank, 2016). Of the criteria pollutants, 
PM2.5 and ozone are associated with the highest rates of premature deaths, driven primarily by 
on-road transportation and energy generation (Caiazzo et al., 2013, Laden et al., 2006). P.M 2.5 
is especially dangerous because it can penetrate deep into human lungs and may consist of toxic 
substances (USEPA, 2011). SOx emissions harm both human health and ecological functions, 
including by causing respiratory illness, cardiovascular disease, impaired visibility, acidified 
water bodies, and damaged crops (Srivastava et al., 2001). Over 85% of the benefits of air 
pollution, control programs stem from reducing premature mortality and morbidity, with the 
remaining benefits coming from improved visibility and ecological resources (USEPA, 2011). 
 
Combustion criteria pollutants can be managed before or after combustion, but current control 
technologies do not concurrently control GHG emissions. For example, technologies like 
catalytic converters and scrubbers are highly effective at removing specific criteria pollutants 
after combustion, but do not reduce GHG emissions (Heck and Farrauto, 2001; Srivastava et al., 
2001; Miller, 2006). CCE agencies’ missions extend beyond air pollution to include GHG 
emissions reduction, so agencies are not expected to invest in criteria pollutant controls, though 
these have proven highly cost effective in terms of societal benefits (USEPA, 2011). Rather, 
agencies will likely look to programs that reduce air pollution as a co-benefit of reducing GHG 
emissions. Additional criteria pollutant control requirements will come from either the federal 
government, state government, or local air districts.  

Greenhouse Gas Emissions 

Greenhouse gases are emitted alongside criteria pollutants during fossil fuel combustion, so 
reducing GHG emissions helps reduce criteria pollutant emissions. Recent studies show 150 
million premature deaths can be avoided by reducing GHG emissions to keep warming under 2° 
C due to co benefits of reducing air pollutants (Shindell et al., 2018). GHGs do not directly affect 
human health like criteria pollutants but GHGs can cause indirect health impacts. For example, 
under a business as usual scenario, age adjusted mortality rates could increase up to 3% because 
of higher frequencies high temperature days (Deschênes and Greenstone, 2011). Indirect human 
health impacts from GHG emissions are diffuse and difficult to quantify; therefore, in this 
project we do not consider indirect human health impacts from GHG emissions. 
 
In California, 19% of GHG emissions are from electricity generation and 37% are from 
transportation (CARB, 2017). There are few technological options to reduce GHG emissions 
post-combustion. There are some pilot carbon capture and sequestration projects in place but the 
technology is not ready to be scaled up (Global CCS Institute, n.d.). Reducing energy demand 
and switching away from carbon-based fuels are the most effective ways to reduce carbon 
emissions, and the most relevant methods that CCE agencies can use. We evaluate three potential 
programs to reduce GHG emissions: incentivizing EVs, financing rooftop solar PV and 
switching away from natural gas based heating systems. Each of these programs involve using 
electricity instead of fossil fuels to supply energy services. CCE agencies have high renewable 
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contents in their electricity, minimizing the GHG emissions from increasing electricity 
consumption when people switch to EVs or electric based heating systems. 

The Rebound Effect 

The rebound effect must be considered when predicting the criteria pollutant and GHG emissions 
of any energy programs. The rebound effect is an increase in the use of an energy service if that 
service can be produced more efficiently. For example, Norwegian households with heat pumps 
do not have lower energy bills because they choose to use their savings towards increasing the 
indoor room temperature (Halvorsen and Larsen, 2013). This is an extreme example where the 
rebound effect fully negates energy efficiency benefits. Similarly, EV drivers drive 3% more 
than conventional vehicle drivers, which may decrease expected GHG emission reductions (Sun 
et al., 2017). 

Methods 

GHG and criteria pollutant emissions are the primary environmental impacts calculated. In the 
EV model, we calculated the emissions avoided by keeping new internal combustion engine 

vehicles (ICEVs) off the road and the emissions generated from the electricity to charge the EVs 
and plug-in hybrid electric vehicles (PHEVs). Similarly, in the heat pump model we calculated the 
emissions avoided by switching away from a natural gas furnace and the emissions generated 
from the electricity used to power the heat pump. The net change is the environmental benefit of 
the EV incentive and heat pump programs. In the solar PV model, we calculate the emissions 
avoided by generating energy from PV instead of the agency mix.  
 
In all models, once the total quantity of emissions is calculated we determine the value of these 
avoided emissions. The default value of avoided GHG emissions (CO2e) is $13 per ton, based on 
the approximate market price of CO2e in California’s cap and trade market in 2017. Agencies 
can adjust the value of carbon used in the model if they have their own internal carbon value.  
 
The value of criteria pollutants are based on review of the literature. Several studies have 
attempted to quantify the external costs of air pollution from electricity generation and 
transportation. The majority of the damages come from increasing premature mortality (USEPA, 
2011). The health impact from a unit of pollution depends on how the pollutant is dispersed and 
the population density near the source. As a result, studies have shown a wide range of potential 
damages and studies examine a variety of impacts. Some studies just look at health impacts 
(Fann et al., 2009) while other include environmental and visibility improvements (National 
Research Council, 2010; Holland et al., 2005). We adjusted each study’s results by scaling the 
value of a statistical life (VSL) in the study to the current EPA VSL and then inflated to 2016 
dollars. For European studies, we converted Euros to USD using the exchange rate during the 
year on which the results are based. Given that the vast majority of the value in any of the studies 
is based on changes in premature mortality, we believe scaling the entire value by the difference 
in VSLs is a reasonable approximation.  
 
The models present average, low, and high health impact values. We understand that using an 
average value for a unit of pollution is an oversimplification and may not be representative of the 
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impact in a particular area. Given the range of potential values we suggest that more rural areas 
use the lower values while more urban area use the higher values due to the number of people 
that may potentially be affected. It should be noted that CCE agency’s missions are to create 
more sustainable societies by increasing energy efficiency and renewable energy procurement. 
Reducing air pollution is not listed as a primary goal, but becomes an added benefit to their 
communities.  

Electricity Emission Factors 

Emissions from electricity production are calculated according to the following equations. EPA’s 
guidance on GHG emission factors provides emissions per MMBTU (USEPA, 2016). We 
multiply this by the heat rate (MMBTU/kWh) for each thermal energy source to develop 
electricity generation GHG emission factors. GHG emissions from large hydroelectric plants are 
referenced from the Center for Climate and Energy Solutions.  
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�����)(��) 
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���������� = (�����������)(�) 
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���������� =
��������	����� 	� ��	�!��� ����"	#��� �����	� ��	�$�!	��$ ��	��	�#���"	��,	(%#/%&ℎ  
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All GHG emissions are in carbon dioxide equivalent (CO2e). Methane (CH4) and nitrous oxide 
(N2O) emissions are multiplied by their respective global warming potentials (GWP) as shown in 
Appendix A. Electricity emission factors are summarized in Appendix B.  
 

Emissions of criteria pollutants are estimated using USEPA AP-42 emission factors. Natural gas 
can produce electricity in multiple ways, so we average the boiler and turbine emission factors 
for our calculations. We assume that large hydroelectric plants emit no criteria pollutants, and 
that small hydroelectric, wind, and solar electricity sources emit no GHGs or criteria pollutants. 
Electricity mixes are determined from power content labels. If a power content label indicates 
“unspecified sources,” we assume this portion is sourced from natural gas. These emission 
factors are national averages and may not represent the actual emission factors of a given power 
plant. 
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Electric Vehicle Incentives Program 

Background and Literature Review 
One of the programs currently being considered or implemented by multiple CCE agencies is the 
provision of incentives for EV purchases. Replacing ICEVs with EVs can reduce fossil fuel 
consumption in the transportation sector, which accounts for 37 percent of California’s total 
GHG emissions (CARB, 2017). This reduction is greater for CCE than for IOU customers, 
because CCE-procured electricity tends to have a higher renewable energy content than does 
IOU-procured electricity. Increasing EV use also helps fulfill parts of CCE agency goals to 
reduce local pollution. In this section we review existing literature on hybrid and EV incentives, 
including a discussion of the Drive EverGreen program, a pilot EV incentives program run by 
Sonoma Clean Power (SCP), the CCE agency operating in Sonoma County.  

Effectiveness of Incentive Programs 

Assessments of hybrid-electric and EV incentives have had mixed results, though most show that 
incentives can play a significant role in driving vehicle purchases. Chandra et al. (2010) 
estimated that 26% of hybrid vehicle sales in Canada could be attributed to the availability of 
$1,000 hybrid subsidies. Diamond (2009) found that the effect of incentives in the US varied by 
state, with some state incentives showing little or no effect on hybrid vehicle sales. Incentives 
that immediately benefited customers, such as excise and sales tax waivers, were more effective 
than ones that delayed benefits, like tax credits and registration fee waivers.  
 
Sierzchula et al. (2014) sought to evaluate the impact of subsidies across national EV markets. 
They isolated the effect of incentives on EV market share across 30 national EV markets and 
found a $1,000 increase in incentive leads to a 0.06% increase in market share. They also found 
that increasing charging infrastructure significantly increased EV market share.  
 
Survey data from California’s Clean Vehicle Rebate Program suggest availability of rebates is an 
important factor in the decision to buy EVs (Center for Sustainable Energy, 2017c). Nearly half 
(46%) of survey respondents rated CVRP rebate extremely important to being able to purchase a 
PHEV or Battery Electric Vehicle (BEV). An additional 28% ranked it very important. Similarly, 
45% rated federal incentives extremely important, and 26% very important. Incentive amounts 
varied widely, but survey responses were not matched with the incentive that customers 
received, so we are unable to conclude from this data what importance rating is given to a 
specific amount of incentive. 
  
Estimates of the cost-effectiveness of GHG emission reductions from hybrid and EVs vary 
significantly. Chandra et al. (2010) found cost-effectiveness of hybrid GHG emission reductions 
to be between $129 and $270 per ton of CO2e reduced, depending on the vehicles being replaced 
by the hybrids. Plotkin and Singh (2009) estimated cost-effectiveness of a $7,500 subsidy at 
$400-600 per ton CO2e reduced, depending on the type of vehicle to which the subsidy is 
applied. Kammen et al. (2008) estimated cost-effectiveness of using PHEVs to reduce GHG 
emissions by assuming an incentive amount equal to the cost difference between vehicles after 
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considering fuel savings. They find a range in cost-effectiveness of $163-2,498, depending on 
vehicle type and source electricity mix. Agencies with higher percentages of GHG free 
electricity will have more cost-effective incentive programs. The base price of EVs decreases as 
the cost of the battery pack decreases; given current battery pack cost trends, therefore, agencies 
will need to offer smaller incentives to achieve the same amount of uptake in the future (Nykvist 
& Nilsson, 2015).  

Sonoma Clean Power Pilot Program 

Sonoma Clean Power launched a pilot EV rebate program for SCP customers from October 2016 
through January 2017 (Center for Sustainable Energy, 2017a). Customers redeemed 206 rebates 
over the course of the program, primarily for leased vehicles. The pilot program used a voucher 
system under which 522 applicants were approved. Of these, 108 were low-income customers 
eligible for a $5,000 rebate. All other applicants were eligible for $2,500 rebates on leased or 
purchased EVs. Two EVs were eligible for rebates: The Nissan LEAF and BMW i3. The Nissan 
LEAF was much more popular, with only 28 incentives used for the BMW i3. SCP also worked 
with dealers to offer additional discounts to SCP customers, which supplemented those offered 
by SCP.  
 
Sonoma Clean Power used the AFLEET tool to estimate emissions reductions from their pilot 
program. The tool compares the lifetime environmental and economic costs and benefits of two 
sets of vehicle fleets input by the user. To construct their counterfactual vehicle fleet, SCP 
surveyed program participants to determine the type of car each customer would drive had they 
not received a rebate. Eighty-eight percent reported that they would not have adopted an EV 
otherwise. SCP estimates emissions reductions of 1.8 tons CO2e per $100 spent on incentives, or 
$56 per ton CO2e reduced. This value does not account for program administration costs, 
however, or the additional rebates that Sonoma County negotiated with EV dealers. 

Methods 

Model Overview 

We constructed our model using the TCM framework to predict the direct impact of an incentive 
on EV sales. The model predicts the market share of 30 vehicle segments based on their total 
costs, including a price adjustment representing non-monetary values such as luxury and 
environmental benefits. We calibrated the price adjustment for each segment to match initial 
model predictions with California’s real 2016 vehicle market shares. With total costs calibrated, 
an incentive can be added to lower the cost of a selected vehicle type, which will cause a change 
in predicted vehicle market share. The change in market share is used to determine the change in 
demand for incentivized vehicles and the proportion of vehicle sales directly caused by the 
incentives program. Based on the EV demand caused by program, our model reports estimated 
EV sales caused by the program, program costs, and benefits associated with the program. The 
program costs include administrative cost, implementation costs, and total incentive amounts 
offered. The benefits include GHG emission reductions, health improvement due to reduced air 
pollution, and monetary benefits from increased electricity sales.  
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Market Segments 

The model includes 95 vehicles organized into 30 vehicle segments based on size, class, and 
engine type - including internal combustion engine (ICEV), hybrid, plug-in hybrid electric 
(PHEV), and electric vehicles (EV). Where available, we chose the five top-selling vehicles from 
each segment, using data from the California New Car Dealers Association (Auto Outlook, 
2017). The full list of included vehicles can be found in Appendix C.  

Cost Estimates 

The model assigns a total cost to each vehicle segment, and varies these total costs in Monte 
Carlo simulations. Costs for vehicle segments were assigned based on average costs for each 
vehicle within a given segment. Total direct costs for each vehicle were calculated as the sum of: 
● Purchase price: national average of prices actually paid; from TRUEcar.com (n.d). 
● Fuel costs: present value of fuel costs for the average car lifetime, using fuel economy  

data from fueleconomy.gov (n.d) and average annual vehicle miles travelled for Light 
Duty Vehicles from the Federal Highway Administration (2015). We used a discount rate 
of 20% as literature suggests that consumers undervalue these when purchasing vehicles 
(Dreyfus & Viscusi, 1995; Mannering & Winston, 1985; Gallagher & Muehlegger, 
2011). 

● Remaining Ownership and Operating Costs: Other ownership and operating costs 
were collected for each car model from edmunds.com (2017). These costs include: 
○ Maintenance and repair costs: present value of average maintenance and repair 

costs for the average car lifetime, including batteries, brakes, tires, and so on; 
○ Depreciation: present value of depreciated car price after the average car 

lifetime. 
○ Insurance, license, registration fees, and taxes: present value of national 

average of costs for the average car lifetime. 
○ Financing costs: present value of the average interest on a loan using a 10% 

down payment and a loan term of 60 months. 
  
We calculate costs over a 7-year timeframe, which is the average length of ownership of a 
passenger vehicle (IHS, n.d.). We assumed PHEVs ran 40% on electricity and 60% on gas, in 
alignment with CARB Air Quality Improvement Plan assumptions (2016). For car models 
without available cost data, we used the costs of the most similar car model (see Appendix D). 
Depreciation rates for these cars were calculated as a proportion of purchase cost determined by 
comparison with depreciation of similar vehicles. 
  
Across simulations, the model varies total purchase and ownership costs by randomly selecting 
from among the vehicles included in that segment, based on a vehicle’s relative popularity within 
that segment. The model then adds the average purchase and ownership costs of the chosen 
vehicle to the total cost for the vehicle segment in that simulation. Average operating costs are 
held constant across simulations, based on the weighted average operating costs of vehicles in 
each segment. 
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Model Calibration 

Including only purchase price and ownership and operating costs fails to capture the non-
monetary values that influence a vehicle’s perceived value, e.g. style preferences, range anxiety, 
and imperfect information flow. To incorporate these qualitative factors, we first ran the model 
including only the monetary cost factors. We compared the model’s predicted vehicle market 
shares to California market share data for 2016 (AutoOutlook, 2017), then iteratively assigned 
additional perceived values to each segment to match model predictions with real market data.  
 
Once calibrated, the model can be used to add incentives to EVs and PHEVs, which will modify 
their total costs and create a new predicted market share. From this change we predict the 
percentage of EV and PHEV sales attributable to the incentive using the equation: 
  

� �.� ����	/������0�	1�$��2	3�!�� = 4�5	(� %��	3ℎ� � − )���!���	(� %��
4�5	(� %��	3ℎ� �  

 
We included additional inputs that users can manipulate to alter total vehicle costs, including: 
● Federal and State rebate availability: By default, the model is set to reduce EV costs 

by the amount available from federal and state rebates. We included the option to remove 
these rebates to preserve the model’s functionality if either rebate becomes unavailable.  

● Additional rebate amount: Users can input additional incentives, such as those they 
have negotiated with manufacturers and dealers. These alter vehicle costs in the same 
way as agency provided incentives, but do not add to overall agency costs. 

● Include High End and Luxury EV and PHEV: The model allows users to decide 
whether to include luxury EV and PHEV models among those eligible for incentives.  

Predicting Incentives Used 

The number of vehicle incentives used by agency residents can be limited either by the number 
of available incentives or overall demand for incentivized vehicles. To calculate number of 
available incentives, we require the user to input the overall incentives budget and incentive 
amount for EVs and PHEVs. To account for the possibility of distinct incentive amounts for EVs 
and PHEVs, we assume incentives will be distributed proportionally based on the predicted 
change in market share for each. For example, an incentive program resulting in predicted 
market shares of 4% for EVs and 2% for PHEVs, would assume a 2:1 distribution of incentives. 
The total number of available incentives is then calculated as:  
 

70��!�8!�	/������0�� = *���!	/������0��	)$2#��
(� �.� ����	�9	/������0��),	(�9	/������0�) + (� �.� ����	���9	/����0��0��),(���9	/�����0�) 

 

To predict overall demand for EVs among an agency’s residents, we assume that vehicle demand 
is proportional to demand across California. We calculate vehicle demand as the total population 
served by a given agency multiplied the ratio of auto sales to population across California in 
2016 (U.S Census Bureau, 2017).  

9�ℎ��!�	;����2 = 7#���"	��.$!�����	, 2016	1�!��� ���	7$��	3�!��
2016	1�!��� ���	��.$!����� 
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EV and PHEV demand are calculated by multiplying predicted market share for each by the total 
vehicle demand. Predicted number of incentives used is set at the lower of demand and available 
incentives.  
 
We included in the model several ways for the user to alter EV and PHEV demand, depending 
on their program specifications. These include: 
● Program length: The model calculates vehicle demand on an annual basis. Users can 

select the number of months that the program will run and demand will be altered 
proportionally (e.g. a 6 month program would result in half of the predicted demand 
compared to an identical 12 month program). 

● Leased vehicles: The model allows users to select whether customers can receive 
incentives on leased as well as purchased vehicles. If leased vehicles are included, 
predicted demand increases with the assumption that 40% of vehicles will be leased. We 
believe this is a conservative estimate, based on the demand for leased EVs through 
California’s Clean Vehicle Rebate Program, which has risen from 40 - 70% between 
2012 and 2015 (Center for Sustainable Energy, 2017c). For all calculations of costs and 
impacts, we treat leased and purchased vehicles identically. 

● Marketing effectiveness: How well an incentive program is advertised to customers 
influences overall program uptake (Stern, 1999; Maibach et al., 2008). This model does 
not capture the influence of marketing strategies on program uptake, which can vary 
widely. Users can input an estimate of their marketing effectiveness as a percentage of 
potential customers who are made aware of the incentive program. This estimate will 
directly alter the predicted overall vehicle demand. 

Future Cost Projections 

To allow agencies to plan incentive programs in the future, we incorporated cost projections for 
EVs for the years 2017-2030. This was done using cost projections from Bloomberg New 
Energy Finance which are based on projected decreases in EV battery prices (Soulopoulos, 
2017). The model recalculates a baseline market share depending on the year the program is set 
to run, using these cost projections.  

Smart Charging Program 

We included an option for agencies to pair the incentive program with a smart charger program. 
Smart chargers can be controlled remotely by the agency to delay EV charging and reduce peak 
energy demand. To estimate typical charging behavior throughout the day, we use an average 
charging schedule from 27 PG&E customers who drive EVs and are charged a baseline 
electricity rate (Biviji, 2014). To estimate the effect of providing agency-controlled Smart 
Chargers, we allow the user to input electricity mix and rate information by time of day. The 
model assumes customers provided with Smart Chargers will not charge during peak times from 
2-10pm. The amount of charging that would have occurred in that time period is then displaced 
to the hours from 10pm-4am.  

EV Model Emission Calculations 

Vehicle tailpipe emission factors are referenced from the California Air Resources Board 
(CARB) 2014 EMFAC database (California Air, 2014). The EMFAC database estimates 
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emission rates (g/mile) for CO2, NOx, SOx, PM10, PM2.5, total organics (TOG), and CO for all 
vehicle classes, for gasoline and diesel powered vehicles, at different speeds, for model and 
calendar years from 1965 through 2050. CH4 and N2O emission factors for passenger cars and 
trucks are referenced from EPA guidance documents for completing GHG inventories and are 
incorporated into their respective vehicle class emission factors (2015). Emission factors for 
model years 2008-present are identical and are assumed to be representative of the majority of 
available on-road vehicles. The EMFAC database allows users to select statewide, air basin, air 
district, MPO, county, or sub-area geographical boundaries. The analysis uses annual emission 
rate data for a selected model years (2017 through 2030), at aggregated speeds, and by air 
pollution control districts. Air pollution control districts overlay well with CCE agency 
jurisdictions and will likely face similar health impacts.  
 
Emission factors (g/mi) are generated using a weighted average of gasoline and diesel emissions 
for different car classes according to the equation: 
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where, 
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We assumed that people purchase EV or PHEV vehicles over comparable passenger car vehicle 
classes; therefore, we used the Light Duty Automobile (LDA) class emission factors from the 
EMFAC database to calculate the avoided conventional vehicle tailpipe emissions. PHEVs in the 
database are assumed to operate 60% on gasoline and 40% on electricity (California Air 
Resources Board, 2016). 
 
We calculated the total emissions avoided for each vehicle type by multiplying each type’s 
emission factors by the annual average vehicle miles travelled (VMT). We calculated that battery 
EVs have a weighted fuel efficiency of 0.3 kWh/mi. Following recent literature we added 3% in 
annual VMT to account for the rebound effect (Sun et al., 2017).  
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Results & Discussion 

Summary of EV Model Major Findings 

● Low incentive amounts cause few new EV purchases. The model predicted $500 
incentives would largely subsidize individuals who would have purchased an EV even 
without the incentive program.  

● Incentives in the $3,000-$4,000 range were the most cost-effective for reducing 
emissions, when added to federal and state incentives, in the test scenarios we modeled. 
The best value of an incentive amount will vary depending on program-specific inputs. 

● Incentives for EVs only, not PHEVs, were more cost-effective overall for achieving 
GHG emission reductions than incentives offered for both EVs and PHEVs. 

● Health benefits alone are too small to justify offering incentives, and can vary greatly 
depending on source electricity mix. Agencies with higher renewable content electricity 
mixes will see greater health benefits from EV rebates. 

● Marketing effectiveness can play a large role in changing the predicted demand for 
incentives. Agencies should understand that a high marketing effectiveness input 
assumes a well-run, well-marketed program, of which constituents are aware and can 
easily take advantage. 

 

The completed EV model allows users to predict the results of offering incentives on EVs, 
PHEVs, or both. The model reports the predicted number of vehicle purchases caused by the 
incentive and associated GHG and health benefits, and overall program costs. Users can input 
varying incentive amounts and compare the relative cost-effectiveness of each to achieve GHG 
emission reductions.  
 
To demonstrate sample model results, we ran the model under a range of incentive amounts and 
present model predictions below. We used a $1.5 million incentive budget and a 3 month 
program length. Results were predicted for Sonoma County in 2016, assuming 100% marketing 
effectiveness and availability of both federal tax credits and CVRP rebates. 

Effect of Incentives on EV Sales 

Figure 1 displays the effect of changing incentive amount on predicted EV sales and the 
proportion of sales attributed to the incentive. At low incentive amounts, our model predicts most 
incentives will be redeemed by individuals that would have purchased EVs even without an 
incentive. As incentive amount increases, the proportion of incentive-caused EV sales appears to 
increase logarithmically, approaching but not reaching 100% of sales (Figure 1A). Demand for 
EVs increases as incentive amount increases, and results in greater total vehicle sales up until the 
point where the demand for vehicles reaches total number of available incentives, based on the 
set budget of $1.5 million (Figure 1B).  
 
To cause the most EV sales, an incentive should be set at the amount that produces just enough 
demand to consume the available budget. Higher incentives will result in fewer new vehicles, as 
an agency would be spending more for each incentive and depleting its budget sooner. Under this 
test scenario, the total incentives budget is predicted to be used with a $4,000 incentive per 
vehicle. Raising the incentive amount past this point results in fewer available incentives. 
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Figure 1. Effect of incentive amounts from $500 to $10,000 on A) 
percent of sales attributable to the incentive, and B) total EV sales 
resulting from the program, compared to incentive-caused sales. Green 
points indicate the lowest incentive that results in sufficient demand to 
use the entire incentives budget.  

Potential for Incentive Targeting 

There is the potential to expand this model to inform more efficient targeting of incentives. The 
TCM structure can simulate an individual’s perceived cost for each purchase option. For each 
simulation, the model can therefore give the theoretical exact incentive amount necessary to 
make an EV the lowest cost option, as the cost difference between the lowest cost vehicle overall 
and the lowest cost EV. This could be used to estimate the excess spending associated with a 
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given incentive amount, by comparing it to the lowest amount necessary to cause an individual to 
switch to an EV.  
 
Optimal incentive values likely differ with depending on target audience, such as low- and high-
income customers. Identifying these audiences could improve the efficiency of incentive 
targeting, but this is beyond the current capacity of our model. To calibrate the EV model based 
on distinct audience needs, we would need existing market data for each target audience. This 
could be a potential direction for further research and expansion of TCM applications.  

Effect of Incentives on Greenhouse Gas Reductions 

Figure 2 displays model predictions for GHG emission reductions and the cost of achieving those 
reductions depending on incentive amount for EVs and PHEVs. Total GHG emission reductions 
peak at a $3,500 incentive for EVs, and at a $2,500 incentive when the incentive is available to 
both EVs and PHEVs. The cost to reduce each ton of CO2e is lowest for incentives in the $1,500 
to $3,500 range. At lower incentive amounts, a greater proportion of incentives go to individuals 
who would have purchased an EV or PHEV regardless of the incentive program. These vehicle 
sales do not contribute to the GHG emission reductions caused by the incentive program and 
lead to a less cost-effective program. Results in Figure 1 showed that the proportion of incentive-
caused vehicle sales rises quickly as the incentive increases from $500 to $3,500. Raising the 
incentive amount within this range, therefore, reduces the cost per ton of GHG emission 
reductions, as proportionally more EVs sold are attributable to the incentive program.  
 
As the incentive amount is raised past this point, the cost to reduce each ton of CO2e increases. 
This is due in part to set budget limitations, as the same amount is spent on fewer overall sales, 
and to the change in the proportion of incentive-caused sales at higher incentive amounts. As the 
incentive amount increases, the change in percent incentive-caused sales levels off, resulting in 
diminishing returns for GHG emission reductions with higher investments in incentives.  
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Figure 2. Effect of a range of incentives from $500 to $10,000 on A) total 
predicted GHG emission reductions from the incentive program, and B) 
cost-effectiveness of GHG emission reductions, for incentives applied to 
EVs only (blue) and to both EVs and PHEVs (orange). Green points 
indicate the lowest incentive amount that results in sufficient demand to use 
the entire incentives budget.  

 
Except at the lowest tested incentive amount of $500, applying an incentive to both EVs and 
PHEVs resulted in more spending per ton of GHG emission reductions than applying the same 
incentive to only EVs. At incentive amounts below about $3,000, a combined EV and PHEV 
incentive resulted in comparable or higher total GHG emission reductions. This is because the 
larger selection of eligible vehicles increases overall demand for incentivized vehicles. As a 
result, a lower incentive can produce enough demand to use the entire incentives budget. At 
higher incentive amounts, EV-only incentives caused greater GHG emission reductions. With an 
appropriately set incentive, EV-only incentives have a greater overall GHG reduction potential 
than incentives for both vehicle types. 
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In the literature there are a wide range of estimates for the cost of GHG emission reductions 
achieved by incentivizing EV and hybrid vehicles (Chandra et al., 2009; Michalek et al., 2011; 
Plotkin and Singh, 2009). Our model predicts a range of GHG reduction costs, depending on 
incentive amount, type of incentivized vehicle, source electricity mix, and other user inputs. Our 
model results generally fall within the range of cost estimates from the literature, suggesting a 
well executed incentive program could cost $120-$150 per ton CO2e reduced, whereas a poorly 
set incentive could result in a cost of several hundred dollars for each ton of CO2e reduced.  

Drive EverGreen Test Runs 

To validate our model, we compared our predictions to results from a real-world EV rebate 
program. We ran our model twice using specifications from Sonoma Clean Power’s (SCP) 2016 
and 2017 Drive EverGreen EV incentives programs. We set marketing effectiveness at 100% to 
clearly demonstrate our model predictions, although this is an unrealistic assumption that 
produced exaggerated results. For both the 2016 and 2017 programs, our model over predicted 
incentive demand compared to real-world results. However, our model predictions for the cost of 
GHG emission reductions through these programs matched closely with the analysis performed 
by SCP. Below, we discuss detailed model results and their implications. 

Inputs and Results Overview  

Table 3 compares Drive EverGreen 2016 program specifications with the inputs we used to 
model the program. SCP offered $2,500 rebates to customers who purchased or leased a 
qualifying EV. A $5,000 rebate was offered to qualifying low-income customers. Our model 
does not have the capacity to offer incentives of different values to certain customers, so we used 
only the $2,500 incentive for the test. The other model inputs matched SCP’s program. SCP had 
an overall incentive budget of $1.5 million. SCP also negotiated additional discounts of $10,000 
on qualifying purchases from participating EV dealers, which did not add to SCP costs. The 
program ran for three months and supplied 206 incentives for leased and purchased vehicles. 
SCP estimated spending at $56 per ton of CO2e emissions avoided as a result of the program, 
excluding program administrative costs. The model predicted 600 redeemed incentives over the 
3-month program, the maximum possible with the program budget. Of the sales associated with 
an incentive, 96% were attributed to the incentive. 
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Table 3. Model Results for SCP Drive EverGreen 2016 Program 

INPUTS 

 Drive EverGreen 2016 Model Input 

Agency (Region) Sonoma Clean Power Sonoma 

Incentives Budget $1,500,000 $1,500,000 

Incentive Amount BEV $2,500, $5,000 for 
qualifying low-income 

customers 

$2,500 

Incentive Amount 
PHEV 

None None 

Additional Discount $10,000 $10,000 

Program Length 3 months 3 months 

OUTPUTS 

 Drive EverGreen 2016 Model Output 

GHG Emission 
Reductions 

10.6 M tons 25.7 M tons 

Certificates Approved 511 NA 

Incentives Used 206 600 

Proportion of Sales 
Caused by the Incentive 

88%, according to survey 
responses 

96% 

Cost per ton CO2e 
Reduced 

  

Incentive and admin 
costs: 

Not reported $68 

Incentive costs only: $56 $58 

 

 
SCP ran its Drive EverGreen program again in 2017 for four months. This time, SCP offered 
$2,000 incentives, and $3,500 incentives for qualifying low-income customers. SCP also 
negotiated manufacturer discounts of $8,000 (Center for Sustainable Energy, 2018). Table 4 
compares Drive EverGreen 2017 specifications with our model inputs and selected results. 
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Table 4. Model Results for SCP Drive EverGreen 2017 Program 

INPUTS 

 Drive EverGreen 2017 Model Input 

Agency (Region) Sonoma Clean Power Sonoma 

Incentives Budget $1,500,000 $1,500,000 

Incentive Amount BEV $2,000, $3,500 for 
qualifying low-income 
customers 

$2,000 

Incentive Amount 
PHEV 

None None 

Additional Discount $8,000 $8,000 

Program Length 4 months 4 months 

OUTPUTS 

 Drive EverGreen 2017 Model Output 

GHG Emission 
Reductions (CO2e) 

Not reported 30 M tons  

Certificates Approved 1,354 NA 

Incentives Used 565 750 

Proportion of Sales 
Caused by the Incentive 

Not reported 93% 

Cost per ton CO2e 
Reduced 

  

Incentive and admin 
costs: 

Not reported $60 

Incentive costs only: Not reported $50 

Model Validation using Cost of GHG Emission Reductions 

Our two model runs and SCP produced comparable estimates for overall cost-effectiveness of 
GHG emission reductions, with our estimate and SCP’s differing by $2 per ton of CO2e reduced, 
less than 4%, after excluding administrative costs. SCP estimated the pilot programs’ GHG 
reduction results using survey data to determine which vehicles customers would have driven 
had they not been offered incentives for an EV. They compared the estimated emissions from 
this counterfactual set of vehicles with those estimated from the set of vehicles including the 
incentive-caused EV purchases to predict the change in emissions. SCP calculated the cost to 
reduce each ton of GHG emissions using only the cost of the incentives provided, excluding 
administrative costs.  
 
We believe SCP’s methodology of estimating the cost per ton of GHG emissions avoided is 
robust because the survey data created a reasonable approximation of the vehicles that would 
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have been driven had there been no rebate program. In addition, we believe the basic design 
elements of the Drive EverGreen pilot programs will probably become standard for EV incentive 
programs, as the pilots were quite successful and other CCE agencies will likely pattern their 
programs after these first ones. Due to these factors and the close match between our model’s 
outputs and SCP’s, we believe that our model can produce cost per GHG reduction estimates that 
are reasonably close to the true values. By customizing inputs including program design, 
population, and energy mix to those relevant to their agencies, future users can use this model to 
produce reasonable predictions for the results of their own programs. 
 
A key difference between the model tests using Drive EverGreen inputs and the other model test 
runs described in these results was the addition of substantial manufacturer incentives (included 
in the model as “additional incentives”). These incentives drive up demand for EVs without 
increasing costs to the agency, resulting in improved cost-effectiveness of GHG emission 
reductions. The model predicts a cost of $50 per ton CO2e reduced for the $2,000 agency 
incentive and $8,000 additional incentive offered by the Drive EverGreen 2017 program. 
Running the model instead with a $10,000 agency incentive produces a cost of $285 per ton 
CO2e reduced. Surveys conducted among EV dealers following the 2016 Drive EverGreen 
program suggested a high degree of dealer satisfaction with the incentive program. Given our 
predictions of incentive-caused EV purchases with high incentives, it is reasonable to expect that 
dealers and manufacturers who work with CCE agencies to offer incentives will also benefit 
from increased sales that result from the offering. 

Demand for Incentives 

For both the 2016 and 2017 programs, our model predicted sufficient demand to use all available 
incentives over the length of the programs. In reality, only about one third and two thirds of 
available incentives were redeemed for 2016 and 2017 respectively, though more residents 
applied and were approved for incentives than ended up redeeming them. In addition, our model 
tests did not include the higher incentives offered to low-income residents, which would have 
increased predicted demand further. 
 
This over prediction of demand could be the result of our assumptions of perfect marketing 
effectiveness. The model was run with marketing effectiveness set at 100%, which assumes all 
eligible residents were made aware of this program. Surveys conducted among 2016 Drive 
EverGreen participants suggest many participants were confused about the types and amounts of 
available incentives (Center for Sustainable Energy, 2017c). This would have had a particularly 
strong influence on overall demand if customers were not made aware of the large additional 
incentives offered by EV dealers. In addition, for the 2016 program, only two vehicles were 
eligible for incentives: the Nissan Leaf and BMW i3. A number of survey respondents who did 
not redeem an incentive reported this lack of choice as a limiting factor. For the 2017 program 
nine vehicles were eligible for the incentive, so this was likely less of a limiting factor for 
incentive customers.  
 
Modulating the marketing effectiveness parameter to 5% for 2016 and 20% for 2017 produces 
similar predictions to empirical results. These tests reveal the powerful nature of the marketing 
effectiveness parameter in this model. Users should be aware that running the model with high or 
perfect marketing effectiveness will produce results that represent a highly well executed 
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incentives program, where eligible residents have a clear understanding of available incentives 
and few other barriers to acting on this knowledge. 

Health Impacts of EV Incentives 

We found that health benefits from EV incentives are small compared to the overall costs of an 
incentives program, even considering the large uncertainty associated with the value of pollutant 
reductions. To produce sample results, we ran the model using SCP’s CleanStart energy mix and 
a $3,000 incentive, and calculated impacts for Low, Medium, and High estimates of pollutant 
values on health impacts. Results are presented in Table 5. The highest estimates for value of 
health impacts produce health benefits of $69,000 over the life of the incentivized vehicles, equal 
to roughly 5% of total program costs. The lowest estimates produce benefits totaling 0.02% of 
total costs. Even with the large uncertainty in health benefits the difference between the high and 
low values is not enough to change the overall benefit-cost ratio of the program much. Reducing 
total program costs by the value of health impacts can slightly improve the calculated cost 
effectiveness of GHG emission reductions. In this scenario, the highest estimate for health 
benefits reduced cost of GHG reduction by $8 per ton CO2e.  

 
Table 5. Health benefits associated with a $3000 EV incentive 

program set in Sonoma County using a range of health impact values.  

Value of Health 
Impacts 

Program Health 
Benefits 

Total Program Costs 
Minus Health Benefits 

Low $3,032 $1,364,617 

Mid $28,865 $1,350,739 

High $68,957 $1,313,666 

 
These benefits are dependent on the electricity mix that supplies incentivized EVs, and can be 
negative if the mix is not clean enough. This suggests that an agency should first procure a 
sufficiently renewable energy mix before incentivizing EVs, to avoid worsening health impacts 
relative to driving conventional vehicles.  
 
These benefits were calculated by treating a ton of pollutant equally, regardless of location of 
emission. This does not capture important aspects of real-world emissions impacts. When 
predicting health impacts from pollutant emissions, agencies should consider the location of 
electricity generators and the areas they expect new EVs to be driven. Model estimates are 
presented as a rough approximation of health impacts that can result from an incentive program.  

Model limitations 

TCM attempts to account for qualitative factors that influence consumer decisions, but there are 
aspects of the EVs market that may not be captured here. Availability of charging stations, 
vehicle perception, and vehicle range on a single charge all influence EV sales (National 
Research Council, 2015). This model is designed to consider these in the perceived value 
component of cost calculation, but does not account for change in perceptions over time or local 
variability. As new EVs are developed and perception of EVs changes, this model will need to be 
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recalibrated to reflect the change in total value. This requires manually altering the perceived 
values for each vehicle segment to match the desired baseline market share, a process that a 
toolkit user can do but that can take up to hour.  
 
This model does not consider purchases timed to fit into the incentive schedule, i.e. purchases 
that would otherwise have occurred earlier or later but were instead made to coincide with 
incentive availability. This should not interfere with model predictions for the proportion of 
incentive-caused purchases, but may result in a larger number of vehicle purchases than 
predicted. 
 
One potential benefit of incentive programs not captured by this model is the network effect 
associated with EV sales (Winebrake and Farrell, 1997). As more people are seen purchasing and 
driving EVs, others will be encouraged to make similar purchases.  
 
CARB’s EMFAC database suggests that EV purchasers drive more miles per year than our 
model input (California Air Resources Board, 2014). If this is the case, our model may 
underestimate the environmental benefits of EV incentive programs. Our model calculates 
vehicle emissions based on average annual miles driven in the United States. If more frequent 
drivers replace their ICEVs with EVs, there will be greater emissions reductions per vehicle. 
 

Solar Photovoltaic Financing Program 

Background and Overview 
Based on interest from agencies and a suggestion from our client, we created a TCM to predict 
the uptake of residential rooftop solar PV if agencies were to back low interest financing 
programs. This section of the report provides background on existing solar PV financing options 
and the potential role for CCE agencies to provide their own financing options.  

Role of Financing in the Solar Market 

With the average cost of a residential solar photovoltaic (PV) system ranging between $15,000 
and $35,000, most people cannot purchase a system upfront; instead, they opt for a financing 
option to cover the cost of their system or the electricity that they get from PV (Hausman, 2015). 
In fact, the rapid growth of the residential solar market can be largely attributed to the 
widespread availability of diverse solar financing options (Litvak, 2015). 

Types of Financing 

There are four general types of solar financing available in California: loans, PACE financing, 
leasing, and power purchase agreements. Solar loans and PACE financing give the customer 
ownership of the system along with any government incentives, whereas a third party entity 
owns and maintains the system in the latter two options (Hausman, 2015). Each option causes 
different levels of increased public participation in the solar market and financial security for the 
lenders. CCE agencies can choose from among these types or structure a product that borrows 
from multiple types when deciding how to design their own solar financing programs.  
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Solar Loans 

As with loans for other goods, there exist a variety of loan offerings that differ in credit 
requirements, interest rates, and monthly payment amounts. Lenders can be banks, solar 
companies, utilities, and other private solar financing companies (Hausman, 2015). 
 
There are two types of solar loan products: secured and unsecured loans. Secured loans require 
that the customer put up an asset, such as a car or house, as collateral for the loan in case of 
default. Unsecured loans do not require any collateral, but because of this, they tend to have 
higher rates and shorter repayment periods than secured loans (Greenpath, n.d.). The drawback 
of solar loans is that their availability is limited to people with a minimum FICO credit score of 
about 650 to 700, which is in the acceptable to good range (DiGangi, 2015). This excludes 
homeowners with subprime credit scores from the possibility of owning a solar system, and also 
prevents them from benefiting from government incentives.  

PACE financing  

PACE, or Property Assessed Clean Energy, financing is repaid through an addition to the 
owner’s property tax bill. The financing is provided to property owners who agree to place a 
special tax assessment for the amount financed on their properties, making these effective 
collateral for the financing. There are no credit requirements, although each PACE program has 
other property owner and project eligibility requirements to make repayment more likely (Kaatz 
& Anders, 2014). PACE financing is widely available throughout California and has been found 
to increase the solar PV installation rate over the background rate (Kaatz & Anders, 2014; PACE 
in California, 2017; Ameli et al., 2017).  
 
The lack of credit requirements allows more people access to financing at a reasonable interest 
rate than before. The advertising of the PACE program and its association with the local 
government have been proposed to lower information costs, as prospective customers a) become 
aware of the program and b) feel less need to research it further because of the trusted 
government aspect (Kirkpatrick & Bennear, 2014; Ameli et al., 2017). Another favorable aspect 
of PACE is that a property owner can legally sell the property and pass the payment 
responsibility on to the next owner (Kirkpatrick & Bennear, 2014). However, this is not always 
possible due to federal policies, and the risk of having to repay the remaining amount before 
selling keeps some people from using PACE financing, possibly canceling out this advantage 
(Kaatz & Anders, 2014; Gerdes, 2017). 

Solar leasing 

In solar leasing, the leasing company retains ownership of the system along with the government 
incentives that come with it. The customer enters a contract with the leasing company to pay a 
regularly scheduled payment in return for the installation and maintenance of the system in 
addition to the electricity generated by the system. A typical lease term is about 15 to 20 years 
(Hausman, 2015). 
 
Solar leasing used to be the most popular financing option for solar PV systems, accounting for 
the majority of the national market share. However, the market in the U.S. and California has 
experienced a significant decline in third-party owned solar beginning in 2016. The market share 
for third-party ownership, which peaked in California at 75% in 2013, has since dropped below 
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36% as more people have opted to purchase rather than lease PV systems (Litvak, 2017). The 
shift from leasing to buying solar panels has been attributed to the declining cost of panels as 
well as the government rebates and tax incentives that only come with direct ownership of the 
PV systems (Mearian, 2016).  
 
Leasing as a financial mechanism faces a similar disadvantage as loans in that there is generally 
a minimum credit requirement that excludes those with lower credit scores from accessing solar 
energy. In fact, the CEO of SolarCity, one of the largest solar leasing companies in the United 
States, stated that he did not intend to lower the minimum credit score requirement below 650 in 
the next few years (Reuters, 2015). Again, this poses an issue for homeowners with subprime 
credit who potentially would like to install PV for their homes. 

Power Purchase Agreements 

Power Purchase Agreements, or PPAs, operate similarly to solar leasing where the financing 
company installs and maintains the solar PV system on the homeowner’s property, but instead of 
regular scheduled payments on the system, the homeowner pays a fixed rate based on the amount 
of electricity used. This rate is generally set at a level guaranteeing the customer cost savings 
over electricity from the utility company. As with solar leasing, PPAs exclude the customer from 
government tax credits, which go to the system owner. PPAs are a less popular option than solar 
loans or leasing due to their greater complexity (Hausman, 2015). 

Potential Roles for CCE Agencies 

Although there are already many companies providing financing for PV systems, opportunities 
still remain for CCE agencies to use their specific advantages to increase the size of the 
residential PV market. Some of these advantages are the agencies’ not-for-profit missions, the 
trust they command as government entities, their ability to publicize programs, and their existing 
billing relationships with their customers. CCE agencies can enter PV financing by creating new 
in-house financing products or by endorsing and coordinating with existing financing companies. 
Depending upon a program’s design and interest rate, it can be an inexpensive or even value-
generating option for agencies. 
 
CCE agencies may have the ability to provide or back financing at lower interest rates than some 
companies because the agencies are not profit-driven. In order to reduce risk and maximize 
profits, many existing lenders have credit score minimums that exclude consumers with low 
credit scores or incomes, or offer them prohibitively high interest rates. By offering affordable 
financing, CCE agencies can expand access to these community members, who form a 
significant untapped PV market, as shown by the increase in PV uptake seen in areas with PACE 
financing. This would amplify a recent widening trend in PV buyer demographics, helping 
achieve the elements of many CCE agencies’ missions to increase renewable energy usage while 
decreasing costs (Patel, 2017). Two options for including lower-income or lower-credit 
individuals while protecting the lender include the property- and project-based eligibility 
requirements of PACE financing and the creation of a loan loss reserve fund, which compensates 
the lender for any defaults that occur (Menten and McNeil, 2016). 
 
CCE customers may be more inclined to trust the CCE agency than a private lender because of 
both the agency’s status as a not-for-profit government agency and their established relationship 
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with the agency as an electricity supplier. This trust can be leveraged to increase customers’ 
willingness to use the financing product and any solar installer the agency may choose to 
endorse. An NREL report showed that larger, more popular solar companies were on average 
more expensive than smaller, more local installers, who tended to be more responsive to market 
conditions and policy changes, and more likely to provide fair pricing on their systems 
(O’Shaughnessy & Margolis, 2017). Thus, a wise strategy for agencies trying to minimize 
installation costs might be to partner with local installers.  
 
Any financing program publicity endorsed by the agency will be more effective due to viewers’ 
trust of the agency. The agency can publicize the program in its monthly bills, increasing the 
reach to the entire agency ratepayer population and/or targeting specific high energy using 
groups. The agency can also simplify the loan repayment process by allowing on-bill repayment, 
which allows customers to pay back loans through additional payments on their monthly electric 
bills. Currently, some utilities offer on-bill repayment to commercial and municipal customers. 
By extending this model to residential customers, CCE agencies could provide a simple and 
convenient method for them to pay back solar loans (Hausman, 2015; Center for Sustainable 
Energy, 2015). 

Methods 

Model overview 

We constructed a model using the TCM framework to predict the direct impact of lowered 
interest rates on the number of residential solar photovoltaic (PV) system installations. The 
model predicts the market share of grid electricity, customer-owned PV, and third-party-owned 
PV based on their cost and a cost adjustment representing customer resistance to buying PV. The 
market share segments represent the percentage of households with roofs eligible for new PV 
systems that choose each of the above three electricity sources in a given year. Net Energy 
Metering (NEM) credits and payments reduce the cost of PV.  
 
Interest rates can be adjusted to lower the cost of PV, which will cause a change in electricity 
source market share. By limiting the modeled program design elements to interest rate - not 
specifying whether the CCE agency funds financing for PV sales, hosts a private company that 
finances PV sales or third-party owned systems, or pursues another program design - we keep the 
model usable for any of these financing types.  

Market share calculations 

We estimated that 74% of roofs were suitable for PV because Gagnon et al. (2016) calculated 
that rooftop solar could replace that amount of the electricity sold by utilities in California in 
2013. Furthermore, Google’s Project Sunroof (2017) estimated that 87% of California and 86% 
of Sonoma County (as a regional example) roofs were suitable for PV. Google’s estimates might 
be biased upward because they exclude economic considerations and some roof and building 
limitations, but they might be biased downward because they exclude systems outside the range 
of 2 to 1,000 kW as well as the possibility of mounting panels not flush with the roof (Google, 
2017). Thus, we think these estimates are on the higher end of what is realistic. 
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We estimated baseline 2016 market shares of our three electricity source choices, for comparison 
against the market shares under lowered solar financing interest rates. This will need to be 
adjusted in future years by users, who can use the following methods. We first estimated the 
number of houses suitable for PV using the equation: 
 
 3$���8!�	��$���	��	2016 = (#	��$���),(%	�5�� 	���$.��2),(%	�$���8!�) − (#	��$���	5��ℎ	�9) 
  
where,  
# houses = The total number of houses in an agency territory, estimated with data from the U.S. 
Census Bureau (2017) 
 

% owner occupied = The percent of houses that are owner occupied and thus eligible for agency 
financing, estimated with data from the US Census Bureau (2017) 
 

% suitable = The percent of houses that have rooftops suitable for solar PV. We used 74% for 
this value, based on estimates by Gagnon et al. (2016) and Google’s Project Sunroof (2017) 
 

# houses with PV = The number of houses with existing PV systems in 2015. These were taken 
from the NEM California Distributed Generation Statistics dataset (2017) by filtering the data to 
include only the houses which matched relevant criteria explained in Appendix E. 
 
To estimate the percent market share for new PV installations, we divided the number of 2016 
residential PV installations from the NEM dataset by the total number of suitable houses in 2016. 
The result was divided between customer- and third party-owned PV systems using the ratio 
between these in the NEM dataset. We subtracted the total percent PV market share from 100% 
to get the grid electricity market share. 

Electricity Usage and PV Generation Calculations 

We calculated the standard deviation of residential electricity usage using the frequency of 
different monthly average consumption amounts found by Ayompe and Duffy (2013). We think 
this is reasonable because the distribution of PV system sizes, which generally track electricity 
usage, in the NEM dataset is similar (Figure 3). As such, our modeled electricity consumption is 
based on a log-normal distribution similar to the one they constructed in their study. 
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Figure 3. Distribution of A) electricity usage reproduced from 
Ayompe and Duffy 2013 and B) PV system sizes in CA from 
the NEM dataset. 

 
However, our modeled electricity consumption is distributed around the mean monthly 
electricity consumption for each agency, as displayed on their web pages (Sonoma Clean Power, 
n.d., for example) comparing their residential rates with those of their respective IOUs. Toolkit 
users will be able to edit the mean value if desired. We restricted the maximum energy usage to 
3,000 kWh per month to avoid outliers. 
 
We modeled PV electricity generation per month as a left-skewed distribution around a user-
input percentage of the electricity consumption that the PV should cover. We chose this 
distribution assuming that more PV buyers size their systems below their usage level, and to a 
greater degree, than above it. This is partially because residential PV in many areas is only 
supposed to be sized a maximum of 0-10% above a buyer’s usage (PG&E, 2017, Southern 
California Edison, n.d.).  
 
We calculated PV system size using the equation: 
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Where the capacity factor is 20%. We used the electricity usage, PV generation, and system size 
amounts to calculate the costs described below. 

Grid electricity cost calculations 

A rate schedule is the set of rates under which a customer’s electricity usage is charged, and can 
depend on the amount of electricity used in a month, the time of usage in a day, or other factors. 
The cost of grid electricity ($/kWh) from the CCE agency is entered by the toolkit user as three 
electricity rate schedule categories and the percentage of accounts in each category. The rate 
schedule categories are:  
● Most popular rate schedule: e.g. the E-1 rate schedule for agencies within PG&E 

territory. This usually covers a majority of customers. 
● CARE: the rate schedule for low-income customers. 
● Other: typically comprise under 10% of customers. The user can enter a weighted 

average of the cost per kWh of the other rate schedules in this field. 
 
The model chooses from among the grid electricity rates entered as inputs, with frequencies 
according to the percentage of accounts on each rate schedule. The rate is multiplied by each 
simulated usage amount to get monthly electricity bill amounts. The monthly amount is then 
multiplied by the number of months in the user-input PV lifetime being modeled, incorporating a 
user-input electricity rate escalator and discount rate. Specifically, the model calculates yearly 
amounts by multiplying the number of months per year, and then sums escalated and discounted 
yearly amounts by each year to find the net present value (NPV) of paying for electricity from 
the grid for the lifetime of a PV system. The equation is as follows:  

4�9	��	�!��� ����"	1���� = M N�� !"	7��$���(1 + ����!��� )

(1 + ;����$��	����)


OP	����
���
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PV monthly electricity cost calculations 

The monthly solar financing payment amount for each simulated customer was calculated using 
the PMT function in Microsoft Excel, which determines the amount if a constant stream of 
payments is made, with a given payment frequency, payment duration, and interest rate. The 
PMT function requires the following inputs: interest rate, number of payments, and principal 
(excluding interest).  
● The interest rate is adjustable by the user. It is varied using an adjustable standard 

deviation to represent variation that can occur between customers who, for example, have 
differential access to financing due to low credit scores, or value other aspects of a 
lender.  

● The total number of monthly payments is determined by the financing payback period, 
also adjustable by the user, and assumes that payments are made monthly.  
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● The principal value is the capital cost of the PV system based on its size, which is 
determined as described above, and cost per kW. 

 
The cost per kW is calculated by multiplying the modeled system size by the agency-specific 
average observed cost per kW for that system size from the website Solar Reviews (n.d.). Then 
the cost is varied using a standard deviation of around 20% to represent the variation that can 
occur between customers who, for example, negotiate different prices with installers or have 
different roof characteristics. This standard deviation value was chosen to approximate those 
observed in recent solar prices among some of the counties with the largest numbers of PV 
installations (California Distributed, 2017). 

NEM credits and payments 

Net Energy Metering (NEM) is a billing system in which any excess PV energy generated is 
credited back to the customer. Credits are provided at a $/kWh rate determined by the agency, 
often equal to the agency’s retail rate for electricity and sometimes with a bonus payment, e.g. 
$0.01/kWh. We assume that all PV customers will participate in NEM, and that credits equal 
each customer’s otherwise applicable rate schedule (OAS), as is the case with most agencies. 
The user inputs the bonus payment rate, as well as the average percentage of over-generation per 
month among the agency’s customers. Any excess energy generated by a simulated PV system 
per month is multiplied by the sum of the credit and bonus payment rates per kWh. Any deficit is 
multiplied by the customer’s credit rate and becomes a negative value in the NEM column. 

PV system lifetime cost 

The total cost of the customer- and third party-owned PV systems is calculated by summing the 
monthly cost, operating & maintenance cost, NEM value, and the perceived cost calculated as in 
the “model calibration” section below. The sum is discounted over the expected lifetime of the 
PV system and an IOU-specific interconnection fee is added (California Public, 2017). The 
resulting lifetime costs are compared to each other and the grid electricity PV lifetime cost to 
find the lowest total cost purchase option. The model runs through 100,000 simulated customers 
to determine what percentage of customers would choose each electricity source depending on 
which total cost is lowest. 

Model calibration 

The model determines the lowest total cost option, accounting for non-monetary perceived costs 
of purchasing or leasing PV. These perceived costs depend on the individual and might include 
the time and effort required for the purchase, decreased aesthetic value of their house, and other 
knowledge or preparation required for having a system. We calibrated perceived costs to match 
modeled market share with observed market share data under the agency’s existing conditions. 
Once calibrated, the model can predict a change in market share that is caused by lowered PV 
financing interest rates. 

CCE Agency Financing Program Effect 

The monthly cost and lifetime cost calculations are repeated for customer-owned PV with the 
interest rate proposed for the agency financing program. The model assumes that: 
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● Customers who would previously have gotten an interest rate lower than the proposed 
one will stay with the lower rate. 

● Customers who would previously have gotten an interest rate between the proposed rate 
and the previous average interest rate will qualify for and use the agency program. 

● Customers who would previously have qualified only for an interest rate higher than the 
previous average interest rate will qualify for and use a rate reduced by the difference 
between the previous and agency program rates. 

 
Comparing the new customer-owned PV lifetime cost with the baseline grid electricity and third 
party-owned lifetime costs over 100,000 simulated customers results in a new proportion of 
customers choosing each electricity source. The difference between the old and new market 
shares of the different electricity types is the additional PV uptake caused by the program. 

Marketing Effectiveness 

It is unlikely that 100% of the people for whom the program would be beneficial will hear of it. 
Therefore, a toolkit user can decrease the percentage of PV buyers who use the CCE agency 
solar financing program, in order to more accurately reflect the extent of the agency’s marketing 
efforts or other factors in program success. The model then predicts a proportional number of 
program participants the agency should anticipate. For example, if the toolkit user predicts that 
their program marketing efforts will reach 10% of people considering solar, the user can enter 
10% and the predicted change in market share will be multiplied by that amount. 

Calculation of Model Outputs 

Program effects 

The percentage of houses participating in the agency program is determined by the equation:  
 

%	��$���	�� ����.����# = %	)$"� �	+���#	� �# ��	,	� �2����2	�9	(� %��	3ℎ� �	5��ℎ	� �# �� 

 
Within the percentage of houses participating, there will inevitably be customers that would have 
purchased a solar PV system even without the agency’s program. These participants’ purchases 
cannot be attributed to the program, and should be excluded when quantifying the purchases 
directly caused by the agency financing program. This is calculated using the equation: 
 

%	��$���	�� ����.����#	2$�	��	� �# ��
= %	)$"� �	+���#	� �# ��	,	(� �2����2	�9	(� %��	3ℎ� �	5��ℎ	� �# ��
− S8�� 0�2	(� %��	3ℎ� �) 

 
The percentage of houses purchasing PV due to the financing program can be multiplied by the 
total number of suitable roofs within the agency’s jurisdiction to calculate the number of houses 
purchasing PV due to the financing program.  

Costs 

The toolkit reports three main sources of financial costs to the agency:  
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1) The major direct cost is the principal amount from providing loans to customers. This is 
calculated by summing the financing amounts of all the simulated participants in the program. 
 
2) A more minor direct cost is the annual program administrative cost, which is entered by the 
toolkit user. 
 
3) The indirect cost is the electricity supply revenue lost due to program-caused switching from 
agency electricity supply to customers’ PV system-generated electricity. This is estimated using 
the equation: 

 
��0��$�	T��� = ;�# �2�����	,	H��� �����	,	�� ����.�����	,	70#	����	,	%	��0��$� 

 
where, 
 
Degradation = Sum of discounted degradation across PV lifetime of 25 years, accounting for 
solar degradation and incorporating customer discount rate, calculated as: 
 

7��$�!	;����$���2	;�# �2����� = 7��$�!	����!	;�# �2�����
(1 + 1$����� 	;����$��	����)U��V 

 

Participation = program-caused PV installations 

 

Generation = average annual electricity generated by customers’ PV systems  
 

Avg Rate = average electricity rate charged to customers by agency for agency supply 
 

% Revenue = the % net revenue margin from electricity sales 
 
NEM bonus = average bonus payment offered to PV own customers 

Benefits 

The quantified benefits from the agency’s solar financing program are presented by the toolkit as 
three broad categories: 1) greenhouse gas emission reductions, 2) health improvement, and 3) 
revenue from interest and principal. 
 
1) Greenhouse gas emissions reductions: the benefits of greenhouse gas emissions reductions are 
presented as the amount of greenhouse gas emissions avoided, and the monetary benefits from 
these avoided emissions based on the value of carbon to the agency. 
 
The emissions avoided across the lifetime of the PV systems are calculated as follows: 
 

70��2�2	H�H	��������� = �� ����.�����	,	�!��� ����"	H��� ���2	, 1 + T�����
1 + ��8�$�2 , H �2	(�,

1000  

 
where, 
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Participation = program-caused PV installations 
Electricity generated = lifetime electricity generation by PV system in kWh 
Losses = % transmission losses 
Rebound = % rebound effect 
Grid mix = the total CO2e emissions (kg/kWh) based on % energy mix of agency and emission 
factors for each energy source: 
 

M%	��� #"	3�$ ���	��	H �2	(�,	,	���������	����� 	�� 	��� #"	3�$ �� 

 

The emissions avoided are then translated into a monetary value by multiplying the amount of 
emissions avoided to the agency’s value of carbon ($/ton CO2e): 
 

$	)������	��	�0��2�2	H�H	���������	 = �0��2�2	H�H	���������0�!$�	��	�� 8�� 
 
2) Health improvement: health benefits are quantified with a dollar value based on the avoided 
cost of health detriment of criteria pollutants and the reduction of pollutant emissions across the 
lifetime of the PV system. 
 
The reduction of pollutant emissions is calculated in the same way as the avoided GHG 
emissions above, where: 
 

70��2�2	1 ��� ��	��!!$����	��������� = �� ����.�����	,	�!��� ����"	H��� ���2	, 1 + T�����
1 + ��8�$�2 , H �2	(�,

1000  

 
The emissions avoided are then translated into a monetary value by multiplying the amount of 
emissions avoided to the avoided cost of health detriment caused by criteria pollutants. The 
toolkit provides 3 options (low, average, high) to the agency to determine how much they 
relatively value health impact in making their program selection and design decision. Based on 
their selection, a corresponding cost figure is used to calculate the monetary benefit of avoided 
criteria pollutant emissions. 
 

$	)������ = 70��2�2	1 ��� ��	��!!$����	���������	,	1���	��	���!�ℎ 

 
Where cost of health is expressed in $/ton. 
 
3) Revenue from interest and principal: the agency has the potential to gain revenue from the 
solar financing program depending on its interest rate and the number of people that participate. 
Total revenue includes both the loan principal and the resulting interest. 
 

*���!	��0��$� = �� ����.�����	,	(1 − ;���$!�	����),	M;���$����2	T���	��"����� 

where, 
 

Default rate = expected % of participants who default on the loan 
Discounted loan payment = monthly payment/(1 + agency discount rate)month/12 
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The net revenue in the toolkit refers to the additional value that the agency gains by 
implementing the program, and is calculated by subtracting the principal from the total revenue: 
 

4��	��0��$� = *���!	��0��$� − (70� �#�	T���	7��$��	,	�� ����.�����) 

PV Model Emission Calculations 

The calculation of the program’s expected emission reductions considers the amount of 
electricity generated by program-caused solar PV systems to be the amount of energy sales 
avoided by the agency. Thus, the amount of emissions avoided is that which would have occured 
from generating the same amount of electricity plus a transmission loss factor, using the agency 
grid mix rather than by solar. Transmission loss accounts for the additional electricity generated 
by the agency that is lost during transmission and never reaches the customer.  
 
The emissions reduction is determined using the equation: 

 
���������	��2$�����
= 	 (*���!	�!��� ����"	H��� ���2	8"	�9)(�9	/����!!�����	1�$��2	8"	� �# ��)(	7#���"	���������	����� )
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+ %	* ����������	T���) 
 
The agency emission factors for each GHG and pollutant are calculated by the equation summed 
across every energy source: 
 

���������	����� = M���������	����� 	��	��� #"	3�$ ��	,	%	��� #"	3�$ ��	��	7#���"	��� #"	(�, 

 
Note that the emissions reduction calculation includes a rebound effect. This accounts for any 
increase in energy consumption after getting PV because a customer gets electricity from their 
PV system rather than from the agency. A small average rebound effect of about 2% has been 
observed among households that install PV systems (McAllister, 2012).  
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Results & Discussion 
 

Summary of Solar PV Model Major Findings 

● Interest rates approaching the existing average rate cause few new PV purchases. 
Program-caused PV purchases (and their associated GHG emission reductions) increase 
most rapidly a few percentage points lower than the existing rate, but level off at very 
low interest rates as the program budget is reached and PV financing is capped.  

● Agencies can use predicted program costs to choose a feasible interest rate. Over a 
certain rate, revenue exceeds cost, but solar uptake is low. 

● The cost per ton of GHG emissions avoided is higher at low interest rates when 
costs include program administrative costs, electricity sales lost due to PV, and the 
money lent out. 

● Health benefits alone are too small to justify offering incentives, and can vary greatly 
depending on source electricity mix. Agencies with higher renewable content electricity 
mixes will see greater health benefits from PV rebates. 

● Agencies must consider societal benefits, cost-effectiveness, and default rates. 
Higher interest rates minimize revenue losses or add revenue, while lower interest rates 
maximize health and GHG reduction benefits. Opening participation to people with low 
credit scores can increase PV uptake but also the risk of default and lost revenue. 

 

The solar financing tool allows users to view the effects of different interest rates by 
manipulating the customer-owned interest rate while keeping other input values constant. To 
demonstrate model results, we ran the model under a range of interest rates and present sample 
model predictions below. We used input values including an average existing interest rate of 7.9 
percent, a non-repayment rate of 5 percent, and a “medium” health impacts value. Other values 
were based on agency information from MCE Clean Energy and RCEA. We assumed 100 
percent marketing effectiveness for ease of viewing results.  

Effect of Interest Rate on PV Sales 

Reducing the interest rate available for customer-owned PV through the CCE agency program 
results in an increase in solar PV uptake as shown in Figure 4. CCE agency electricity buyers are 
converted into PV buyers, while the market share of third party-owned PV stays constant (~0% 
change) at ~1.25% of market share. The total PV uptake is non-zero even at an interest rate equal 
to the existing average interest rate, as some people will switch to the CCE agency program due 
to their trust in the agency, ease of repayment, or simply having heard of the program before 
other financing products. The  
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Figure 4. Estimated PV uptake caused by financing program with different interest 
rates.  

Effect of Interest Rate on Greenhouse Gas Reductions 

Figure 5 displays model predictions for program-caused GHG emission reductions and the cost 
of achieving those reductions depending on agency financing interest rate. The effect on GHG 
emissions decreases as interest rate increases, in direct relationship to the amount of solar uptake 
caused by each interest rate. The cost to reduce each ton of CO2e emissions is lowest at the 
interest rates closest to the area’s existing interest rate. This is mainly because customers have to 
pay back more money to the agencies with higher interest rates, resulting in spending less money 
on this program or increasing agencies revenues. At an interest rate of 7 percent, the cost of 
GHG reduction is negative, meaning that agencies can increase revenue and reduce GHG 
emissions. Agencies can increase revenues with high interest rates, but only achieve small GHG 
emission reductions.  
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A  

 
B  

Figure 5. Effect of a range of interest rates from 0% to 7% on A) total predicted 
GHG emission reductions from the financing program, and B) cost of GHG 
emission reductions 

 
Knowing the model outputs, customized for a particular geographic area, year, and predicted 
market penetration, a toolkit user can make an informed decision about how much money and 
effort to invest in a PV financing program. 

Health Impacts of PV Interest Rates 

The health benefits are the largest benefits at some interest rates and highly influence benefit-
cost ratio. The absolute values of health benefits are even higher than that of revenue change at 
an interest rate between 5 and 6 percent. In addition, health impacts can vary depending on 
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power plants’ locations. If the fossil fuel-based power plants are located near the areas of high 
population density, the health impact should be “High”, and indicate higher benefits than our 
analysis and vice versa.  

Model usefulness 

We chose the TCM to model solar uptake because consumer demand at each PV price point has 
fluctuated over the years due to external factors, making it difficult to construct an empirical 
demand function. For example, one time-dependent factor is that homeowners are pressured to 
install solar PV before rebates and tax credits expire. Another is unexpected policy forces; for 
example, PACE programs entering  a community has led to an increase in solar uptake, while a 
2010 Federal Housing Finance Agency decision halted most PACE financing (Gerdes, 2012; 
Kaatz & Anders, 2014; SCEIP Monthly, 2016). A third crucial factor is the amount of electricity 
charges credited back through NEM, which has decreased over time with the advent of the NEM 
2.0 program design and migration to time-of-use rate schedules (Roselund, 2017). 
 
Using a TCM enabled us to predict customer behavior using the parameters that determine 
customer decisions around PV, including the stochasticity of consumer behavior. Changes in 
many external factors can be adjusted as user inputs and the model re-calibrated to include them. 
The perceived cost of PV can also be used to smooth over some parameters. For example, we 
omitted to include a model element specifically for the federal Investment Tax Credit, which can 
provide a tax credit of up to 30% of the value of a PV system. But the perceived cost variable is 
set so that the predicted demand matches the observed demand anyway. However, the structure 
of the model itself will need to be edited if a whole new parameter is added. For example, this 
might be necessary if a significant portion of an agency’s residential customers start to purchase 
its green electricity product, as some are already doing (McDermid, 2018), and alter their 
behavior by getting more or less PV than other customers. It might also be necessary if the 
California Public Utilities Commission alters NEM rules after its planned review of NEM 2.0 in 
2019 (California Public, 2016). 

Model limitations 

We omitted the cost of replacing an inverter every ten years, which other analyses include 
(Simons, 2005). This is effectively incorporated somewhat as part of the perceived cost of PV, 
but a more detailed analysis might include an average or a range of inverter costs in the cost of 
PV. As mentioned in the previous section, we omitted the Investor Tax Credit from our analysis. 
We also omitted the fact that some homeowners deduct PV financing interest and possibly even 
principal from their property taxes (Feldman & Bolinger, 2016). 

Sensitivity Analysis 

This model’s predictions depend on the difference between on user-input existing and CCE 
agency interest rates. The average existing interest rate available in an area may be difficult to 
find out or estimate with any certainty, because it may vary by location and the creditworthiness 
of the population. This fact can lead to user uncertainty over the dependability of results. The 
model’s default rate is an average over a wide geographic range as found on relevant financing 
websites. 
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Figure 6. Change in solar uptake with different existing (non-CCE) interest rates 
when the CCE agency financing interest rate is 5 percent.  

 
Finally, the standard deviation of the perceived cost was chosen arbitrarily, as we found no data 
on how much perceived costs vary among consumers. A sensitivity analysis using the same 
sample parameters as the examples above shows that, depending on the agency’s financing 
interest rate, a low standard deviation of 10% can increase solar uptake by about 400% relative 
to a standard deviation of 30%. The cost per ton of GHG emissions avoided is less variable 
except at agency financing interest rates near 7%.  At 7% interest rate, an agency can achieve an 
overall positive net revenue from each solar loan provided after accounting for program costs 
and administrative expenses, which means total costs are negative. Also, a low standard 
deviation in the perceived costs (10%) causes higher solar uptake than higher standard deviations 
(30%) of those perceived costs. As a result, the low standard deviation results in greater GHG 
emission reductions. Since the cost of GHG reduction is total costs divided by total GHG 
reduction, being inversely proportional to GHG reduction, the greater GHG emissions result in 
negative and lower cost of GHG reduction with the low standard deviation at 7% interest rate.  
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Figure 7. Change in solar uptake with different noise scenarios. In low noise 
scenario, standard deviation is 10 percent of mean values. For the standard 
deviations in medium and high noise scenarios, 20 percent and 30 percent of 
mean values are used, respectively.  

 
 

 
Figure 8. Change in cost of GHG reduction with different noise scenarios. In 
low noise scenario, standard deviation is 10 percent of mean values. For the 
standard deviations in medium and high noise scenarios, 20 percent and 30 
percent of mean values are used, respectively. 
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Indoor Fuel Switching Program 

Background and Overview 
The largest contributors of GHG emissions in California are transportation and electricity 
generation. CCE agencies already procure low-GHG electricity and our EV model will help 
agencies reduce GHG emissions from the transportation sector. CCE agencies have limited 
influence over industrial operations and agriculture; therefore, indoor fossil fuel combustion is 
the last major GHG emission source that CCE agencies can manage at scale. We analyzed one 
possibility of fuel switching in the residential sector as a starting point for agencies.  

The importance and benefits of fuel switching  

Fossil fuel combustion within the home represents a significant source of GHG emissions. In 
2016, 64.6% of California housing units relied on natural gas for heating (U.S. Census Bureau, 
2017). In 2009 the average California household used 22 thousand cubic feet of natural gas per 
year for space heating and 16 thousand cubic feet of natural gas for water heating, resulting in 2 
metric tons of GHG emissions per home per year (2009 RECS, 2013). These two uses account 
for 95% of a household’s total natural gas usage. Homes may use additional natural gas fired 
devices like stoves and clothes dryers, but our report will focus mainly on household heating 
requirements.  
 
Heat pumps use electricity to power a system of compressors, pumps, and refrigerants to move 
heat either into or out of a building, similar to how refrigerators work. Heat pumps are highly 
efficient and typically have Coefficients of Performance (COP) as high as 3 or 4, meaning they 
move up to 4 units of heat for every unit of electricity they use. The efficiency is effectively 
greater than 100%. A natural gas furnace cannot extract more heat energy than what is contained 
in the fuel, limiting its total efficiency to 100%. CCE agencies typically have a high percentage 
of renewable electricity, minimizing the GHG impact of additional electricity consumption. 
 
Increasing heat pump adoption is included in many government GHG reduction strategies. In 
Europe, heat pumps can avoid 230 million tons of GHGs by 2020, 20% of Europe’s CO2 
emissions target (Bayer et al., 2012). Thirty-two percent of New York’s energy-related GHG 
emissions are from residential and commercial heating and heat pumps could potentially meet 
70% of the state’s heating and cooling loads (NYSERDA, 2017). Throughout the Northeast and 
Mid-Atlantic regions heat pumps could avoid 7 million metric tons of GHG emissions per year 
(NEEP, 2014). 

Barriers to fuel switching 

There are several reasons there has not been a mass uptake of heat pump technology. Multiple 
heating options exist, including natural gas furnaces, air-source heat pumps, ground source heat 
pumps, solar thermal water heating, and biomass heating systems. Each has its own advantages 
and disadvantages and it may be overwhelming for homeowners to decide on a specific 
technology. High upfront cost has been a major barrier for residents to install heat pumps or 
other renewable heating technologies (Caird & Roy, 2010; NYSERDA, 2017; NEEP, 2014). For 
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example, it costs an average of $6,000 to purchase and install a heat pump in California, but may 
be as high as $10,000 depending on brand, home size, and other factors (Home Advisor, 2018). 
Natural gas furnaces; however, only cost $4500 on average in California (Home Advisor, 2018). 
Heat pump performance can be an issue because they are less effective at lower ambient air 
temperatures, causing user complaints in severe winter conditions and potentially requiring a 
secondary heating system (Singh et al., 2010). California has mild winters and current 
technologies are can provide sufficient heating at ambient temperatures as low as zero degrees 
Fahrenheit; therefore, minimal performance issues are expected in the state. Another potential 
challenge is the frequency that homeowners consider purchasing new heating systems. Our 
discussion with one of MCE’s representatives revealed that homeowners usually replace major 
appliances when the old one fails resulting in a short time frame to educate potential buyers on 
heat pumps.  
 
Low natural gas prices and high electricity prices may reduce the cost-effectiveness of switching 
away from natural gas based heating systems. In 2016, Californians paid 3.9 cents for a kWh 
equivalent quantity of natural gas, while residential electricity rates were 17.4 cents per kWh 
(EIA, 2017). New Energy Star natural gas furnaces must be at least 90% efficient, and some 
models are 97% efficient (Energy Star, n.d.). Given this, heat pumps must be approximately 4.5 
times more efficient than a natural gas system to have lower operating costs. Air-source heat 
pumps with a COP of 4 can match the operating costs of a typical 90% efficient furnace given 
California’s energy prices. Additionally, modern air-source heat pumps are reversible so they can 
provide cooling during the summer. This can save on cooling costs and provide comfortable 
indoor temperatures all year long. Combining a heat pump with rooftop solar can lower a 
household’s electricity costs to further reduce a heat pump’s operating costs.  

Potential Methods for Overcoming Barriers 

There are methods for overcoming these barriers. A UK study found that people adopted 
microgeneration heating technologies including solar thermal hot water, heat pumps, biomass 
stoves, and micro combined heat and power because they wanted to reduce their carbon 
footprints and save money on their fuel bills and ultimately decided on a technology that had a 
higher perceived reliability and faster paybacks (Caird & Roy, 2010). Note that natural gas is 
almost twice as expensive in the UK as in the United States, so UK homeowners are more likely 
to realize cost savings by switching from natural gas to electricity (British Petroleum, 2017). 
Regional climatic conditions influence the attractiveness of heat pumps. Western European 
countries like Italy, France, and Spain that have lower heating and cooling demands witnessed a 
much higher heat pump adoption rate than the UK (Singh et al., 2010). Given California’s 
similar climate, heating, and cooling needs, heat pumps are an attractive option. Even in less 
favorable climates, heat pumps can prove cost effective if the existing heating source is 
expensive such as fuel oil or electrical resistance heaters. Homes in the northeastern United 
States that displace or fully replace their fuel oil heating systems with heat pumps can save 
between $327 and $948 per year (NEEP, 2014). Homes that replaced electric resistance with heat 
pumps saved an average of 3,000 kWh per year, equal to $459 (NEEP, 2014). California does 
not have many fuel oil heating systems, but it does have electrical resistance heating systems. 
Targeting homes that have electric resistance heating systems are more likely to provide 
homeowners with cost savings and start increasing awareness of heat pumps.  
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There are some financial incentives for HVAC upgrades but are typically  included as eligible 
options for general home energy improvement incentives. Up to $500 in federal tax credits for 
energy improvements including heating and cooling upgrades were available up through 2016, 
but have since expired (USEPA & USDOE, n.d.). Energy Upgrade California provides rebates 
up to $5,500 for comprehensive home energy upgrades including better insulation, duct sealing, 
and HVAC replacements (Southern California Edison, n.d). In 2017, Marin Clean Energy 
launched a pilot program offering up to $1,200 for low-income family and tenants to install a 
variety of energy efficient devices including heat pumps (Marin Clean Energy, n.d.).  
 
Changing regulations may make heat pumps more favorable than natural gas based systems. 
California’s Energy Efficiency Strategic Plan calls for all new single and multi family homes to 
be zero net energy (ZNE) by 2020 and new commercial buildings to be ZNE by 2030 (California 
Public, 2008). This would require new buildings to consume no more energy than they generate 
on site over a year. Meeting this goal combines minimizing total energy use and increasing 
distributed energy resources. Given that heat pumps use less energy than natural gas furnaces, 
homes with heat pumps would need to generate less energy onsite. California’s implementation 
plan for meeting these ZNE requirements includes improving the thermal integrity of buildings 
by incorporating radiant cooling, ductless systems, and heat pumps into at least 50% of new 
construction by 2020 (California Public, 2008).  

Methods 
We developed a model that calculates the environmental benefits of replacing a home’s natural 
gas furnace with an air-source heat pump. Results can also be interpreted as the avoided 
emissions if a new residence is built with a heat pump instead of a natural gas furnace. 

Annual Energy Usage for Space Heating 

We used the average energy usage for natural gas fired central air furnaces and electrically 
powered heat pumps from the 2009 Residential Energy Consumption survey (RECS), the most 
recent data available. This data set estimates the actual energy usage used in 2009 for specific 
purposes in each region of the United States. Based on the 2009 RECS data 60% of California 
homes with heat pumps did not use a secondary heating source. Given California’s low winter 
heating requirements and that modern low temperature heat pumps have internal electric 
resistance heaters to provide supplemental heating when necessary, we assumed that newly 
installed air source heat pumps do not require a secondary heating device (Johnson, 2013). 
Residences may choose to leave in existing heating systems when they install heat pumps but for 
the above reasons, we assumed that these will have zero to negligible use.  
 

Emission Reduction 

 
Emissions for natural gas combustion in furnaces are referenced from USEPA AP-42 emission 
factors, except for NOx. California has specific NOx emission factors for residential natural gas 
furnaces. South Coast Air Quality Management District (SCAQMD) and San Joaquin Air Valley 
Air Pollution Control District reduced the NOx emission standard for new natural gas furnaces 
from 40ng/J to 14ng/J in 2014. In January 2018 some manufacturers including Lennox and 
Rheem have developed models that meet the lower limit (Lennox, 2018; Rheem, 2018). While 
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the 40ng/J limit was implemented at different times for different agencies, both SCAQMD and 
Bay Area AQMD, covering some of the most populous areas of the state, implemented this limit 
in 1983. Due to the large market in both of these areas it is reasonable to assume that 
manufacturers did not make multiple models with different NOx limits and sold a 40ng/J limit 
furnace throughout the entire state. As a result, we assume that the majority of existing furnaces 
replaced by heat pumps meet the 40ng/J limit. Emissions from electricity generation are 
calculated using the same methods as in the EV model. We calculated the changes in emissions 
using a 15 year lifetime of modern heat pumps (USDOE, n.d.). Net emission changes are 
calculated using the same methods as the EV model. 
 

Results and Discussion 

 

Summary of Heat Pump Model Major Findings 

● Heat pumps are effective at reducing CO2 emissions. Depending on the energy mix, 
one heat pump can prevent between 0.64 tons and 1.25 tons of CO2e emissions per year.  

● California has an ideal climate for heat pumps. Relatively mild winters means that 
heat pumps can efficiently provide indoor space heating without a secondary heating 
source.  

● Low natural gas prices and high electricity prices make it difficult for homeowners to 
realize cost savings by using a heat pump for heating needs. Combining heat pumps with 
solar panels may reduce the operational cost so homeowners can realize cost savings.   

● Criteria pollutant emissions may increase by using heat pumps. Depending on the 
energy mix, emissions of NOx, SOx, and PM may increase, albeit by typically less than 
one pound per year,  by using heat pumps. These tradeoffs must be considered when 
installing heat pumps. 

 
The heat pump model calculates the net emission reduction from switching one natural gas 
furnace to an air source heat pump over the 15 year lifetime of the device. Emission reductions 
vary based on the agency’s respective energy mix; however, GHG emissions decrease 
substantially for all agencies based on their 2016 power mix (Table 6). Power content labels for 
2017 had not been released at the time of this report, so we were unable to analyze the emissions 
reductions of some of the newer CCE agencies. Residential natural gas furnaces in California 
have very stringent NOx emission limits compared to utility-scale power plants. As a result, 
there is an increase in NOx emissions, represented by negative reductions in Table 6, by using 
heat pumps if an agency includes natural gas or biomass in their energy mix. SOx emissions tend 
to increase with heat pump use as the quantity of biomass or geothermal energy used in the 
agency mix increases, as both of these sources have greater SOx emission factors than natural 
gas. PM emissions will increase by using heat pumps if there is biomass in the agency energy 
mix.  
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Table 6. Emission Reductions by Replacing a Natural Gas Furnace with a Heat Pump 

Agency 
GHG 
(tons/ 

device) 

NOx 
(pounds/
device) 

SOx 
(pounds/
device) 

PM2.5 
(pounds/ 
device) 

VOC  
(pounds/ 
device) 

Sonoma Clean Power 18.93 -2.49 -0.68 2.46 1.73 

Clean Power SF 17.39 -5.49 0.10 2.28 1.55 

Lancaster Choice 
Energy 

9.59 -27.63 -8.01 -35.25 -0.83 

Peninsula Clean Energy 14.78 -10.47 0.01 2.00 1.25 

Marin Clean Energy 15.50 -11.02 -1.92 -7.10 0.95 

 
The net environmental and health benefits of installing heat pumps are generally positive; 
however, net benefits are negative when biomass is part of the energy mix, due to the relatively 
high health impact from PM emissions (Table 7). The benefits assume the mean health impact 
values, 5% discount rate, and market price of carbon as done with the other models.  
 

Table 7. Net Benefits by Replacing a Natural Gas Furnace with a Heat Pump 

Agency 
GHG  

($/ device) 
NOx  

($/ device) 
SOx  

($/ device) 
PM2.5  

($/ device) 
VOC  

($/ device) 
Total 

Sonoma Clean 
Power 

$170 $-20 $-10 $302 $4 $447 

Clean Power SF $156 $-43 $2 $281 $4 $399 

Lancaster 
Choice Energy 

$86 $-217 $-119 $-4,331 $-2 $-4,583 

Peninsula Clean 
Energy 

$133 $-82 $0 $246 $3 $300 

Marin Clean 
Energy 

$139 $-87 $-29 $-872 $2 $-846 

 
Increasing heat pump adoption can significantly reduce greenhouse gas emissions, with most 
agencies reducing GHG emissions by more than 1 ton per year per device. There is a tradeoff 
that there may be increases in some criteria pollutants depending on the agency’s energy mix. As 
with the EV program, agencies should green their electricity as much as possible to maximize the 
benefits of electrically based heating systems. Our model is limited by using average national 
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emission factors for different generation sources and may not reflect the actual emissions from 
an agency’s power source. Since we did not complete a full TCM model, we are unable to 
determine the quantity of heat pumps that would be purchased under a given financial incentive 
and the resulting cost effectiveness of the program. Agencies can estimate their cost of GHG 
reduction from heat pumps by dividing the expected GHG savings from a heat pump by any 
financial incentives they provide and their expected labor costs to run the program.  
 
Given the relatively low cost of natural gas based heating systems, it may prove difficult to 
convince homeowners to switch without significant financial incentives and education. Agencies 
should target homes that use other electric heating sources like electric resistance heating 
systems and portable electric heaters because heat pumps can result in significant cost savings 
compared to those technologies. Homes with rooftop solar are also good candidates since they 
experience a lower electricity cost. Agencies can work with developers to design new or 
retrofitted housing units with heat pumps instead of natural gas furnaces meet California’s ZNE 
goals. Lastly, agencies should target environmentally conscious ratepayers to increase heat pump 
usage since they may have a greater willingness to pay for environmental benefits.  
 

Comparative Cost-Effectiveness 
Agency staff members can use this toolkit to compare the cost-effectiveness of different 
implementation strategies among a few different program types, allowing them to see what 
combinations of measures will help them achieve their missions to the greatest degree 
considering their budgets. 
 
CCE agencies should consider all possible options to reduce GHG emissions and select the most 
cost-effective options first. Agencies, for example, could reduce the GHG intensity of their 
electricity mix instead of giving financial incentives to EVs, solar panels, or electric appliances. 
We can compare the cost-effectiveness of our programs to the cost of replacing GHG emitting 
energy sources with additional solar, wind or small hydro power. We defined our “breakeven 
price” as the maximum additional cost of procuring GHG-free electricity ($/MWh) relative to a 
GHG emitting source to have the same cost-effectiveness as the program (Table 8).  
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� �# ��	�������0�����	 = 	2�!!� �	�.���	��	. �# ��	��	 ���0�	���	���	��	H�H	���������	($/���) 
H�H	��������"	 = 	H�H	���������	� ��	���	(&ℎ	��	�!��� ����"	� ��	�	.� ���$!� 	��$ ��	(���/(&ℎ) 
 

If an agency is solely looking to find the most cost-effective way to reduce carbon and it can 
procure renewable GHG-free electricity for less than the breakeven price of a given program, the 
agency should green its electricity first. If the added cost of GHG free electricity is more than the 
price listed in Table 8 at a given program GHG reduction cost, then the GHG reduction program 
is the more cost-effective choice. For example, if a modelled program results in a GHG reduction 
cost of $125/ton, and it costs an agency more than $57.73/MWh to switch from natural gas to 
solar, wind, or small hydro, the program is the more cost effective choice. If the cost of 
switching from natural gas to renewable GHG-free electricity is less than $57.73/MWh, 
procuring GHG free electricity is more cost effective than the aforementioned program. In the 
same scenario, if the agency wanted to replace biomass electricity instead of running the 
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program, the added cost to replace biomass electricity with GHG free renewable energy would 
need to be less than $51.26/MWh to be cost effective. If agencies can procure GHG free 
electricity for less than the cost of procuring natural gas, the agency would experience both a 
cost savings and GHG reduction; outperforming our modeled energy programs. Understandably, 
agencies may not be able to immediately remove GHG emitting sources due to existing purchase 
contracts and the time needed to develop additional renewable resources. The agency must 
consider the relative time frames it would take to implement energy programs and change their 
energy mix.  
  

Table 8. Maximum Added Cost of GHG-Free Electricity ($/MWh) to Offset 
Different Energy Sources to Match Cost Effectiveness of Energy Programs  

Program GHG Reduction 
Cost ($/ton-CO2e) 

Natural Gas Biomass 

$50 $23.09 $20.50 

$75 $34.64 $30.75 

$100 $46.19 $41.01 

$125 $57.73 $51.26 

$150 $69.28 $61.51 

$175 $80.83 $71.76 

$200 $92.37 $82.01 

 

Table 9 shows the range of levelized costs of energy (LCOEs) in $/MWh for renewable energy 
sources coming online in 2019 with and without tax credits. This would not reflect the price an 
agency would pay for the electricity because the producer would apply a reasonable markup, but 
it provides a useful comparison. With tax credits, renewable electricity would reasonably cost an 
agency between $35-$65 per MWh. This ignores the added cost of energy storage that is 
becoming increasingly important with renewable energy deployment. Natural gas would 
reasonably cost an agency between $50-60$ per MWh, in the same range as renewable energy. 
Because the cost difference between natural gas and renewable energy is expected to be small, it 
appears that agencies may more cost effectively reduce GHG emissions by greening their mix 
before offering incentives to EVs or rooftop solar PV panels.  
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Table 9. LCOE of Energy Coming Online in the US in 2019 ($/MWh)  

Technology 
LCOE Without Tax Credits LCOE With Tax Credits 

Low Average High Low Average High 

Wind-Onshore $40.40 $52.4 $69.40 $22.6 $34.50 $51.60 

Solar PV $53.50 $70.10 $129.90 $41.30 $53.10 $96.40 

Hydroelectric* $57.40 $63.90 $69.80 $57.40 $63.90 $69.80 

Wind-Offshore* $136.60 $157.40 $212.90 $125.10 $145.90 $201.40 

NG Conventional 
Combined Cycle 

$45.80 $49.30 $58.90 N/A N/A N/A 

NG Advanced 
Combined Cycle 

$45.10 $45.20 $56.20 N/A N/A N/A 

*Values for hydroelectric and wind-offshore are for systems coming online in 2022. 
Source: US Energy Information Administration 

 

An agency could consider buying offsets, and while some offsets may be very cheap they are 
unlikely to directly benefit the CCE agency’s community. Many CCE agency missions involve 
creating clean, sustainable communities. As a result, it is unlikely that an agency would fund 
projects outside of its community.  
 

Successful Practices Guide 
In addition to building our models, we composed a Successful Practices Guide for CCE agencies 
to use when designing and implementing programs. The guide provides recommendations and 
lessons learned regarding aspects of program design that are not captured in our models. 
Agencies can use our models and guide together to maximize the effectiveness of their programs. 
 
We first conducted interviews with CCE agency staff members and other experts to compile a set 
of programs of interest and to learn from their first-person knowledge of these programs. We 
focused on programs to encourage EV, PV, and indoor fuel switching. We then collected 
relevant information on programs conducted by as many CCE agencies and other organizations 
(e.g. local governments) as possible in order to avoid selection bias, through interviews, 
program-related documents, and academic literature. After collecting all the practices and results 
possible, we examined each practice and determined which factors led to the success or failure of 
each program. We also defined possible problems that might occur and explore possible 
solutions as well as methods to maximize net benefits. Finally,  
when documenting successful practices, we included any case-specific conditions affecting each 
practice we found. 
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Conclusion 
CCE agencies are looking for ways to design and implement the most impactful energy programs 
possible in their communities. Many agencies are new and lack robust program decision making 
frameworks, have difficulty predicting the public response, and are unsure of the the resulting 
costs and benefits of the energy programs.  
 
We identified three energy programs that CCE agencies might implement: EV incentives, 
residential solar PV financing, and heat pumps. We developed TCMs for incentivising EVs and 
financing residential solar PV, which capture monetary and non-monetary values to predict how 
consumers may respond to economic incentives for green technologies. Our models calculate the 
resulting monetary, environmental, and health benefits of these programs. For indoor heat 
pumps, we developed a simpler model that calculates the environmental and health benefits of 
switching from natural gas-based to electricity-based heating. We then developed an interactive 
toolkit based on these models so agencies can visualize the potential effects of these programs 
with different design parameters. 
 
Given the financial and environmental focuses of many CCE agencies, we believe that the toolkit 
outputs related to program financial viability and cost of GHG emission reductions will be 
particularly useful to them. The toolkit can help agencies determine the EV and PV programs’ 
financial viability and GHG emission reduction costs at different incentive levels or interest 
rates. Once an agency has determined the optimal program designs for its circumstances, it can 
consult our successful practices guide for strategies to improve program execution and maximize 
program benefits.  
 
Generally, each of the modeled programs results in net GHG emission reductions, but increasing 
electricity consumption from EVs and heat pumps may result in increases in criteria pollutants 
depending on the energy mix. Agencies must consider these trade-offs as they work to electrify 
their communities. CCE agencies should continue to green their electricity mixes to maximize 
the environmental and health benefits of these programs.  
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Appendices 
 

Appendix A. 100-year Global Warming Potential (GWP) from IPCC (2014) 

GHG GWP 

CO2 1 

CH4 28 

N2O  265 

 
 

Appendix B. Emission factors from electricity generation 
 

Fuel Type 
CO2e 

(kg/kWh) 
NOx 

(kg/kWh) 
SOx 

(kg/kWh) 
PM  

(kg/kWh) 

Coal 1.004 2.53 × 10
�3 

6.64 × 10
�3 

 
1.43 × 10

�3 

Natural Gas 0.419 3.80 × 10
�4 7.13 × 10

�6 2.17 × 10
�5 

Biomass  0.372 9.27 × 10
�4 6.03 × 10

�4 2.81 × 10
�3 

Geothermal 0.026 0 1.59 × 10
�4 0 

Large Hydro 0.011 0 0 0 

Nuclear 0 0 0 0 

Solar, Wind, 
Small Hydro 

0 0 0 0 

Unspecified 
Sources  

0.419 3.80 × 10
�4 7.13 × 10

�6 2.17 × 10
�5 
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Appendix C. Vehicles included in the EV model, organized by engine type and vehicle class. 

 

Engine Type Vehicle Class Included Models 

Internal Combustion 
Engine 

Subcompact Nissan Versa, Kia Soul, Honda Fit, Hyundai Accent, Fiat 500 

Compact 
Honda Civic, Toyota Corolla, Chevrolet Cruze, Nissan Sentra, 

Hyundai Elantra 

Midsize 
Honda Accord, Toyota Camry, Nissan Altima, Ford Fusion, 

Hyundai Sonata 

Large 
Dodge Charger, Toyota Avalon, Chevrolet Impala, Nissan 

Maxima, Chrysler 300 

Near & Entry Luxury 
Mercedes-Benz C-Class, BMW 3-Series, Lexus IS, Lexus ES, 

BMW 4 series 

Luxury and High End 
Sports 

Mercedes-Benz E-Class & CLS-Class, BMW 5-Series, 
Mercedes-Benz S-Class, Lexus GS 

Sports 
Ford Mustang , Chevrolet Camaro, Dodge Challenger, Hyundai 

Veloster, Marzda-MX5 

Compact & 
Subcompact SUV 

Toyota RAV4, Honda CR-V, Nissan Rogue, Subaru Forester, 
Mazda CX-5 

Mid & Large SUV 
Ford Explorer, Toyota Highlander, Subaru Outback, Jeep Grand 

Cherokee, Honda Pilot 

Luxury Subcompact & 
Compact SUV 

Lexus NX, Mercedes GLC/GLK-Class, Audi Q5, Acura RDX, 
BMW X3 

Luxury Mid & Large 
SUV 

Lexus RX, Mercedes GLE/M-Class, BMW X5, Acura MDX, 
Mercedes GLS/GL Class 

Non-Plugin Hybrid 

Subcompact Toyota Prius C 

Compact Ford C-Max hybrid, Toyota Prius, Toyota Prius V 

Midsize 
Ford Fusion Hybrid, Honda Accord Hybrid, Toyota Camry 

Hybrid, Hyundai Sonota Hybrid, Chevrolet Malibu Hybrid 

Large Toyota Avalon Hybrid 

Luxury Hybrid Non 
Plug in 

Lexus CT200h Hybrid, Lincoln MKZ Hybrid, Lexus ES 
Hybrid 

Compact SUV Toyota RAV4 Hybrid 

Midsize SUV Toyota Highlander Hybrid 

Luxury SUV Lexus NX Hybrid, Lexus RX 400 / 450 Hybrid 

Plugin Hybrid 

Compact Chevrolet Volt, Ford c-Max Energi 

Midsize 
Toyota Prius Prime,  Ford Fusion Energi, Hyundai Sonata 

Hybrid 

Sports BMW i8 

Luxury Audi A3 e-tron, BMW 330e 

Luxury  High End Mercedes S550e Plug In 

Luxury Midsize 
BMW X5 eDrive,  Porsche Cayenne Hybrid, Volvo XC90 

Hybrid 

Battery Electric 

Subcompact Fiat 500e, Chevrolet Spark EV, Smart Fortwo, Kia Soul EV 

Compact 
Chevrolet Bolt Nissan Leaf, Volkswangen e-golf, Ford 

Focus Electric 

Luxury BMW i3 (Luxury), Mercedes B-class EV 

Luxury High End Tesla S 

Luxury SUV Tesla X 
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Appendix D. Car models missing cost data and their sources for substitute data 

 

Segment Model Used data from  

Sport Plug-in Hybrid BMW i8 Volvo XC90 Hybrid 

Luxury SUV Plug-in Hybrid BMW X5 eDrive Volvo XC90 Hybrid 

Subcompact EV Smart Fortwo EV Chevrolet Spark EV 

Subcompact EV Kia Soul EV Chevrolet Spark EV 

Compact EV Volkswagen e-golf Nissan Leaf 

Compact EV Chevrolet Bolt Chevrolet Bolt 

Luxury Small EV Mercedes B-class EV BMW i3 

Luxury High End EV Tesla S 
BMW i3 & Porsche 

Cayenne Hybrid 

Luxury SUV EV Tesla X 
BMW i3 & Porsche 

Cayenne Hybrid 

 
 

Appendix E. Criteria used to filter the NEM California Distributed 
dataset (2017) to give number of houses with existing PV systems in 
2015. Only data that matched the Included Values for each Category 
were included in the housing count.  

Category Name Included Values 

Application Status Interconnected 

Technology Type Solar PV 

Customer Sector Residential 

Project is VNEM, NEM-V, NEM-AGG? No 
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