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Glossary of Terms

AGL (Altitude Above Ground Level): the height (in feet) above ground which a UAV flies

over a land area locally.

AVIRIS (Airborne Visible/Infrared Imaging Spectrometer): a premier instrument in the

realm of Earth Remote Sensing, AVIRIS is a unique optical sensor that delivers calibrated

images of the upwelling spectral radiance.

ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer): an

instrument sensor resulting from a partnership between US and Japanese space programs,

it sits aboard the Terra multinational satellite.

CASI-Il (Compact Airborne Spectrographic Imager 2): a high spatial and spectral resolution

remote sensing sensor that can produce digital geocoded imagery for map registrations, GIS

integration, and generates multiple value-added information products from the same set of

image data.

Drone: colloquial name for UAVs/UASs, the term is used in this project in reference to

relatively small (<5 pounds), personal drones.

EO-1 Hyperion: a high-resolution hyperspectral imager, a USGS instrument

FAA (Federal Aviation Administration): a U.S. Department of Transportation Agency with

the authority to regulate and oversee all aspects of American civil aviation.

Fixed Wing UAV: a drone model that has the appearance of an airplane, with rotors

positioned on the wing tips.

Gimbal: an attachment used to add a camera to a drone. The function is to keep the camera

stable for clear images.

Ground Truthing: used by remote sensing analysts to ensure that their image analysis is

accurate; the process of going into the field to the actual places shown in the images to

confirm that what they think they see on the image is actually true. This can be done before

or after image collection.

KML (Keyhole Markup Language): a common file format for expressing geographic

annotation and visualization within Internet-based, two-dimensional maps and three-

dimensional Earth browsers.

Landsat (Land Remote-Sensing Satellite System): a joint NASA/USGS program, the Landsat

series of satellites provides the longest temporal record of moderate resolution

multispectral data of the Earth’s surface on a global basis. “TM” refers to Thematic Mapper,

one of the sensors aboard the satellites.

LOS (Line of Sight, or Visual Line of Sight): ability of pilots to see their drone during flight

with the naked eye.

MaxEnt: a program for modeling species distributions from presence-only species records.
X



NDVI (Normalized Difference Vegetation Index): a graphical indicator that can be used to
analyze remote sensing measurements to assess whether the target being observed
contains live green vegetation or not.

NLCD (National Land Cover Dataset (2011)): the most recent national land cover product
created by the Multi-Resolution Land Characteristics (MRLC) Consortium.

No Fly Zone: areas where flying a drone is restricted by government regulations. Areas
where a drone could interfere with an airplane or record sensitive information make up
most of these areas.

Part 107: Required in the US when operating a drone for commercial purposes. Refers to
CFR Part 107 of the Federal Aviation Regulations for non-hobbyist unmanned aircraft
operations, which covers a broad spectrum of commercial uses for drones weighing less
than 55 pounds.

Payload: refers to anything extra that a drone is carrying (ex. an attached camera and
gimbal). Also, refers to the amount of additional weight a drone is able to lift in addition to
its own weight and batteries (ex. may include the combined weight of a drone plus the
camera and gimbal attached to the drone).

Quadcopter: the most popular name for Small UAVs, which has 4 rotors positions on a
horizontal plane like a helicopter.

Remote Sensing: the scanning of the earth by sensors on satellites or high-flying aircraft in
order to obtain information about it.

Resolution: refers to spatial resolution, which describes how clearly detail can be seenin a
picture. Measure in distance units per pixel (ex. inch/pixel, cm/pixel, or m/pixel).

Sensor: a device that records a remote sensing image, similar to a camera.

sUAS: small unmanned aircraft system

UAS (Unmanned Aircraft System): an all-encompassing term for everything that makes a
drone/UAV operate (ground control station with pilot, communications, support
equipment, etc.)

UAV (Unmanned Aerial Vehicle): an aircraft without a human pilot onboard —instead, the
UAV is controlled from an operator on the ground. It is sometimes called a drone.

Xi
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Abstract

The Tejon Ranch Conservancy helps manage over 100,000 acres of conservation easements
located in Southern California at the intersection of four major ecological zones. The
Conservancy's ability to monitor these easements is constrained by their small staff and
limited budget. One of these monitoring targets is tamarisk, an invasive weed. Tamarisk
infestations dramatically alter local landscapes, threatening native plants and animals,
making it a management priority for the Conservancy. We explored how the Conservancy
could use imagery from drones and satellites to expand their monitoring reach, using
tamarisk as a proof of concept. We assessed the usefulness of drone and satellite imagery to
identify invasive plant species to more effectively mobilize the Conservancy's limited weed
management resources. We reviewed the capabilities of these technologies, completed a
series of drone test flights over the property, developed image classification models to
identify different weed species in ArcGIS, and identified areas susceptible to tamarisk
invasion using the MaxEnt species distribution model. The results of these analyses were
synthesized into an iterative monitoring framework. A cost benefit analysis of investment
options in drone technology revealed that it is practical and effective for the Conservancy to
purchase and operate a drone for monitoring purposes.



Executive Summary

The Tejon Ranch Conservancy is the management body for over 100,000 acres of
conservation easements owned by the Tejon Ranch Company. The Conservancy aims to
develop stewardship practices to maintain and restore the ecosystems that cover the Ranch,
and expand understanding of the Ranch’s unique and extraordinary natural resources. Tejon
Ranch contains a diverse range of plants and animals due to its unique location at the
convergence of four major ecological regions (Sierra Nevada, Mojave Desert, Great Central
Valley, and Southwestern California), and is a critical wildlife corridor for several listed
endangered species.

The Conservancy is responsible for monitoring expansive swaths of land, but its management
resources are limited. Our research assesses if and how the addition of predictive modeling
and high-resolution landscape mapping using unmanned aerial vehicles (UAVs or drones)
and/or remote sensing would help the Conservancy make better use of its limited resources.
We provide a cost-benefit analysis of these new technologies as compared to a baseline of
the Conservancy’s traditional management practices. One of the Conservancy’s priorities is
the management of invasive plant species. Our project focuses on weed management, the
riparian weed Tamarisk (Tamarix spp.) in particular, as a proof of concept for enhancing
conservation activities using an air-ground-based monitoring system.

We completed an initial literature review to assess the usefulness and cost effectiveness of
different remote sensing and UAV technologies. We began with satellite imagery and
tabulated different sources of satellite imagery with information about their temporal,
spatial, and spectral resolution, operational lifetime, spatial accuracy, online community and
support, and access. We systematically matched imagery sources to particular conservation
guestions or objectives, which we achieved through the creation of a Traceability Matrix. The
Matrix matches conservation questions to useful or necessary sources of imagery, contingent
on the specifications of each question. Regarding invasive plant species, a number of studies
indicate Landsat data can successfully detect established tamarisk at larger spatial scales and
in conjunction with spatial subsetting techniques. However, resolution of satellite sources is
not fine enough for early-stage detection.

Because early-stage detection is critical to weed mitigation, we moved on to consider UAV or
“drone” imagery, as it provides resolution on a much finer scale. Because Tejon Ranch is such
a massive property, and using drones to attempt to image the entire Ranch would be an
unwieldly process, we also considered it necessary to strategically identify land parcels that
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would be good candidates for drone flights. To do this, we used MaxEnt, a species distribution
model, to determine potential areas of invasive plant species occurrence at the Tejon Ranch
Conservancy. MaxEnt uses presence data and environmental variables to predict species
occurrence across a landscape. Presence data for plant species was sourced from the 2016
Incidental Weed Encounter Data provided by the TRC staff. We used tamarisk presence data
in conjunction with nine environmental layers in MaxEnt 3.3.3. Our results show that
Tamarisk probability of occurrence is highest along major streams (Fig. 15). Predictions of
Tamarisk occurrence were fairly accurate with an area under the curve (AUC) of 0.989. Major
streams had the largest contribution followed by soil type. All other variables had low (<5%)
contribution. The areas identified by MaxEnt are those most susceptible to invasion, and are
therefore priority site for drone flights to ensure rapid mitigation. One of those sites was
Caliente Creek, where we identified a 40-acre field site called Panofsky to conduct test flights.

To determine if UAV imagery could be used to identify targeted locations of invasive weeds
to the species level, ground truthing was conducted at the 40-acre Panofsky Field site prior
to UAV flights. We performed a preliminary ground truth survey to identify and geotag
common invasive and native plant species present throughout the Panofsky parcel. Before
each drone flight, we placed cardboard arrow signs next to the target plants to assist with
later locating the training areas in the drone imagery. After the geo-referenced stitched maps
were created from the UAV imagery, we matched the ground truth data to the individual
plant targets in the imagery.

Drone flights were performed on two separate flight days about one month apart at Panofsky
Field. The first flight was conducted by RoboHawk Aerial Video & Photography on September
11, 2017, and the second by AeroVironment on October 12, 2017. RoboHawk Aerial Video &
Photography was able to map Panofsky Field at multiple elevations (120 and 200 feet AGL)
using a DJI Phantom 4 Advanced. Flight durations ranged from 40 minutes for the 120-foot
AGL flight, to 1.5 hours for the 200-foot AGL flight to map Panofsky with three and four
battery swaps, respectively. Over 1000 individual still images were captured from the
Phantom 4 flights and stitched into a mosaic map. AeroVironment used their precision
agriculture drone platform, the Quantix, to map Panofsky Field in less than 10 minutes at an
altitude of 360 feet AGL and generate preview mosaics in the field.

After the imagery was acquired, we attempted two methods of image classification to

automate the identification of plant species: pixel-based maximum likelihood classification,

and object-based discriminant analysis. For the pixel-based classification, a composite 4-band

image (NIR+RGB) was generated from the drone imagery for use as input into a supervised

classification. Using the ArcGIS Maximum Likelihood Classification tool, defined training
3



samples were selected from ground truthed plant patches to serve as confirmed positive
matches. Based on the spectral properties within the defined patches, the tool classified
individual pixels to one of four classes (tamarisk, short pod mustard, tree of heaven, and a
general oaks class). With a conservative reject fraction of 0.25, the software was successfully
able to identify individual oaks and short pod mustard patches, but was generous in its over
classification of tamarisk and tree of heaven throughout all regions of the parcel.

For the object-based classification, we used an R statistical package called radiomics and
ArcGIS ModelBuilder to develop a method to calculate 25 different texture features within
the drone imagery. Imagery from both drone test flights was used, with 1 cm resolution RGB
imagery from the first and 5 cm resolution NIR from the second. Discriminant analysis, a
statistical technique for identifying patterns characterizing classes, was used to classify the
image from the derived texture features. In test the methods capabilities in distinguishing
invasive tree of heaven in the test imagery, we found that this method was unable to
distinguish tree of heaven with our limited groundtruth dataset to a useful level of accuracy.
The model had a low percentage of false negatives, as only 9 of 60 presence points were
classified by the model as “absence” points. However, the classification of tree of heaven had
a training error of 0.15 and with 51 true positive and 26 false positives, and the model’s
precision was 66.2%. Despite the mixed results of our analyses, it is clear that the
implementation of drone technologies can drastically increase data collection abilities but
can be optimized for specific applications such as habitat monitoring and surveying.

Finally, A cost benefit analysis was completed to evaluate two potential management options
that incorporate drone technology into the Conservancy’s monitoring strategies: (1) the
Conservancy purchases a drone and all related accessories and permitting or (2) the
Conservancy contracts a drone service to conduct monitoring flights over the property.
Information about the costs for each option was collected and simulated over a five-year
period. We chose this short period in recognition of the rapid evolution of drone technology,
as the cost of commercially available drones and drone-related services will decrease over
time. The benefits of drone technology were quantified in terms of time savings, hinging on
the assumptions that drone technology would maintain the same accuracy as a field survey
in identifying invasive plants. Using information about how much time the Conservancy
spends on weed monitoring, it was determined that implementing drones would yield
discounted time savings of $16,524.64 over five years. For option 1, this translated into a
benefit-cost ratio of 1.15, with the overall costs for the five years amounting to about
$14,325. Option 2 yielded dramatically different results, as costs for contracting a drone
service to replicate our trial flight once a month over five years amounted to over $100,000.
This resulted in a benefit-cost ratio of 0.15. Option 1 is thusly far more favorable than option
4



2, but is only slightly more favorable than the status quo of current monitoring strategies.
However, this CBA was limited to the benefits of using drones for monitoring weeds, so it is
reasonable to assume that if benefits were expanded to include all Conservancy activities,
the overall benefits of a drone purchase would only increase while costs remain relatively
static.

Our research confirmed that drones, if properly utilized, can be a useful tool to expand the
monitoring reach of the Tejon Ranch Conservancy. However, Tejon Ranch is too large and
variable in terrain to monitor in its entirety, multiple times per year, as would be desirable to
detect invasive plant presence. Therefore, the Conservancy must be able to prioritize specific
areas to target for drone surveys. Through our MaxEnt model, the Conservancy can identify
highly susceptible areas to conduct flights. The presence data that would be gathered from
these flights could then be used as inputs into new iterations of the MaxEnt workflow to more
accurately predict future invasive plant dispersal risk. This creates a positive feedback loop in
which the workflow is continually updated with environmental data and new presence data,
and the overall monitoring framework becomes more robust and efficient. The Conservancy
could also adapt this monitoring framework to include other conservation interests such as
conifer mortality and endangered species monitoring. We believe that this framework may
have potential applications for similarly resource-constrained organizations like the
Conservancy, facilitating conservation activities despite financial limitations.

1. Introduction



1.1 Tejon Ranch Conservancy

The Tejon Ranch is the largest private landholding in California. At over 270,000 acres, this
property, located near Lebec, California, is owned by the Tejon Ranch Company. In 2008, the
Tejon Ranch Conservancy was established as the management body for 109,000 acres of
conservation easements belonging to the Tejon Ranch Company (RWMP, 2013). This
partnership between corporate and nonprofit entities has helped facilitate research,
stewardship, and public access in conserved lands since its inception (RWMP, 2013).
Conservancy-monitored lands consist of approximately 240,000 acres of varied landscapes
including desert, steppe grasslands, mountainous conifer stands, and oak galleries. The
Conservancy aims to develop stewardship practices to maintain and restore these Ranch
ecosystems, and expand understanding of the Ranch’s unique and extraordinary natural
resources (RWMP, 2013). Tejon Ranch is of conservation interest due to its unique location
at the convergence of four major ecological regions (Sierra Nevada, Mojave Desert, Great
Central Valley, and Southwestern California) containing a diverse range of plants and animals
(Figure 1). The Ranch is a critical wildlife corridor between the many protected lands in the
area, from the Sierra Nevada to the Los Padres National Forest (RWMP, 2013). It supports
habitats for several species listed under the Endangered Species Act including the California
Condor and Bakersfield cactus (US Fish & Wildlife Service, 2017).

The Conservancy is responsible for monitoring expansive swaths of land, but in recent years
has found itself low on resources with which to look after its properties. Our research
assesses if and how the addition of predictive modeling and high-resolution landscape
mapping using unmanned aerial vehicles (referred to hereafter as UAVs or drones) and/or
remote sensing would help the Conservancy make better use of its limited resources. We
provide a cost-benefit analysis of these new technologies as compared to a baseline of the
Conservancy’s traditional management practices outlined in the Ranch Wide Management
Plan (RWMP). The RWMP is a blueprint for the Conservancy’s management actions, with one
priority being the management of invasive plant species. Our project focuses on weed
management as a proof of concept for enhancing conservation activities using an air-ground-
based monitoring system.
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Figure 1. A map of the four ecoregions that overlap within the bounds of Tejon Ranch. The Ranch boundaries are
delineated in white.



1.2 Project Objectives

The purpose of this project is to:

e Review current methods for air-ground-based monitoring. Determine what can be
measured using drones, and what resources are required to analyze drone data. Compare
the effectiveness of existing methods using open access spatial data such as Landsat and
AVIRIS.

e Determine how these technologies can be used at the Tejon Ranch Conservancy to
identify species and regions of interest, using the invasive weed tamarisk as a case study.

e Develop an integrated air-ground-based monitoring framework for the Tejon Ranch
Conservancy based on the costs and benefits of drone and remote sensing technologies.

1.3 Significance of the Project

These objectives support the Conservancy’s efforts to better understand Tejon Ranch’s
rapidly changing ecosystem dynamics and more effectively steward the land in response to
growing threats such as invasive plant species and climate change. An exploration in the
modeling of plant distributions and its role in ecosystem monitoring can prove to be fruitful
when managing reserves with limited field staff. On a large property with the scale of Tejon
Ranch, early detection of invasive plant spread enables early mitigation. While the
Conservancy complies with best management practices in regards to species-specific plant
disposal, rapid detection can be achieved through the integration of monitoring and modeling
technology. Our plan seeks to establish a framework for the union of such technologies in a
conservation context that is both applicable for landscapes beyond Tejon Ranch and
accessible for resource-constrained managers like the Conservancy.



2. Background

2.1 Vegetation & Ecosystem Management by Tejon Ranch
Conservancy

Top-Priority Invasive Species on Tejon

Several invasive plant species are of particular concern to the Conservancy, including Sahara
mustard, shortpod mustard, tree tobacco, yellow starthistle, and tamarisk (also known as
saltcedar, Tamarix ramosissima, and Tamarix parviflora). According to the United States
Department of Agriculture, invasive species are “plants, animals, or pathogens that are non-
native (or alien) to the ecosystem under consideration and whose introduction causes or is
likely to cause harm” (USDA, 2018). Invasive weed monitoring is critical to the goals of the
Conservancy. The proliferation of invasive plants such as tamarisk can drain creeks and
springs as it outcompetes native willows and cottonwoods in terms of water acquisition
(Gaskin, 2003). Tamarisk typically grows in saline soils and can tolerate a maximum of 15,000
ppm of soluble salt. It is also capable of increasing soil salinity and can tolerate alkaline soil
types, evident by the salt secretions that often encrust its leaves. Other negative impacts of
tamarisk include increasing the frequency and intensity of fires (Busch, 1995; Busch and
Smith, 1995; Ellis et al., 1998) due to the plant’s vegetation structure and floods due to
channel-narrowing (Blackburn et al., 1982).

Tamarisk Biology and Management

Tamarisk grows as an evergreen, deciduous shrub or small tree (Evangelista, 2009).
Phenologically, these plants have slender branches, small scale-like leaves of grey-green, and
bark that progresses from reddish brown and smooth when young, to bluish-purple with
furrows and ridges when older (Dirr, 1997). When flowering, it can be easily identified by its
dense masses of characteristic small, pink flowers, aiding in its dispersal as an invasive plant
species that is present at several locations on Tejon Ranch.

Tamarisk eradication methods often include manual stem cutting paired with direct
application of herbicide to the stump. Our research group was able to participate in bio-
control efforts on the ranch led by UCSB’s RIVR (Riparian InVasion Research) lab using
tamarisk beetles (Diorhabda carinulata). This invasive plant as well as other invasive plant
species such as yellow starthistle thrives in such disturbed habitats. Yellow starthistle
(Centaurea solstitialis) is highly vectorized via roads (AMNH). It is an aggressive invader that
can rapidly convert landscapes into monocultures by outcompeting most other vegetation
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including native plant species. Late in the season, it turns from green to dry skeletons of
yellow starthistle. In effect, this can exacerbate the buildup of dry vegetative fuel load and
create fuel for late-summer wildfires (DiTomaso et al., 2006).

Current Management Strategies for Invasive Plant Species

Currently, invasive plant species, such as tamarisk, Sahara mustard, shortpod mustard, tree
tobacco and others, are identified and located on the Ranch using time-intensive, infrequent,
or costly methods including incidental on-the-ground observations, helicopter aerial surveys,
or contracted botanist plant surveys. The Conservancy complies with best management
practices in regards to species-specific plant disposal.

2.2 Integrating Distribution Models and Detailed Monitoring for Exotic
Plant Management

The MaxEnt Model

MaxEnt is a software model that uses presence-only data and environmental variables to
produce an estimated species distribution in a defined area (Merow et al., 2013), by creating
a distribution of maximum entropy using a set of constraints including climate, topography,
and vegetation (Hoffman et al., 2008). A study compared MaxEnt to 16 other species
distribution models and concluded that MaxEnt was most accurate (Hoffman et al., 2008). To
increase the accuracy of MaxEnt, more presence data can be included in the model. Models
with at least 400 presence data points have been shown to have the most accurate results,
but in some instances models with 100 presence data points have performed comparatively
(Phillips et al., 2004).

Modeling Plant Species Distribution with MaxEnt

There are well over 1000 published studies that have used MaxEnt to predictively model
species distribution (Merow et al., 2013), one of which used MaxEnt to predict the
distribution of five invasive species including tamarisk along the North Platte River in
Nebraska (Hoffman et al., 2008). The environmental variables used by Hoffman et al. included
WorldClim climate data, elevation, slope, aspect, vegetation, soil type, and distance from
roads, streams, and other human impacts. Hoffman et al. concluded that MaxEnt accurately
predicted the distribution of four out of the five species and speculated that the fifth species
was not predicted correctly because of sampling error.
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2.3. Satellite Imagery for Environmental Monitoring

Vegetation Mapping for Conservation Planning and Management

Technological progress in image resolution and sensor development has greatly improved the
ability to distinguish canopy structure, and physiology and phenology of vegetation from
remotely sensed imagery. Vegetation mapping via image processing techniques applied to
remotely sensed imagery is a rapidly evolving field with many high-potential applications for
conservation planning and management (Ustin & Gamon, 2010; Millerova et al., 2013; Joshi
et al., 2004; Xie et al., 2008; Hestir et al., 2008; Ustin et al., 2004). Satellite imagery has been
used to detect stress and mortality in coniferous forests (Bright et al., 2013; Eitel, 2011,
Meddens et al., 2013; Ferrell et al., 1993; Hicke & Logan, 2009; Ortiz et al., 2013), map
vegetation at landscape scales (Roth et al., 2015; Rogan et al., 2002; Dye et al., 2016; Xie et
al., 2008; Van de Ven & Weiss, 2001; Dabrowska-Zielinska et al., 2014), and aid in detection
of invasive plants (Sankey et al., 2014; Hestir et al., 2008; He et al., 2011; Narumalani et al.,
2009; Lawes & Wallace, 2008; Ghulam et al., 2013; Skowronek et al., 2017).

Detection of Tamarisk from Satellite and Aerial Imagery

The detection and mapping of two tamarisk species of high concern to the Tejon Ranch
Conservancy, Tamarix ramosissima and T. parviflora, have been extensively studied (West et
al., 2016; Meng et al., 2012; Evangelista et al., 2009; Hamada et al., 2007; Everitt et al., 1990).
Detection algorithms can use single-date imagery or time series, as well as additional
environmental data/variables. Everitt and Deloach recommend that single-date aerial
assessments of large infestations of tamarisk be done in the late fall or early winter and in
mid-January for smaller populations after foliage changes color but before it drops (Everitt &
Deloach, 1990). West and her team used eight months of Landsat imagery as inputs to five
species distribution models to detect tamarisk distributions based on phenological
differences from nearby vegetation (West et al., 2016). They recommend topography,
climate, and soil layers be included when predicting suitable habitat but that a limited
number of these environmental and climate layers be used when modeling current
distribution (West et al., 2016).

Landsat TM data has been used to effectively monitor tamarisk defoliation, though other
types of disturbance or defoliation in the area can distort the signal (Meng et al., 2013; Hurley,
2004). Many studies will subset the area prior to using detection algorithms to help reduce
these false positive errors. For example, one study used the National Land Cover Dataset
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(NLCD) class 90 (woody wetland) to subset a study area likely to contain tamarisk, and then
applied a disturbance index to detected defoliation (Meng et al., 2013).

Limitations of Satellite Imagery in Environmental Monitoring Applications

While its usefulnessis illustrated by these studies, there are still significant limitations to using
satellite imagery for environmental management. (1) Available and/or affordable imagery
may not be of high enough spatial, temporal, and/or spectral resolution to resolve certain
targets, especially in the presence of confounding environmental variables; (2) designing and
calibrating methods to extract specific information may require a high level of expertise in
remote sensing methodology and/or ecology of target species; (3) depending on methods
and imagery used, large-scale monitoring may be very computationally intensive, and (4) the
methods must be robust to slight variations in resolution and calibration of sensors to be
reusable over time.

The results from our literature review of satellite detection applications for the Conservancy
are condensed into a Traceability Matrix (appx. 15) that matches conservation questions to
useful or necessary sources of imagery, contingent on the specifications required to analyze
imagery with accuracy.

2.4 Unmanned Aerial Systems Imagery for Environmental Monitoring

UASs for Environmental Monitoring

For decades, governments have been developing UAS technology (Unmanned Aerial Systems
or drones), typically for military specific uses such as intelligence gathering. Now, private UAS
manufacturers are providing consumers with smaller, ready-to-fly drones at commercially
affordable prices (<$1000), with low operating costs, and the added benefit of increased flight
flexibility to immediately capture rapidly changing ecological processes or patterns (DJ2I;
Yuneec; Rango et al., 2009). These remotely operated platforms can be outfitted with imaging
sensors capable of collecting high-resolution imagery in thermal and near infrared
wavelengths as well as the visible range of the electromagnetic spectrum (Michez et al., 2016;
Gonzalez et al., 2016). In this report we refer to UAVs, UASs, and drones interchangeably.

Environmental monitoring through the use of drones can avoid common remote sensing
issues such as cloud cover, and allow researchers or managers to identify vegetation species
more confidently (Anderson and Gaston, 2013; Dehaan et al., 2012). Personal drones allow
for more flexible timing of flights and thus can provide more valuable time-scale survey data
than satellite data, which may not be as useful without significant, time-consuming image
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processing. This can be critically important to monitoring and managing invasive plant surges
in response to precipitation or disturbance events (Davies and Sheley, 2007).

Drones have demonstrated high potential for conservation applications in a variety of fields,
including thermally identifying Koala nests in Queensland, Australia (Gonzalez et al., 2016),
assessing habitat vegetation cover types and habitat quality for the Sage Grouse in Idaho
(Breckenridge et al., 2011), estimating South Korean coniferous tree coverage area (lvosevic
et al., 2017), and discriminating invasive thistle plants from surrounding vegetative cover in
Greece (Tamouridou at al., 2017). This technology can also be useful for easement
compliance monitoring because users can pre-program geographically confined flight paths
to map parcel areas or boundaries.

Unmanned Aerial Vehicle (UAV) Design

Drone design can generally be divided into two categories: (1) Multi-Rotor and (2) Fixed Wing
configurations. Multi-rotor designs are typically less expensive and, unlike fixed winged
designs, they can halt forward flight, hover, and rotate the camera to focus on or follow
specific targets. Multi-rotor drones like the DJI Phantom 4 benefit from vertical take-off and
landing and come with obstacle avoidance, which is useful in non-open environments. Fixed
winged platforms fly in the same manner as traditional airplanes with fixed imaging cameras
in the plane’s “belly” facing towards ground targets. This format can cover more land area
per flight when compared to multi-rotor platforms, but imagery can be subject to motion blur
if the sensor is not sufficiently stabilized or synchronized to the flight speed (Breckenridge et
al., 2011). Some fixed wing platforms need a second operator to launch the drone. Depending
on the design, landing either requires an open area for a controlled crash or the drone can be
caught by a second operator. Another drone model is the hybrid fixed wing platform, which
has vertical takeoff and landing features and transitions into horizontal flight once it reaches
a certain height above ground level. See Appendix 1 for a comparison table of current
consumer drone platforms.

Federal Regulation of Commercial Drone Use

In 2016, the Federal Aviation Administration (FAA) in collaboration with the Department of
Transportation (DOT) published Part 107 of the FAA Regulations, which specifies the
certifications required for legal and safe commercial UAS operation. A Part 107 permit is
required for any individual who is using a drone for non-recreational purposes, such as crop
monitoring, research, bridge inspections, rescue operations, or wildlife nesting area
evaluations (FAA, Part 107). Permits can be obtained by passing an aeronautical knowledge
test at an FAA-approved testing center. Drones may be flown only in the daytime, at a
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maximum altitude of 400 feet above ground level, while always remaining within visual line
of sight of the operator without optic aids (FAA, Part 107). The visual line of site requirement
is @ major limiting factor when surveying large parcels of land but is expected to be relaxed
to permit optical aids in future revisions of UAS regulations. Other restrictions include
maintaining distance from airports and avoiding high wind conditions. These regulations are
in place to ensure safe operation of small aircraft platforms because they often share airspace
with larger aircraft.

2.5 Image Processing for Satellite and UAS Imagery

Image Processing for Classification of Vegetation

The multistep process of obtaining useful information from remotely sensed imagery includes
(1) imagery selection, (2) preprocessing, and (3) classification (Xie et al., 2008). Image
selection is based on spectral, spatial, and temporal resolution, which determine what
information can be extracted from the imagery (Appx. 2). Depending on the imagery selected,
preprocessing may consist of mosaicking or “stitching” multiple images, radiometric or
atmospheric corrections, subsetting data to remove bad spectral bands or images with cloud
cover, or dimension reduction like Principle Component Analysis or Minimum Noise Fraction.

Image classification algorithms are either object-based or pixel-based. Pixel-based
algorithms can be further categorized into either supervised or unsupervised classifications.
Supervised classifications include maximum likelihood, random tree, and support vector

machine in ArcGIS, and minimum distance and spectral angle mapper in ENVI, and require
representative ground truth data points as training sites. Iso-Cluster in ArcGIS is an
unsupervised classification algorithm, which statistically forms a specified number of unique
classes without training sites. Pixel-based classification differentiates between categories or
types of things in an image by statistically grouping pixels together based on their relative
magnitudes in spectral bands (specific ranges of the electromagnetic spectrum measured by
the sensor; e.g. a red band might sense wavelengths between 650 and 750 nanometers).

Object-Based Image Analysis and Texture

Object-based methods delineate objects in an image by grouping neighboring pixels with
similar spectral characteristics (Schiewe, 2002; Ryherd & Woodcock, 1996). As spatial
resolution has increased, objects of interest can be resolved in more detail, so object-based
image analysis has emerged as a way to extract additional useful information. This is
especially true of UAV-acquired data as it can have spatial resolution on the order of

centimeters (Blaschke, 2010; Laliberte & Rango, 2008; Feng et al., 2015). Furthermore, high
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spatial resolution can increase spectral within-field variability, which can diminish accuracy
of pixel-based classifiers, making object-based analysis a particularly effective strategy for
UAV-acquired imagery (Schiewe, 2002).

Texture features — spatial patterns in an image, with properties like coarseness, contrast,
directionality, line-likeness, and regularity — have been considered as a way to compensate
for the lower spectral resolution (most UAV sensors have only a few spectral bands) of UAV
imagery (Ryherd & Woodcock, 1996; Laliberte & Rango, 2008). For example, texture features
increased classification accuracy of invasive Fallopia japonica — a species with characteristic
texture, but usually occurring in small patches and with high degree of intermingling with
other plants — when mapped with low-cost RGB+NIR orthophotos (Dorigo et al., 2012).
Additional studies were limited to a few broader vegetation groups, though they also find
texture is a valuable addition, especially mean, standard deviation, and entropy features
(Laliberte & Rango, 2008; Feng et al., 2015; Szantoi et al., 2013). Object-based image analysis
has also been used for semi-automatic detection of dead trees following bark beetle
outbreaks, with methods able to detect dead trees at a finer scale than visual interpretation,
even within smaller, isolated stands (Heurich et al., 2010).

UAS Image Processing

UAS survey flights collect hundreds of geo-referenced still images that must be stitched into
a larger mosaic image to fully represent the surveyed area. With a capable computer and
access to software such as Agisoft’s PhotoScan or Pix4DMapper, conservationists and
researchers can produce georeferenced mosaic maps suitable for management decisions
(Pix4D) (Agisoft). However, this procedure is computationally demanding, to the extent that
some UAS investigations may choose to outsource their image processing. Software
platforms and services now exist that can help automate UAS survey flights and offer licenses
for unlimited image mosaicking and geo-referencing in exchange for membership fees
(DroneDeploy).

Limitations and Hurdles to UAS Image Analysis for Monitoring

Post-survey image analysis must be performed for imagery to be useful to conservation
managers on a landscape scale. Fully utilizing the potential of UAS in their environmental
monitoring protocol will require investment by the Tejon Ranch Conservancy in staff training
for drone operation, but also software licenses and computing resources. Once these initial
hurdles are cleared, UAS habitat surveys and image analysis can become the foundation for
a replicable protocol that will provide robust time-scaled data.
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3. Methods

3.1 Flights & Ground Truthing

Ground Truthing the Panofsky Field Site

To determine if UAV imagery could be used to identify targeted locations of invasive weeds
to the species level, ground truthing was conducted at the Panofsky Field site prior to UAV
flights. Panofsky Field is an approximately 40-acre field site located adjacent to the northern
border of the Tejon Ranch property. A preliminary ground truth survey was performed to
identify and geotag invasive and native plant species present throughout the Panofsky parcel
using an Avenza Map (an iOS app) with approximately 5-10 m accuracy. Each target plant was
then marked with an identification-numbered orange marker flag.

We chose our targets based on common species and invasive species of interest present at
the site. Our goal was to identify individual plant species at various stages of phenology to
create thorough representative libraries. We intentionally looked for and geotagged a wide
representation of plant species of interest, in a diverse representation of different habitats
within the site (i.e. creekbed, creek bank, grasslands, roadsides, vernal pools, wetland areas,
etc.). Descriptive notes were also taken to assist with plant identification during image
processing. Once identified, we collected additional defining characteristics such as diameter,
percent greenness, flower presence and color, seed presence and relative abundance,
proximity to other plants, and other identifying descriptors. A total of 67 individual plants
were tagged and geo-referenced at Panofsky Field.

Before the flight, we replaced the marker flags with cardboard arrow signs next to the target
plants to assist with locating the training areas in the drone imagery. Each sign was made
from 10” x 18” light brown cardboard with a large, bold arrow painted in black matte spray-
paint to minimize sunlight reflection in the UAV imagery. This signage method was based on
a similar method from a 2017 study by Lu and He. To classify species in a heterogeneous
grassland, Lu and He used unified white foam boards labeled with plot ID codes, which were
affixed to the ground near each study plot to be visible in UAV-acquired imagery. After the
geo-referenced stitched maps were created from the UAV imagery, we matched the ground
truth data to the targets in the imagery (Figure 2). This process is described in section 3.2.
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Panofsky Field image data was captured by Todd White of RoboHawk and processed by DroneDeploy.

Figure 2. Panofsky Field training areas. Map (left side of figure) of tamarisk training areas (red dots)
at the Panofsky Field UAV test flight site. Inset map (right side of figure) indicates with a star the
location of Panofsky Field along the northern border of the Tejon Ranch Conservancy.

RoboHawk Flight

RoboHawk Aerial Video and Photography, a UAV consulting company, performed multiple
surveys of Panofsky Field at varying altitudes using a DJI Phantom 4 UAV on September 11,
2017 (Figure 3). The Phantom 4 system is a commercially available quadcopter platform with
vertical takeoff and omni-directional flight features. Two main flights were conducted: the
first at 200’ above ground level and the second at 120’ above ground level (AGL). The first
flight covered the entire plot (~40 acres) in approximately 39 minutes (9:30-10:09am)
requiring one battery swap (two total batteries for entire flight). The second flight covered
the entire plot in a total of 1 hour and 36 minutes (10:09-11:45 am) and required 3 battery
swaps (4 total batteries for entire flight). Time-of-day is important to consider in order to
minimize the influence of shadows and consistency for time-scale comparisons.
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Figure 3. RoboHawk’s DJI Phantom 4 Advanced in flight
over Panofsky Field.

The drone’s automated flight path was generated in the iOS application DroneDeploy from a
KML file outlining the Panofsky Field parcel boundaries. Based on the boundaries of the area
to be surveyed, the application will generate an overlapping “lawnmower” flight pattern to
obtain the highest quality mosaic possible. The flights were programmed to have a front and
side overlap of 75% using a 12-megapixel RGB (red, green, blue bands) camera. To offset the
heavy computational demands of image mosaicking, all RoboHawk-collected imagery was
uploaded to DroneDeploy’s cloud service that processed and generated geo-referenced
orthomosaic maps at resolutions of 5 cm/pixel (at 200" AGL) and 1 cm/pixel (at 120" AGL)
from the 1000+ original JPEG images. Orthomosaics are composite images made of many
individual still photos that also correct for distortion attributed to factors such as the earth’s
surface and camera lens distortion.

AeroVironment Flight

AeroVironment, Inc. (AV) used their new agriculture-specific platform, Quantix, to map
Panofsky Field. AV is targeting Quantix at commercial agriculture usage with integrated
sensors collecting 18 megapixel RGB and Near-Infrared data to inform vegetation health
assays. The Quantix system is a unique fixed wing, forward flying design that can also takeoff
and land vertically like a quadcopter system (Figure 4). The AV survey flight took place at
Panofsky Field on Oct 12, 2017 and covered the entire plot in 9 minutes (10:24-10:33am) at
a fixed altitude of 360" AGL. AV’s Decision Support System’s (DSS) software allows users to
pre-program flight paths like DroneDeploy, but also allows users to obtain field-processed
preview mosaics for preliminary analysis. DSS is similar to DroneDeploy in that flight paths
are typically “lawnmower” patterns. The flight was programmed to have a side overlap of 70-
75% while flying at a fixed altitude of 360" AGL to optimize image quality from the fixed
aperture sensors. Processed outputs from this flight were georeferenced orthomosaics at

resolutions of 2.5 cm/pixel.
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Figure 4. AeroVironment’s Quantix drone in
preparation for takeoff.

3.2 Image Processing

We used two methods of image processing in attempts to discriminate tamarisk from other
plant species of interest in the imagery acquired by the drone flights (Figure 5). Both methods
are types of supervised classifications, as described in the background section. The first
method described below is a pixel-based maximum likelihood classification, and the second
is an object (i.e., polygon) based discriminant analysis classification. We chose to explore
these two methods specifically because the computing tools that are required to complete
them are easily accessible to the Conservancy, and can potentially be replicated by
Conservancy staff should they choose to employ this technology.

Advanced; RIGHT: The same site captured by AeroVironment’s Quantix.
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Classification: Pixel-based Maximum Likelihood Classification

Normalized Difference Vegetation Index (NDVI) is an indicator of vegetative health, based off
reflectance of visible and near-infrared light. Living plants containing photosynthetically
active chlorophyll absorb more visible light in the red and blue wavelengths, which
contributes to their common green appearance. NDVI can provide the Conservancy with the
ability to quantitatively monitor the efficacy of their biocontrol management efforts through
seasonal flights measuring tamarisk dieback. Understanding that different plant species can
have different amounts of relative chlorophyll at a given time, the differential absorbance
from the varying plant species was used to inform our supervised classification.

Quantix output maps provided Red band data and NDVI data, but NIR bands are required to
establish unique spectral signatures for each defined plant class. Thus, the NIR band must be
recovered algebraically, by the process detailed in the following section.

NDVI Cell Grouping Layer Methods

In order to reduce the processing load on our computing systems and software, our
methodology will only analyze NDVI data in contiguous clusters large enough to be
representative of a complete plant approximately 0.5m? (200 pixels) in size. Using ArcGIS’s
Reclassify, Region Group, and Raster to Polygon tools, we generated a mask that would
exclude any NDVI values outside the appropriate size and grouping thresholds. (See Appendix
3 for the ArcGIS ModelBuilder workflow.)

Once the masked NDVI layer was generated, raster values were normalized so that values
range from -1 to 1 using the following raster calculation formula:

Normalized Value = (Input NDVI/127.5) — 1

Once normalized, NIR signatures were calculated from a reconfiguration of the original NDVI
formula:
(NIR — Red)

NDVI=——-
(NIR + Red)

(Red) = (1 + NDVI)

NIR =
(1 - NDVI)

The NIR band was stacked with the RGB imagery to create a 4-band raster image, which serves
as the input data of the supervised classification procedure.
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NDVI Layer to NIR for Classification Input

NDVI alone can help identify areas with photosynthetically active (or live) vegetation, but NIR
data can help distinguish plant species that differ in their reflectance. Using the recovered
NIR data, unique spectral signatures of the various plant species can be used as training input
data for our classification. (See Appendix 4 for the ArcGIS ModelBuilder workflow.)

Generation of Invasive Plant Training Data for Supervised Classification

To perform supervised classifications in ArcGIS, confirmed presence training data must be
generated in order to discriminate distinct plant classes with respect to spectral and textural
uniqueness. Using the Classification toolbar in ArcGIS, we drew training polygons over
confirmed plant targets whose georeferenced locations were identified during ground
truthing trips or via visual comparison to confirmed ground truthed examples. We drew the
training samples conservatively, staying well within the spatial extent of each plant to reduce
false positives in our classification results. The plants we selected for classification were
tamarisk, shortpod mustard, tree of heaven, and tree tobacco. (See Appendix 5 for photos
and descriptions of the plants chosen for training data.)

Supervised Classification

Once the NIR data was recovered from the red and NDVI data, it was composited with the 3-
band RGB imagery data to make a 4-band image (NIR+RGB). Using the ArcGIS Maximum
Likelihood Classification tool, four defined classes of plants were differentiated from training
samples (Table 1). Reject fractions were conservatively set to 0.25, meaning cells were only
classified to one of the four defined groups if there was at least a 25% level of confidence.
This was purposefully set to favor overclassification of vegetation over omitting detection of
potential weeds.

Table 1. The number of presence sample used to train the classification model to identify
and discriminate between different invasive weed species.

Species # of Positive Samples (Present)
Tamarisk \ 10
Shortpod Mustard 10
Tree of Heaven 3
Oaks 3
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Classification: Object-based Discriminant Analysis

Image Pre-Processing

Image pre-processing consisted of using GDAL to reproject the two sets of drone imagery into
NAD-83 UTM zone 11N (the Conservancy’s preferred projection), and clipping them to the
same spatial extent. The spatial subset was chosen so all imagery overlapped within the
region and all ground truth data fell within the boundary. Single-band rasters were extracted
from the RoboHawk Phantom 4 three-band imagery. We resampled NDVI imagery from the
AeroVironment Quantix drone to match the spatial resolution of the RoboHawk Phantom 4
imagery. We created a fifth grey-level raster comprised of an adjusted difference between
the green and red bands of the RoboHawk Phantom 4 imagery. The green-red difference was
adjusted so all values were positive, as required by the texture algorithm. This fifth grey-level
raster was included since valuable information about vegetation is present not only in the
relative magnitudes of red and green reflectance values, but also in the differential between
them. These five single-band rasters were input to the texture feature calculations (Figure 6).

Figure 6. Zoom of five input raster layers for texture feature derivations. Top row from left to right:
original image, red, green. Bottom row from left to right: blue, green minus red, NDVI.

Segmentation for Object Based Analysis

A segmented polygon layer described regions over which to calculate grey-level texture
features within the drone imagery. We created this layer using ArcGIS’s Segment Mean Shift
tool, which generates a raster with pixels grouped by with adjacent pixels with similar spectral
characteristics, creating “segments” of relative spectral homogeneity. We converted these
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regions to a polygon feature layer with unique polygon identification numbers, as the texture
feature calculation requires a polygon input to outline regions of the grey-level raster over
which to calculate texture features. The Mean Shift tool has four parameters: a minimum
number of pixels to be included in a segmented region, the bands to use in determining the
segmentation, and spatial and spectral detail parameters. The minimum number of pixels
was chosen to be 8000 (approximately nine square feet.) The model was run with many
different combinations of spectral and spatial detail, with the best combinations identified by
inspection. Spectral detail was set to 17 and spatial detail to 16 to obtain the segmented layer
that was used in the final analysis. These two parameters indicate the level of importance
given to spectral differences and proximity between features in the imagery, respectively.
Smaller values result in more smoothing while larger values result in more detail.

Texture Feature Calculation

Grey level co-occurrence matrices record how often specific pixel values occur adjacent to
each other. Texture features are statistical quantifications of spatial patterns of raw pixel
values and the grey-level co-occurrence matrices. We calculated twenty-five texture features
for each of the five grey-level bands discussed in the previous section (Appendix 6). These
features are the same as those in the R “radiomics” package, and were calculated in ArcGIS
via the R-ArcGIS Bridge (Appendix 7). We joined the resulting texture feature values to the
original segment polygons in ArcGIS to allow visual evaluation of the results (see Appendix 8
for R scripts and Appendix 9 for complete texture analysis workflow).

Discriminant Analysis for Tree of Heaven & Tamarisk

We conducted a discriminant analysis based on Gaussian finite mixture modeling using the
MclustDA function of the “mclust” package in R. Discriminant analysis tests whether certain
combinations of features can resolve species into distinct groups, or differentiate them
sufficiently to create a probability-based classification. We selected this method because
ground truth data inputs are a set of discrete, known groups. The R package was used so that
z-scores, which indicate level of certainty for a given prediction, could be visualized.

We tested multiple combinations of texture features in multiple discriminant analysis model
runs, selected based on visual inspection, suggestions from the literature, and physical
principles vegetation structure and light reflectance. The clustvarsel function from the R
package “clustvarsel” was also used to find different possible combinations of features to
test. The clustvarsel functions aid in identifying locally optimal subsets of variables with
group/cluster information. The discriminant analysis scatter plots were inspected and

23



estimated models were run on the entire segmented polygon dataset to assess the predictive
capacities of the methodology.

3.3 MaxEnt

MaxEnt, a species distribution model, was used to determine potential areas of invasive plant
species occurrence at Tejon Ranch. We chose MaxEnt because it has been shown to perform
more accurately compared to other predictive models (Hoffman et al., 2008). MaxEnt uses
presence data and environmental variables to predict species occurrence across a landscape.
Presence data for plant species was sourced from the 2016 Incidental Weed Encounter Data
provided by the Conservancy staff. These data points were collected incidentally as the
Conservancy staff encountered invasive plant species while performing various other
monitoring tasks, and are therefore not a comprehensive data set. Because we were limited
by data (most species consisted of around 30 data points), we focused our modeling efforts
on tamarisk because it had the largest data set (297 locations).

We used tamarisk presence data in conjunction with nine environmental layers in MaxEnt
version 3.3.3. These layers included slope, aspect, distance from major streams, distance
from utilities, distance from cattle corrals, climate water deficit, maximum temperature,
precipitation, and soil classification, all with a spatial resolution of 30 m. Slope and aspect
were derived from a 26 m digital elevation model using ArcGIS’s Slope and Aspect tools. The
Euclidean Distance tool was used to calculate the distance from corrals, distance from major
streams and distance from utilities. Major streams (classified as having water year-round),
corrals, and the utility layer were provided by the Conservancy. Climate water deficit,
maximum temperature, and precipitation were acquired from the California Basin
Characterization Model (CA-BCM 2014), which uses monthly averages from 7CMIP-3
GCM+SRES models from 1981-2010 to compute averages at 270 m resolution (2014 California
BCM). The soil classification layer was acquired from State Soil Geographic (STATSGO2) and
was classified by soil order: alfisols, andisols, aridisols, entisols, histosols, inceptisols,
mollisols, ultisols, and vertisols. A minimum convex polygon was created around the tamarisk
presence data using the minimum bounding geometry tool in ArcGIS and was used as the bias
file.

MaxEnt was run using the following parameters: 5000 maximum iterations, 0.00001
convergence threshold, 0 adjust sample radius, 25 random test percentage, 1 regularization
multiplier, 10000 maximum number of background points, 15 replicates, and subsample
replicated type.

24



3.4 Cost Benefit Analysis

Deploying drone technologies can be expensive; thus, we deemed it prudent to conduct a
cost-benefit analysis (CBA) on two monitoring options that incorporate drones as a means of
improving the effectiveness of tamarisk management (Table 2).

Table 2. A description of the two drone integration options evaluated for the

Conservancy.
Option 1 Purchasing a drone and completing all flights,
maintenance, and image acquisition in-house
Option 2 Contracting a drone service to complete flights
and all related image acquisition activities

Option 1 consists of purchasing a commercially available drone, a variety of associated
accessories, an NIR sensor unit, undergoing the necessary training and permitting, and
subscribing to an image pre-processing (stitching and geolocating) service. Option 2 consists
of contracting a drone consulting firm to conduct flights and deliver pre-processed imagery
to the Conservancy. This analysis is limited to only the acquisition and image stitching process,
and excludes any classification endeavors that the Conservancy may choose to pursue. The
metric used in this analysis was the Benefit-Cost Ratio (BCR), interpreted as shown in Table 3
below.

Table 3. Explanation of benefit-cost ratio (BCR).

BCR Value Interpretation

1 The baseline of status quo weed monitoring activities
conducted by the Conservancy

>1 Indicates that the activity is more beneficial than the status quo

<1 Indicates that the activity is more costly than the status quo

Costs and benefits for this analysis were accrued over a five-year period. This relatively short
period was chosen due to the rapidly improving nature of drone and sensor manufacturing
technology. We assume that cheaper, more efficient drone models will be available for
commercial use within the next decade, so the time frame in which this CBA is relevant is
inherently limited. We completed the CBA under the critical assumption that plant

identification after image acquisition is as accurate as status quo monitoring activities.
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Costs

The costs associated with Option 1 include the purchase of a commercial drone and
accessories, NIR sensor, subscription to an image stitching software service, FAA drone pilot
certification and drone registration, and an insurance/ repair policy package from the drone
manufacturer (See Appendix 10 for an itemized list of costs).

In order to estimate the cost of contracting a drone service for Option 2, we asked RoboHawk
Aerial Video & Imaging to provide us with a quote for the flight that they completed for us
over Panofsky Field. Using this information, we extrapolated from the hourly rate quote we
received from RoboHawk to estimate the annual cost of contracting a drone service to
replace current weed monitoring activities, with drone flights occurring once a month.
RoboHawk estimated 10 hours for one full flight session over an area the size of Panofsky
field, end-to-end including image processing. We assume that after purchasing the
equipment in Option 1, Conservancy staff would operate on this same 10-hour per month
flight schedule.

Benefits

Benefits for both options were calculated in terms of time savings. We calculated the benefits
of both options by comparing the decrease in staff man-hours in the field that is afforded due
to drone implementation. Specifically, the reduction in hours from field surveying a site the
size of Panofsky once per month, down to a 10-hour flight session (once per month). Benefits
were made comparable between the two options by using survey information from
Conservancy staff about the amount of time it would normally take to complete a systematic
survey of Panofsky field on foot. Benefits were discounted at a rate of 7%, which is the
convention for most non-profit financial analyses (Ligane 2004).
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4. Results

4.1 Flights

RoboHawk and AeroVironment Flight and Mosaic Results

Both drone platforms rapidly collected still images for generating orthomosaics. The Phantom
4 used in the RoboHawk flight produced high quality maps in the DroneDeploy app at 5
cm/pixel (at 200’ AGL) and 1 cm/pixel (at 120" AGL). The Phantom 4 captured imagery at the
highest resolution of 1 cm/pixel because its hover capabilities reduce motion blur and allow
for stable image capture. The Quantix captured imagery at 2.5 cm/pixel (at 360’ AGL). True
color output maps were created for both Phantom 4 (Figure 7) and Quantix flights (Figure 8).

Of the image mosaicking solutions, we found DroneDeploy to be the better option due to the
quality of the stitched mosaics (lack of blur, smearing, or loss of data). Image mosaicking with
AeroVironment’s Decision Support System (DSS) yielded mostly positive results. It was able
to perform a quick stitch in the field and also cloud-based generation of the final mosaic map.
AV’s DSS had difficulty cleanly stitching senesced plants, which lack the significant leaf canopy
structure that provides a proper stitching reference. Areas with adjacent or overlapping
plants were sometimes observed to have smeared into undefinable vegetative regions.

o 005 01 0.2 Kilometers

Figure 7. The mosaicked image of Panofsky Field taken by RoboHawk’s DJI
Phantom 4 Advanced quadcopter.
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NDVI (Indicator of Vegetative Health)
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Sources: RGB True Color Imagery and >
NDVI layers were collected by AeroVironment
using the Quantix drone platform. Flights were
performed on October 12, 2017 from
10:24am-10:33am. Wind conditions were <10mph.
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Figure 8. The mosaicked image of Panofsky Field taken by AeroVironment’s
Quantix fixed wing.

4.2 Image Processing

Pixel-Based Maximum Likelihood Classification Results

Ground truthed plant presence data provided reference locations for generating training
sample data. At each ground reference location, species were identified and confirmed so
that they provide example “search images” for Conservancy staff to match with non-
referenced plants in the mosaic imagery. The results from the maximum likelihood classifier
tool were displayed as color-coded plant class estimations across Panofsky Field (Figures 9 &
10).

The classification yielded mixed results. Tamarisk was overestimated in dry areas near the
railroad in the northeastern region of the parcel, where we have confirmed no presence of
tamarisk. However, the classification accurately identified isolated individuals in the dried
creekbed. Oak trees and cottonwoods were incorrectly classified as tamarisk in densely
covered areas in the northwest end of the parcel. There were considerable false positive
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assignments to the tree of heaven class, with training data sourced from only from three
defined samples. Oaks were more successfully identified throughout the maps, with stand
alone oaks were more accurately classified than clustered trees. The classification tool was
most successful in identifying shortpod mustard. Most mustards were found northeast of the
creek with sufficient spacing to distinguish individual plants.

[

Tamarisk Tree of Heaven
[ |

Oaks Shortpod Mustard

Sources: RGB True Color Imagery and
NDVI layers were collected by AeroVironment
using the Quantix drone platform. Flights were
performed on October 12, 2017 from
10:24am-10:33am. Wind conditions were <10mph

0 0.05 0.1 0.2 Kilometers

S S NS TSN S N — |

Figure 9. Results of the pixel-based maximum likelihood image classification. The plants identified by the
program are noted in the legend above.
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Figure 10. A closer look at the resulting classifications at Panofsky Field. Tree of Heaven is displayed in red,
Shortpod Mustard in yellow, oaks in blue, and Tamarisk in green. This close-up view demonstrates the
misclassification that resulted from our analyses, as there appears to be overlap of species identified on
the same plant.

Object-based Discriminant Analysis Classification Results

Segmentation & Texture Features

The final segmentation scale is finer than individual trees but occasionally larger than smaller
individual plants (Figure 11). It is not especially sensitive to different sizes of plants; the
segmentation is more sensitive to homogeneous patches than individual plants, though in
some cases these are the same thing. The approximately 20-acre region of interest was
segmented into 42,077 polygons.
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Figure 11. LEFT: segmentation layer of the full region of interest in the northeast section of Panofsky Field;
RIGHT: A close-up of the segmented polygons layer overlaid on top the DJI Phantom 4 imagery.
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The texture in some cases helps distinguish between different general classes of land cover,
but do not clearly distinguish different species of interest from this imagery (Figure 12).

Figure 12. Four of the texture features used in the classification. Clockwise from top left are: NDVI
entropy (first order), band 1 GLCM difference entropy, band 1 GLCM cShade, and band 2 GLCM
homogeneity 1. In the second and third images, a residual linear streaking effect from the flight
pattern and image stitching is apparent.
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Discriminant Analysis

Discriminant analysis revealed that neither tree of heaven nor tamarisk could be classified
algorithmically from texture features using 1cm resolution 4-band imagery taken in mid-
September, to a useful degree of accuracy. The discriminant analysis scatterplots show that
presence and absence points overlap almost completely, and that calculated centroids are
not sufficiently far apart for the species to be accurately classified algorithmically in the
imagery. The most accurate classification of tree of heaven had a training error of 0.15
(Figures 13 & 14). With 51 true positive and 26 false positives, the model’s precision was
66.2% (Appendix 11). However, the model had a low percentage of false negatives, as only 9
of 60 presence points were classified by the model as “absence” points.
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Figure 13. The discriminant analysis scatterplots generated from one tree of heaven analysis,
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demonstrating the lack of precision of this type of analysis in this case.
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Legend
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Figure 14. The map output from the discriminant analysis of tree of heaven. Legend values correspond to
confidence in tree of heaven presence, as determined by the discriminant analysis. Analysis was based on
133 confirmed absence and 60 confirmed presence points, and 13 texture features (Appendix 6).

4.3 MaxEnt
Our results show that tamarisk probability of occurrence is highest along major streams
(Figure 15). Predictions of tamarisk occurrence were fairly accurate with an area under the

curve (AUC) of 0.989. Major streams had the largest contribution followed by soil type. All
other variables had low (<5%) contribution.
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Figure 15. Probabilistic distribution of tamarisk at the Tejon Ranch Conservancy in California
based on 297 presence locations and nine environmental factors. Red colors indicate an area
with a high probability of tamarisk distribution and blue colors indicate an area with a low
probability of tamarisk distribution.

4.4 Cost Benefit Analysis

The CBR of Option 1 (drone purchase) was calculated to be 1.15, while the CBR of Option 2
(drone service) was 0.15. Option 1 is clearly to be the more desirable of the two, and would
return a net present value of $ 3,797.35 in benefits over the five-year period.
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5. Discussion & Conclusion

5.1 Ground Truthing & Flights

Ground Truthing

For future UAVs flights at Tejon Ranch, establishing training areas before flying and collecting
imagery can be useful to accurately identify and geographically locate plant species such as
invasive weeds and conifers. When selecting training areas, the Conservancy should obtain a
representative sample of plant species of interest in a wide variety of phenological stages
present in the area during that flight season. The more descriptive information obtained
about each training area plant, the more easily and accurately each individual plant can be
identified from the aerial imagery.

In this study, training area black arrow signs with rectangular cardboard dimensions of 10” x
18” were sufficiently large enough to locate them in the high resolution (0.4 inch/pixel)
Phantom 4 drone imagery flown at 120’ AGL. They were almost as well distinguishable in the
200" AGL and 2-inch/pixel resolution imagery of the same drone. In the Quantix drone
imagery, flown at 360’ AGL with imagery of 1 inch/pixel resolution, these training area signs
were more challenging to identify. Therefore, the Conservancy may consider increasing the
sign dimensions to approximately 14” x 22” when flying this drone to ensure that all training
areas can be sufficiently located and identified in the imagery. Also, the training area signs
for the Quantix drone imagery may be more discernable from barren soil by instead using red
or yellow arrows with black borders and white cardboard backgrounds. Ultimately, materials
and colors used to create these signs should minimize reflectance in the imagery by avoiding
use of shiny materials.

A minimum of 30 training areas should be used, or more until representative libraries of the
plant species of interest are obtained. For repeat flights over the same field site during
different seasons, ground truthing should be repeated to account for differences in
phenology of plant species (i.e. dropped leaves, changes in color, senescence, flowering, etc.).

Overall, for future UAV imaging flights at Tejon Ranch, ground truthing prior to flying is

extremely useful, and in most cases necessary, to properly identify and locate individual plant
species of interest such as invasive tamarisk.
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Flights and Image Mosaicking

Details on characteristics associated with drone-specific design can be reviewed in Section
2.4 (UAV Design). Comparing a fixed wing platform (Quantix) against a quadcopter platform
(Phantom) for capturing vegetation data, we found that the Phantom can collect data at
higher spatial resolutions while the Quantix was able to collect data at higher spectral
resolution with its NIR sensor. The Phantom had more flight flexibility in terms of altitude,
and angle of image capture (for 3D modeling applications), and hovering to focus on a target
of interest. The Quantix has fixed aperture sensors, which require a fixed altitude of 360’ AGL.
Although we did not test the video capabilities of the Phantom, we are confident that this
feature can also be used for qualitative assessments that do not require explicit quantitative
spatial analysis. DSS’s difficulty in stitching senesced plants, and its smearing of adjacent plant
outlines, are most likely due to its method of flight. Fixed wing designs can cover more area
per flight relative to a quadcopter, but fixed wings must maintain constant forward motion,
which can cause image distortion. This is not a major issue for AeroVironment as the Quantix
was not designed to identify plants, but rather to assess the health of known crops.

5.2 Image Processing

Pixel-Based Maximum Likelihood Classification

AeroVironment’s Quantix provided sufficient spectral data to generate training samples for
the classification. Tamarisk was over-classified in areas with confirmed absence. Additional
training samples could potentially help with the differentiation of tamarisk from other plant
species. Tree of heaven, tamarisk, and oaks were often classified together. Shortpod mustard
was classified with the most success; its desiccated stage showed that attention to phenology
in flight planning can help optimize the discrimination of specific target plant species. The
quality of spectral data can be optimized if flights are planned for when the target plant
species is most distinct from surrounding plants.

Object-based Discriminant Analysis Classification

The results of the discriminant analysis showed that neither tamarisk nor tree of heaven could
be algorithmically classified from the imagery to a useful degree of accuracy. However,
classification may still be feasible, as shown in other studies, if imagery is collected at carefully
chosen times of the year and with sensors capable of much higher spectral resolution.
Species-level classification is not feasible without a carefully designed strategy, which
requires identifying times when the species is phenologically or physiologically distinct from
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surrounding vegetation. New drone sensors with higher spectral resolution could make
detection of invasive species feasible and affordable within the next decade, as such
technologies already exist and rapid market expansion is generally causing prices of drone
technology to decline due to the increased competition and continuous innovation. With
additional presence/absence data on species of interest, it should be possible to start
disentangling the optically distinct patterns and phenological schedule. To assess the full
potential of classification by features analysis, more presence/absence data is needed.

5.3 MaxEnt

Our results show that distance from major streams was the most important variable for
predicting tamarisk occurrence at the Conservancy. These results agree with a previous study
that modeled tamarisk distributions using MaxEnt in Nebraska (Hoffman et al., 2008).
Tamarisk occurrence was also associated with slopes close to zero (i.e., flatter areas).
Tamarisk was also highly correlated with soil type; however, the spatial resolution of the soil
layer was quite coarse. Higher resolution soil data might improve the accuracy of the model.

To further improve this model, more tamarisk presence locations are needed. Though there
are 297 presence locations for tamarisk, most of them are congregated in two main areas.
The Conservancy should collect more tamarisk presence locations points to better inform the
model.

The MaxEnt output can be used to inform the Conservancy on where to fly drones to monitor
for tamarisk. Note that if the Conservancy surveys an area MaxEnt indicated as having a high
probability of tamarisk occurrence, but none is discovered, it does not mean the model is
wrong, it could simply mean that tamarisk has not dispersed to that region. The only way to
inform the model is to increase the amount of presence data. Moving forward, this same
model can be used for other invasive plant species of interest at the Conservancy. However,
Conservancy staff need presence locations from multiple areas on the Ranch to produce a
MaxEnt output with high confidence.

5.4 Cost Benefit Analysis

While there is a significant difference between the BCRs of the two proposed options, the
resulting benefits are modest. Option 1’s BCR is 1.15, which means that for every $1.00 of
cost for the project, there is a $1.15 return, and the net present value of benefits for Option
1 was only $3,797.35 over five years (519,440.00 before discounting). This may not be
enough of a benefit to persuade the Conservancy to move forward with purchasing a drone.
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However, our analysis is limited to only the benefits in terms of avoided future costs of
tamarisk removal. Were this analysis expanded to include ecological benefits of other
monitoring targets of interest to the Conservancy —including other invasive weed species
and conifer mortality - the resulting BCR could be significantly higher. In addition, our
estimates of potential costs for Option A were intentionally high in order to produce a
conservative estimate. This intentional overestimation of costs and underestimation of
benefits demonstrates that despite a high first year of invest cost, the benefits of this
technology, when more accurately quantified, would only increase.
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6. Recommendation

After an extensive literature review regarding the use of drones in conservation research, as
well as a demonstration on a threatened landscape, we confirmed that drones, if properly
utilized, can be a useful tool to expand monitoring reach. However, Tejon Ranch is simply too
large and variable in terrain to monitor in its entirety, multiple times per year/as many times
per year as would be necessary for detecting invasion of undesirable plant species. Therefore,
the Conservancy must be able to prioritize specific areas to target with drone surveys. Our
group recommends that drone flights be performed on threatened habitats discerned by our
MaxEnt model, with current environmental input data. In addition to targeting key areas in
mitigation efforts, presence data derived from inspection of drone imagery can be included
in new iterations of the MaxEnt workflow to more accurately predict future invasive plant
dispersal risk (Figure 16). As the workflow is cycled with continually updated environmental
data and new presence data, the overall monitoring framework becomes more robust and

efficient.
Environmentalﬂ
Variables @
Targeted Observed Predicted
Management Presence Presence
i Drone

Processing «

Figure 16. Recommended framework for incorporating drone technology into ecological monitoring
at Tejon Ranch.
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Appendices

APPENDIX 1. Current UAV systems and specifications.

UAV Platform

DJI Phantom 3

DJI Phantom 3 Advanced

DJI Phantom 3 Pro

DJI Phantom 4

DJI Phantom 4 Advanced

DJI Phantom 4 Pro

DJl Inspire 1 V2.0

DJl Inspire 2

DJI Mavic

Sensefly eBee

Parrot Disco Pro Ag

Lehmann Aviation LA500-AG

AeroVironment Quantix

Birdseye Firefly6 Pro

Event 38 E384

O'qualia Captor

Price

$500

$799

$1,000

$1,199

$1,500

$1,999

$2,999

$10,000

$4,499

$7,990

$16,500

$5,999

$2599 + sensors

$5,990

Design

Quadcopter

Quadcopter

Quadcopter

Quadcopter

Quadcopter

Quadcopter

Quadcopter

Quadcopter

Foldable Quadcopter

Fixed-Wing

Fixed-Wing

Fixed-Wing

Fixed-Wing + 2 rotors

Fixed-Wing + 6 rotors

Fixed-Wing

Fixed-Wing

Stock Sensor

27K 12MP

2.7K 12MP

4K 12 MP

4K 12.4MP

4K 20MP

4K 20MP

4K 12MP

4K

4K

Parrot Sequoia
Parrot Sequoia
Parrot Sequoia

RGB,
Multispectral
Variable,

Thermal,
Sequoia

Variable,
Thermal,
Sequoia

Sony WX500

Other Sensors

Requires specific
adapters, Seqouia

Requires specific
adapters, Seqouia

Requires specific
adapters, Seqouia

Requires specific
adapters, Seqouia

Requires specific
adapters, Seqouia

Requires specific
adapters, Seqouia

Requires specific
adapters, Seqouia

Requires specific
adapters, Seqouia

Requires specific
adapters, Seqouia

Requires specific
adapters

Angled forward
facing RGB sensor

Requires specific
adapters

No

Requires specific
adapters, Thermal

Requires specific
adapters, Sequoia,
RedEdge, Thermal

Requires specific
adapters, Sequoia,
Sony RX100

Flight
Time

25 min

23 min

23 min

28 min

30 min

30 min

18 min

27 min

27 min

55 min

30 min

35 min

45 min

45 min

90 min

50 min

Approx Coverage Area C;:;;;'
‘rleasrzflt‘llgmaltnude 1km
\r/:srfllsjt\lﬂgmaltitude 5km
:'I:sri;zt‘i,rv)/malmude 5km
‘rleasrizlsjt‘llgmaltitude 5km
‘rI:sri:Iﬁt‘ilgmallitude 7km
:'Ieasri;zt‘ilrv)/maltitude 7km
;I:srgzt‘:gmaltnude 5km
:’:sriflzt‘iltv)/n+altitude 7km
:easricilsn‘ilgmaltitude 7km
500acres at 120m AGL, 3km
7400 at 2000m

200acres at 120m 2 km
2400acres at 1000m AGL

400acres

500acres 5Kkm
1000acres 5km

3500acres at 152m AGL
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Interface

Controller+Smartphone

Controller+Smartphone

Controller+Smartphone

Controller+Smartphone

Controller+Smartphone

Controller+Smartphone

Controller+Smartphone

Controller+Smartphone

Controller+Smartphone

Laptop

Controller+Smartphone

Laptop

Tablet

Controller+Laptop

Controller+Laptop

Tablet

Obstacle
Avoidance

N

Georeferencing

GPS

GPS/GLONASS

GPS/GLONASS

GPS/GLONASS

GPS/GLONASS

GPS/GLONASS

GPS/GLONASS

GPS/GLONASS

GPS/GLONASS

GPS

GPS/GLONASS

GPS

GPS

GPS

GPS

Env. Constraints

0-40°C

0-40°C

0-40°C

0-40 °C, wind <10m/s

0-40 °C, wind <10m/s

0-40 °C, wind <10m/s
-10-40 °C, wind
<10m/s

-20-40 °C, wind

<10m/s

0-40°C

wind <12/m/s

wind <10m/s

wind <10m/s

wind <12.5m/s

Replacement
Parts

Y

Community Software

DJIGO Control App,
No Image Processing

DJIGO Control App,
No Image Processing

DJIGO Control App,
No Image Processing

DJIGO Control App,
No Image Processing

DJIGO Control App,
No Image Processing

DJIGO Control App,
No Image Processing

DJIGO Control App,
No Image Processing

DJIGO Control App,
No Image Processing

eMotion Flight
software, Pix4d
optional

AIRINOV (powered by
Pix4D)

OperationCenter v2,
AgiSoft and Pix4D
optional

Quantix and AV
Decisions Support
System (AV DSS)

Produces imagery that
can be fed into any
post-processing
solution

Pixhawk flight
controller, optional
post-processing
software

UgCS Mission
Planning software



Sensors rrot Seqouia Canon S110 NIR / Red Edge FLIR Duo FLIR Vue Micasense Rededge Sentera Double 4K Ag Sentera Single NDVI & NDRE

Costs $3,500 $600-$1000 $999/$1299 $1499-$3199 $5,195 $2499-$4299 $1999-$2799
Sensor Type RGB, Multispectral Converted NIR/RE Thermal + HD visible Thermal RGB, Multispectral 4K HD RGB, Multispectral Multispectral
Advertised Resolution  16MP RGB, 4x 1.2MP bands 12mpP Thermal (160x120), 2MP color, 1080p liveview (336x256) or (640x512) 3.6MP RGB 12.3MP Stills, 4K Vid @ 30fps 1.2MP stills, 720p video
Spectral Band 4 bands: G,R, RedEdge, NIR NIR/ RE 7.5-13.5microns (IR Thermal) 7.5-13.5microns (IR Thermal) 5 bands: B,G,R,RE,NIR 5 bands: B,G,R,RE,NIR 5 bands: B,G,R,RE,NIR
Compatible UAVs DJI, Parrot Disco, Sensefly eBee Sensefly eBee, Event38, more  DJI, adapters available, similar to GoPro dimensions DJI Inspire/M100 (larger sensor) DJI, Sensefly eBee DJI,Sentera Omni, Sentera Phoenix DJI, Sentera Omni, Sentera Phoenix
Design Intention Ag/Research Converted Point + Shoot Thermal Inspection/ Search + Rescue Thermal Inspection / Search+Rescue  Ag/Research Ag/Research Ag/Research
Weight 1359 1729 849 101-122g 1759 80g 30g

Includes sunshine sensor and cable Converted to NIR, standard R has radiometric temp measurements, shaped Gimbal sold seperately Includes sunshine sensor  Voids DJI warranty, incident light Voids DJI warranty, incident light
Notes camera pre-conversion is ~$500 similar to GoPro, resolution may be too coarse for and cable sensor sold seperately ($549) sensor sold seperately ($549)

ranged monitoring

Software Cost/Format Subscription Perpetual License Operational Range Compatible UAVS Compatible Sensors Notes

SenseFly eMotion 2 & 3 Included with eBee drone N N 3km SenseFly eBee, rotor UAVs Segouia, Point and Shoot Cams, eBee compatible ~Can export to Pix4D

MicaSense ATLAS Flight Free iOS App N N Variable with platform DJl only DJI cams, RedEdge, Seqouia Ability to plan battery change sites
during missions

AV Decision Support System EX{(OY=rlg Y N AeroVironment Quantix AeroVironment Quantix built-in sensors AeroVironment's proprietary
software, comes with tablet
controller

DroneDeploy Free iOS/Android App, Pay for Premium Features Y N Variable with platform DJl only DJI Cam Streamlined upload to output 3D
models/orthomosaics with Pix4D
Pixhawk (Open Source) $150-$200 for controller, Open Source N N Variable with platform Open-Source, Home-built Segouia, Point and Shoot Cams Open source so it will not be
“ready to fly" immediately out of
box

Pix4D Mapper Pro $8700 standard pricing Y N Variable with platform SenseFly eBee, rotor UAVs (DJI, 3DR) RedEdge, Seqouia, HD RGB $4990 Non-commercial license,
$350/mo or $3500/yr standard
pricing

WERENVEGIN =LA VETNLI N $10 iOS App (i0S v8+) N Y Variable with platform  DJI only DJI Cam Calculates battery changes,
optimized to create georeferenced
orthophotos, 3D models, DSMs,
NDVI, etc with the pay as you go
map processing fees
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Software Cost
$4,990

Maps Made Easy Varies

Agisoft Photoscan Standard [EXR&]

AgiSoft Professional $3,499

AgVault Mobile Edition $5/ month

AgVault Pro Edition $29 / month

Drone2Map by ESRI $3500 / year

MicaSense ATLAS Standard [EZENENGLIG]
MicaSense ATLAS Premiu $99 / month

DroneDeploy

$83-249 / month

Subscribe Option Operating System

Y

Windows 64-bit, iOS, Linux Enterprise Y
iOS app, Windows or Mac Y
Mac, Windows, Linux N
Mac, Windows, Linux N
iOS only Y
iOS only Y
Windows 7, 8, 10 64 bit N
Mac i0S, Windows Y
Mac iOS, Windows Y
Mac i0S, Windows Y

Controller Interface Features / Services

Georeferening with ground control points,
photogrametry to generate DSM, measure

volumes based on the DSM, project splitting for

efficient processing, automatic aerial
triangulation to mosaic with or without camera
orientation information, automatic color and
brightness correction , more

3D Model stitching, Georeferencing, Volume
Measurement (mining), Map Pilot (i0S), NDVI,
cloud processing, multi-map management for
time-lapses

Photogrammetry, Point Cloud Generation, 3D

model generation and texturing, Panorama
stitching,

In addition to standard edition: Point Cloud
classification, DEM, DSM, DTM, Georeference
Orth, Mutltispec, Python script for automized
workflows, ground control points, volume
measurement, network processing

NDVI, Mobile Mosaicking

NDVI, Mobile Mosaicking

2D orthomosaics, 3D Mapping, NDVI, DSM,
Cloud Processing, ground control points in field
from visual reference points

NDVI, NDRE, OSAVI, RGB, CIR

NDVI, NDRE, OSAVI, RGB, CIR, Chlorophyll

NDVI, Elevation, Georeferencing
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Output
GeoTIFF

GeoTIFF, Textured 3D Model, JPG, DEM, Pt Cloud, KMZ

JPEG, TIFF, GeoTIFF, PNG, BMP, PPM, KML, PDF,
OpenEXR and JPEG Multi-Picture Format (MPO), point
cloud formats (Wavefront OBJ, Stanford PLY, XYZ text
file format, ASPRS LAS)

JPEG, TIFF, GeoTIFF, PNG, BMP, PPM, KML, PDF,
OpenEXR and JPEG Multi-Picture Format (MPO), point
cloud formats (Wavefront OBJ, Stanford PLY, XYZ text
file format, ASPRS LAS)

shp, data not readily sharable or exportable

shp, sharable data requires $12/mo "Viewer's license"

basemaps, gdb, kml, shp, OBJ, pdf

Multiband GeoTIFF, DSM (reqrs Pix4DPro)

Multiband GeoTIFF, DSM (reqrs Pix4DPro)

JPEG, GeoTIFF, shp, Countours, Point Clouds

Additional Notes

Perpetual license is $4990. Private
subscription option is $350 per month.
Seqouia integration optimized, it has
become an industry standard (along with
drone deploy)

Pay as you go credit system. May be very
cost-effective for conservancy, since it has
variable cost according to resolution and
area requiring processing

Photoscan is industry standard, can
calculate area and volume (good for %
land coverage and biomass estimates),
computationally extensive if generating 3D
models

Photoscan is industry standard,
computationally extensive if generating 3D
models

Infield quicktiling and NDVI, Highly directed
at AG market, Advertizes that it processes
files ready for Pix4D, suggesting that this is
an intermediadary software, may not be
needed if ArcGIS/R is avail to TRC.

Infield quicktiling and NDVI, Highly directed
at AG market, Advertizes that it processes
files ready for Pix4D, suggesting that this is
an intermediadary software, may not be
needed if ArcGIS/R is avail to TRC.

ESRI's attempt to streamline the process of
UAV imagery to final outputs, engine
based off of Pix4D, beta testing of
integration with DroneDeploy

Powered by Pix4D, Dataset outputs user
friendly to switch between spectral
bands/indices, Not a start to finish software

Powered by Pix4D, Dataset outputs user
friendly to switch between spectral
bands/indices, Not a start to finish software
Used for trial flights at Panofsky, Higher
end users get processing priority in queue



APPENDIX 2. Publically accessible databases that house spectral and spatial data, and remote sensing resources.

Resource URL

Earth Explorer USGS Spatial Data Portal https://earthexplorer.usgs.gov/

USGS Landsat Data Viewer https://landsatlook.usgs.gov/viewer.html

Planet Explorer Beta https://www.planet.com/products/explorer/

Copernicus Open Access Hub for Sentinel Products https://scihub.copernicus.eu/

USDA GeoSpatial Data Gateway https://gdg.sc.egov.usda.gov/GDGOrder.aspx

AVIRIS Data Portal https://aviris.jpl.nasa.gov/alt locator/

AVIRIS-NG Data Portal https://avirisng.jpl.nasa.gov/alt locator/

NASA LAADS Distributed Active Archive Center (DAAC) https://ladsweb.modaps.eosdis.nasa.gov/search/
https://earth.esa.int/web/guest/data-access/how-to-access-esa-

ESA Data Access
data

EarthData EOSDIS Remote Sensors Table https://earthdata.nasa.gov/user-resources/remote-sensors

EOPortal Directory: Satellite Missions Database https://directory.eoportal.org/web/eoportal/satellite-missions

NOAA Comprehensive Large Array-Data Stewardship System  https://www.ncdc.noaa.gov/airs-web/search
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APPENDIX 3. NDVI cell grouping layer: ArcGIS ModelBuilder workflow.

APPENDIX 4. NDVI layer to NIR: ArcGIS ModelBuilder workflow.
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APPENDIX 5. Images and descriptions of the plants chosen for classification training data.

Tamarisk
Tamarisk is a deciduous shrub that maintains gray to jade-colored branches with feathery-
scaled leaves. The leaves are highly reduced and thus individual leaves are not visible from
aerial imagery. Their thin branches contribute to their irregular top-down shapes. They are
primarily near streams due to their intense water demands. In our specific test plot, we
mostly observed small patches (1-3 individual plants) in addition to several stretches of young
tamarisk running along the creek bed.

N

Shortpod Mustard

At the time of the RoboHawk flight (September 2017), most shortpod mustard plants on the
parcel were desiccated and dead. Typical plants were yellowish-golden shrubs in color and
uniform in their circular shape from an aerial perspective. At this particular phonological
stage, they are quite distinct from surrounding living vegetation. Additionally, mustard plants
were rarely overlapping in distribution allowing for individual plants to be discriminated more
easily with their thin branching structure and singular round shape. There was a large
abundance of shortpod individuals on the eastern edge of the parcel near the train tracks,
which can be a possible vector. It is especially important to note the differences in phenology
because live mustard plants will have active chlorophyll and appear green with small yellow
flowers while still maintaining similar aerial silhouettes.
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LEFT: aerial view of a shortpod mustard plant; RIGHT: ground view of the same plant pictured in the left panel.

Tree of Heaven

Of our four sample invasive plants, tree of heaven was the largest sized species with distinct
opposite pinnate leaf pattern. Individual leaves are visible and are lanceolate shape. Fruiting
trees can be more easily distinguished as terminal ends of branches are populated with dense
bunches of red seed pods. At the time of the RoboHawk flight (September 2017), few other
plants displayed significant clusters of red flowers or seeds, making tree of heaven easy to
identify and create training data samples from.

LEFT: aerial view of a tree of heaven plant; RIGHT: ground view of the same plant pictured in the left panel.
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Tree Tobacco
Despite having the largest leaf size of our 4 test species, tree tobacco generally has the
smallest basal area. At the time of the RoboHawk flight (September 2017), it is observed to
be silvery-blue green in color with clusters of yellow tubular flowers. Similar to tamarisk, tree
tobacco is observed to be near water sources, as they prefer moist soils. Despite star thistles
and sunflowers also having yellow flowers, the blue-silver tint and large leaf area help
distinguish tree tobacco.

R 2 e 2% 7 =
e - E-

LEFT: aerial view of a tree tobacco plant; RIGHT: ground view of the same plant pictured in the left panel.
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APPENDIX 6. Twenty-five texture features calculated for each of the five grey-level bands,
with those used in trial classification of tree of heaven indicated with checkmark.

Features Calculated Red Band GreenBand BlueBand Green-Red Adjusted Difference NDVI

calc_skewness

calc_mean v v
calc_sd
calc_entropy v v v

calc_kurtosis

calc_min

calc_meanDeviation

glem_mean

glem_entropy

glcm_sumEntropy

glcm_differenceEntropy

glcm_cProminence v

glem_cShade Ve
glcm_homogeneityl v

glcm_homogeneity2 v
glem_dissimilarity v v

glrlm_LRLGLE

glrlm_LRHGLE

glrlm_GLN

glrim_SRHGLE

glrim_LGLRE

glszm_HILAE v
glszm_HISAE v

glszm_LILAE
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APPENDIX 7. Details on the R “radiomics” package and R-ArcGIS bridge.

Documentation on Radiomics R Package

- http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0102107
- https://doi.org/10.1371/journal.pone.0102107.s001

- https://www.rdocumentation.org/packages/radiomics/versions/0.1.1

- http://joelcarlson.github.io/2016/01/07/texture-classification/

- http://joelcarlson.github.io/2015/07/10/radiomics-package/

Configuring Texture Feature Tool via R-ArcGIS Bridge

Download and Install R and RStudio

1. Download R from: http://cran.us.r-project.org/ and follow installation instructions

2. Download RStudio from https://www.rstudio.com/products/rstudio/download/#download

Download and Configure R-ArcGIS Bridge

e Download and follow instructions from https://github.com/R-ArcGIS/r-bridge-install
e Additional: https://learn.arcgis.com/en/projects/analyze-crime-using-statistics-and-the-r-arcgis-bridge/

Adding Texture Feature R script to Toolbox

1) Create a new toolbox in the Project folder
2) Add Script, leaving default parameter properties except for Direction, set according to the table below

Add Secript

Mame:

textureFeature

Label:
caloulate texture features

Description:

Calculates texture features (grey-evel co-occurance, level
run length, and size zone matrix based texture features)
within imagery, based on segmented polygon layer, given a
list of features, Outputs results in a table,

Styleshest:

0

[ store relative path names (instead of absolute paths)

[¥] Always run in foreground

2% | Add Script

MNext = | |

Cancel |
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Display Name Data Type
Segment Polygons Shapefile
Uay Imagery Folder Folder f |
Band Mumber Double
List of Features String |T|
§ Features Table Table —
Click any parameter above to see its properties below,
Parameter Properties
Property Value i
Type Required
Direction Output =|
Multivalue Mo
Default
Environment
Filter None
Mhtzinad from =
To add a new parameter, type the name into an empty row in the
name column, dick in the Data Type column to choose a data type,
then edit the Parameter Properties.
< Back ]| Finish | | Cancel




Direction Display Name Data Type

Input Segment Polygon Shapefile
Input UAV Imagery Folder Folder
Input Number Band Double
Input Comma-separated List of Features String
Output Feature Table Table

Using the Texture Feature Toolbox to Generate Texture Feature Layers

e Create shapefile with polygon segments and unique and sequential integer IDs stored in variable called
“POLY_ID” which will be used in matching the texture feature values to their original polygons in the
shapefile so tables can be used to generate raster layers to add to image classification workflow

e Inspect segmentation layer output to confirm correct level of detail, and check for and remove fragments
smaller than about 10 original raster pixels before assigning the POLY_IDs

e Run the Texture Feature Tool on one band at a time; note that UAV imagery must be stored in its own
folder, with bands each as individual rasters in a format able to be read by R’s raster package (all standard
raster formats; see raster documentation)

e List of Features must be given as a list separated by commas with glcm_, glrlm_, or glszm_ preceding the
feature abbreviation as given in Table 2 below

e Table output must be saved to a file geodatabase

First Order GLCM GLRLM GLSZM
energy mean GLN SAE
entropy variance HGLRE LAE
kutosis autoCorrelation LRE v
meanDeviation cProminence LRHGLE Szv
skewness cShade LRLGLE ZP
uniformity cTendancy LGLRE LIE
mean contrast RLN HIE
median correlation RP LISAE
max differenceEntropy SRE HISAE
min dissimilarity SRHGLE LILAE
diff energy SRLGLE HILAE
var entropy
RMS homogeneityl
sd homogeneity2

IDMN

IDN

inverseVariance

maxProb

sumAverage

sumEntropy

sumVariance
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APPENDIX 8. R scripts for texture feature calculation and analysis.

The texture analysis we coded in the R script takes a polygon layer, a folder containing the
grey-scale rasters, the name of the single-band raster file to be used, and a comma separated
string of features to calculate as inputs. The tool identifies portions of the raster UAV imagery
that overlap each polygon, creates matrices that fill the non-overlapping portions of the
square with NA, calculates their grey-level co-occurrences, and then the specified texture
features. The output is given as an ArcGIS table. The R-ArcGlIS bridge works by transporting
data into R, conducting an analysis in R, and then transporting the results back to ArcGIS. This
is advantageous because it circumvents the 32-bit constraints of ArcGIS Desktop.
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tool_exec <- function(in_params, out_params)

{

cat {pasted("\n", n
§# load required packages and install if needed
if {('requireNamespace (" , quietly = TRUE})}

install.packages ("
if {!requireNamespace(

install.packages ("
if {!requireNamespace(

instzll_packages ("sp")
pkgs <- c(” T 4
lapply({pkgs, reguire, character.only = TRUE)

cat {pasted("\n", asets___", n"}}
¢ read input and output parameters
segment_polygons = in params[[1]]

image_folder = in params([[Z]]
band_name = in params[[3]]
feature str = in params[[4]]
out_table = out_params[[1]]

§ read segmented polygon layer and single band of image from rasters folder
polygonlist <- arc.dataZsp(arc.select(arc.open(segment_polygons)))

num polygons <- as.numeric{length(polygonlist@data$POLY_ID))

img <- raster(paste(image_folder, band name, sep = "/"}}

§ identify £ input character string which features to are to be calculated
features <- strsplit{feature_str, ", ")[[1]]

glom ft <- grep("~g . features, walue = TRUE}; glrlm ft <- grep(""g
glem bool <- length(glem £t) !=0; glrlm bool <- length{glrlm ft}!

features, value = TRUE glszm ft <- grep( , features, value

firstOrder_bool <- length(firstOrder_f£t)!

TRUE) ; firstOrder £t <- grep(”

0; glszm bool <- lengthi{glszm ft)!

cat (pasteld ("
§ create compiled functions to speed texture
cmp_glem <- cmpfun(function(x) as.numeric{calec features{glem{zs.matrix(rasterize(x, crop{img, extent(x)}), mask = TRUE}}, n_grey =

culztion £ -m, "\am)

ature calculaticns

), glem £5)3)

cmp_glrlm <- cmpfun(function(x) as.numeric(calc features(glrlm(as.matrix(rasterize(x, croplimg, extent(x)), mask = TRUE]}), n_grey . glrlm ££)})
cmp_glszm <- cmpfun(function(x) as.numeric({calc features(glszm(as matrix{rasterize(x, crop(img, extent(x)), mask = TRUE}}, n grey = 12Zg}, glszm ft)})
cmp_1st0rd <- cmpfun{function(x) as.numeric(calc_features(as.matrix({rasterize(x, crop(img, extent(x}), mask = TRUE}), firstOrder_ft)})

cat (pasted ("\n", "C te: £ e bkt

§ parallelize and calculate texture features
cores <- detectCores(}-1
cl <- makeCluster{cores)
registerDoParallel {cl)
wec €- vector(length = length({features)+1l}
featureVals <- foreach{i = polygonlist@dsta$POLY ID, .packages= c{"r
vec[l] <-'1
if(glem bool) wec[Z:({length({glem ft}+1)] <- cmp glem({polygonlist[polygonlist@dat=$POLY_ID = i,])
if (glrlm bool) vec[(length(glem £t)+Z):{length(glem ft)+length(glrlm ft)+1)] <- cmp glrlm(polygonlist[polygonlist@data$POLY ID = i,])
if(glszm bool) vec[(length(glem ft)+length{glrlm ft)+Z):{length{glem ft)+length(glrlm ft)+length(glszm ft)}+1)] <- cmp glszm(polygonlist[polygonlist@data$POLY ID = i,])
if (firstOrder bool) wvec[{length(glem ft)+length{glrlm ft)+length(glszm £t)+2): (length{features)+1)] <- cmp_lstOrd({polygonlist[polygonlist@data$POLY_ID = i,])
featureVals <- wec

.combine = cbind) %dopar% {

. . Ve

}
stopCluster (cl)
closekllConnections ()

cat (pasteld ("

# ewport textures features output array

band <- substr(band _name, 1, nchar{band_name)-1})

texture_features <- as.data.frame (t(featureVals))

colnames {texture features) <- c . paste(features, band, sep =

if ('is.null{out_table) && out_table
are.write {out_tzsble, texture features)

cat (pasteld (" Y g I3

return{out_params)

SeTS. .
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features, walue = TRUE}



tool exec <- function(in_params, out_params)

{
cat tpasteDt“"xr‘:”, -”r “"'-.f'!”}]
% load required packages and install if needed
if {(!'requireNamespace ("mclust", quietly = TRUE)})
install.packages ("m
reqguire (mclusc)
# read input and output parameters
training data in = in _params[[1]]
presence_varname = in params[[2]]
feature str = in params[[3]]
predict_data in = in params[[<]]
out_table = out params[[1]]
# read training data and segmented polygon layvers as tables
training data <- arc.select(arc.open(training data in}}
all data <- arc.select (arc.open(predict_data in}))
% identify from input character string which features to are to be used in classifying
features <- straplit(feature_scr, ", ") [[1]1]
cat {pasted{"y\n", "Fitting model and predicting...", "%n"))
classes <- training data[,presence varname]
trdata subset <- training data[, features]
mclustMod <- MclustDR(trdata subset, classes)
predict _data <- all data[, features]
predictions <- predict(mclustMod, predict_data)
predictions df <- as.data.frame (predictions)
cat {paste0{"\n", "Writing result datasets...", "\n"})
# export model predictions (z-scores) to a table
zscores_table <- data.frame(all data[,"PCLY ID"], predictions_df)
colnames (z3cores_table) <- c("PCLY ID", colnames(predictions_df})
if (!'is.null {out_table) && out_table != "Na"}
arc.write (out_table, zZscores_table)
cat {paste0{"\n", "Done."™, "\n"))
return (out_params)
¥
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APPENDIX 9. Texture analysis workflow.

(Gmundlru!h Data (.s]:p}) ( Robohawk (RH) 0.4in RGB Imagery (.tif) J (Aem\r"imnmem (AV) 1?in NDVI Imagery (.hﬂj (Rl:gion of Interest (.shp))

v Y ¥ v

‘ Reproject to NADS3 UTM zone 11N, Spatially Subset to Max Overlapping Area (GDAL) ‘
( Reprojected AV Spatial Subset (.tif) )

]

‘ Resample to 0.4in (GDAL) ‘
~ v
( Reprojected RH Spatial Subset (.tif) ) (chroj. AV 0.4in Spatial Subssi(.liﬂ)

Extract Bands to Single-Band Raster (ArcGIS) ‘ ‘ Mean Shift Segmentation (ArcGIS Spatial Analyst) ‘

‘ Raster to Polygon, Eliminate, Add GrouplD + Poly_ID Fields (ArcGIS) ‘

Reproj. RH Spatial Subset, Red (.tif) J

( Reproj. RH Spatial Subset, Green (.tif) J
3

Reproj. RH Spatial Subset, Blue (.tif) ) ( Segment Polygons Layer (.shp) J

Calculate First Order, GLCM, GLRLM, GLSZM Features Over Polygons (radiomics R package, via R-ArcGIS Binding) ‘

( Texture Feature Table (.dbf) J

¥

‘ Join Tables to Segmented Polygons by Poly_ID (ArcGIS) ‘
( Segmented Polygons Layer with Joined Texture Features (.shp) J (’mssncc&!bwncc Training Data (.shp))

v ¥

‘ Cluster Analysis for Classification {(mclust R package, via R-ArcGIS Binding) ‘

¥

( Binary Classification of Segment Polygons with Z-Scores (.dbf) J

\

‘ Join Z-Scores Table with Segment Polygons by Poly_ID (ArcGIS) ‘

( Classified Segment Polygons (.shp) )
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APPENDIX 10. Inputs into the cost benefit analysis.

Option 1. Drone purchase

COSTS BENEFIT Discounted |NPV of Cash
Year Drone |Neutra| Density Filter‘l:ase Imaging software Pilot Certification Registration Sensors MicroSD  Batteries Insurance/repair package Benefit Flow
ol $  1,200.00 $30.00 §250.00 $ 1,000.00 § 15000 ¢ 500 $ 2,100.00 $68.00 $ 507.00 % 140.00 | §  3,240.00 $3,240.00 $(2,210.00)
18 -8 - $ -8 1,000.00 § - $ - $ - $62.00 § 507.00 § 140.00 | §  3,240.00 $3,028.04| § 1,425.22
2 8 -8 - S -8 1,000.00 $ 150.00 $ - $ - $6800 $ 507.00 $ 140.00 | $  3,240.00 $2,829.94| § 1,200.38
3 s -8 - S -8 1,000.00 $ - $ - $ - $6800 $ 507.00 $ 140.00 | $  3,240.00 $2,644.81| § 1,244.85
4|8 - 8 - $ - 8 1,000.00 § 150.00 $ - $ - $63.00 § 507.00 % 140.00 | 3,240.00 $2,471.78| § 1,048.98
508 - 8 - $ - 8 1,000.00 § - $ - $ - $63.00 § 507.00 % 140.00 | §  3,240.00 $2,310.08| $ 1,087.30
$  1,20000 S 30.00 $ 250.00 $ 6,000.00 $ 450.00 $ 500 $ 2,100.00 $408.00 $ 3,042.00 3 840.00 $ 19,440.00
Total Cost S 14,325.00 [Ber 1.153552509] [ NPy 3 3,797.35 |
Total Benefit 5 16,524.64
Option 2. Contract drone service
COSTS BEMNEFIT Discounted | NPV of Cash
Year Service Benefit Flow Total Cost 5 108,000.00
0§ 18,000.00 [ & 3,240.00 53,240.00| & (14,760.00) Total Benefit & 33,045.28
1| % 18,000.00 | § 3,240.00 53,028.04| & (13,794.39)
2| ¢ 18,000.00 | $ 3,240.00 $2,829.94| $ (12,891.36) |BER l].306l]118462|
3| $ 18,000.00 (5 3,240.00 52,644.81| $ ([12,048.56)
4| 5 18,000.00 | § 3,240.00 52,471.78| $ ([11,260.23) |NP‘uIr ${150,55?.831
5% 18,000.00 | 5 3,240.00 §2,310.08| & (10,523.68)
$ 108,000.00 S 19,440.00 516,524.64 § (75,273.91)
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APPENDIX 11. Discriminant analysis model summary.

MclustDA model summary:

log.likelihood n df BIC
-4632.52 233 859 -13947.48

Classes n Model G
@ 173 VEV 4
1 60 VEVS
Training classification summary:
Predicted
Class 0 1
@ 147 26
i1 9 51

Training error = 0.1502146
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APPENDIX 12. Further applications of UAS technology and justification for image
classification techniques.

Detecting Conifer Tree Stress and Morality

Detection of tree stress and mortality from satellite imagery typically uses phenotypic traits
such as brightness, greenness, or wetness (Ferrell et al., 1993; Meddens et al., 2013; Coops
et al., 2006). Generally, results are more accurate at higher levels of tree mortality, or in “red
attack” stage when needles change color a few years after infestation (Hicke & Logan, 2009;
Meddens et al., 2013; Coops et al., 2006). Meddens et al. found, using a time-series of 20 30-
meter spatial resolution Landsat images taken between 1996 and 2011, a multi-date method
was more accurate at detecting intermediate levels of red-stage mortality (Meddens et al.,
2013). The methods were found to be useful for detecting severe insect disturbance (i.e.,
killing> ~25% of trees in the canopy within a pixel), but not for detecting dispersed tree
mortality (i.e., single trees) across the forested landscapes (Meddens et al., 2011). Coops et
al. used single-date QuickBird (2.5 m spatial resolution) imagery to classify pixels containing
red attack damage using methods incorporating Normalized difference vegetation index
(NDVI) and a red-green index (RGI), both found to be significant predictors (Coops et al.,
2006).

Detection of Other Invasive Plant Species from Satellite and Aerial Imagery
There have also been studies on the detection and mapping of other invasive species
including Sahara mustard (Brassica tournefortii), yellow starthistle (Centaurea solstitialis),
and perennial pepperweed (Lepidium latifolium) (Nguyen et al., 2012; Lass et al., 2005; Lass
et al.,, 2000; Ge et al.,, 2007; Lawrence et al.,, 2005). Classifications using high spectral
resolution imagery from sensors like AVIRIS, CASI-Il, EO-1 Hyperion, or ASTER, especially
when combined with environmental variables have achieved accuracies of 70-80% (Ge et al.,
2007; Nguyen et al., 2012; Zhang & Xie, 2012). Margaret Andrew and Susan Ustin mapped
perennial pepperweed (Lepidium latifolium) at three sites in California using 3-meter spatial
resolution, 128-band HyMap imagery, with aggregated classification and regression tree
models (CART) incorporating mixture tuned matched filter (MTMF) results — which essentially
indicate how likely a pixel is to be each endmember — and spectral physiological indexes
including NDVI and cellulose absorption index (CAl) (Andrew & Ustin, 2008). Detection was
successful only at two of the three sites, however, highlighting the importance of
environmental context that allows spectral and/or phenological distinction of the target
species (Andrew & Ustin, 2008).
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Object-Based Image Processing

One study found that in classification of 5cm-resolution UAV-acquired imagery of arid
rangeland with shrubs, grasses, and bare soils, inclusion of texture derivatives resulted in
significantly higher overall accuracy; optimal texture features as determined by a previous
study included entropy, contrast, and standard deviation (Laliberte & Rango, 2008). Another
study with similar findings used 7cm-resolution imagery and grass, trees, shrubs as the three
vegetated categories, and six least-correlated textures derived from gray-level co-occurrence
matrices (GLCM): mean, standard deviation, homogeneity, dissimilarity, entropy, and angular
second moment (Feng et al., 2015; Szantoi et al., 2013).
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APPENDIX 13. Further examples of imaging methods.

In order for these mosaic maps to be useful for land managers in the context of invasive
vegetation, they must be able to rapidly and confidently discern them from native species.
Thus, automated classification algorithms require the inclusion of spectral emission data in
the near infrared wavelength band. This data is a proxy of variable chlorophyll levels and can
inform classification algorithms of spectrally unique plant classes and species. Using the
“RandomForest” package for the open-source data analysis software RStudio, Michez and
colleagues were able to map a riparian habitat and autonomously identify three invasive
weeds with 72-97% accuracy using the additional NIR band (Michez et al., 2016). The random
forest classification method can be applied to large data sets with training classes to semi-
autonomously classify test groups into representative training categories. It is called a
random forest because it utilizes a vast amount of branching decision trees to compare and
identify the most discriminating feature variables.

Similarly, Oumer Ahmed’s research group classified vegetation with a random forest package
found in the remote sensing software ENVI but used Pix4D for image mosaicking (Ahmed at
al., 2017). Using the multi-spectral Parrot Sequoia camera, an Australian group was able to
classify vegetation cover classes with accuracies in excess of 70% (Strecha et al., 2012). Led
by Christoph Strecha, Pix4D was also used to generate stitched mosaics, however, a
maximum likelihood supervised classification tool was run in the remote sensing software
ERDAS (Strecha et al., 2012). The maximum likelihood classification tool attempts to group
data sets in the most probabilistically likely category based on defined spectral variables.
Strecha’s group was able to extract certain vegetation species but found that object-based
image classification may vyield better results in areas without distinct contrasting flower
pigmentation (Strecha et al., 2012).
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APPENDIX 14. Abridged list of satellite and aerial imagery sources and specifications.

Operating Entity

Coverage

Operational Lifetime
Instrument/Sensor

Spatial Resolution

Temporal Resolution
Available How Soon

Number of Bands
Approximate Spectral Range
Relative Spectral Responses
Community/Online Support
File Format(s)

Projection/Datum

Spatial Accuracy

Additional Details

NAIP (NDOP)

USDA, FSA

us

Ongoing

RGB-NIR

50 - 60 cm in California
Three year cycle, since 2009
CCMs within 2 months, DOQQs within a year
4

380 - 950 nm

Varies by vendor

Decent

DOQQs, CCM

UTM NAD83

Horizontal accuracy within six meters of photo-
identifiable ground control points,

Less than 10% cloud cover per quarter quad tile

AVIRIS

NASA, JPL

Tasking, with coverage of most of Tejon
Depends on funding

Imaging Spectrometer

15.3 m over Tejon

Each June, for the past 5 years
48-72 hours after collection
224

400 - 2500 nm

Approximately 10 nm wide
Good

tar file with img files

WGS-84 UTM zone 11

<10 for low altitude flights, greater for higher
altitude flights and dependant on conditions

Orthocorrected upwelling radiance radiometrically
calibrated to less than 10% absolute
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AVIRIS NG (Next Generation)
NASA, JPL

No current coverage of Tejon
Depends on funding

Imaging Spectrometer

4m

N/A

48-72 hours after collection
481

380 - 2510 nm
Approximately 5 nm wide
Decent

.tar file with img files
WGS-84 UTM zone 11

<10 for low altitude flights, greater for higher
altitude flights and dependant on conditions

Orthocorrected and atmospherically corrected
reflectance data



Operating Entity

Operational Lifetime

Spatial Resolution

Temporal Resolution

Available How Soon

Number of Bands
Approximate Spectral Range

Community/Online Support

File Formats

Projection/Datum

Spatial Accuracy

Additional Details

Instrument/Sensor

Platform

Spectral Responses

Landsat 8 OLI
USGS, NASA

May 2013, ongoing
30m,15m
panchromatic

16 day revisit cycle

Within 24 hours

8

435 - 1384 nm

Very good

GeoTIFF, JPG, PNG,
BMP

UTM WGS84

<10m

Radiometrically
calibrated,
orthorectified using
ground control points
and DEM, surface
reflectance available

Multispectral

Landsat 8

https://landsat.gsfc.
nasa.gov; rational-

land-imager-oli/

Landsat 8 TIRS

USGS, NASA

May 2013, ongoing

100 m, resampled to 30
m

16 day revisit cycle

Within 24 hours

2
10600 - 12510 nm
Very good

GeoTIFF

UTM WGS84

<10m

Radiometrically

calibrated, orthorectified

using ground control

points and DEM, surface

reflectance available

Thermal Infrared Sensor

Landsat 8

https://landsat.gsfc.nasa.
gov/preliminary-spectral-
response-of-the-thermal-

infrared-sensor/

ASTER

NASA, Japan METI
Ongoing

15m VNIR, 30 m
SWIR, 90 m TIR

16 day revisit cycle

Typically 5 days

15
520 - 1165 nm
Good

HDF-EOS

UTM WGS84

4%

Level 1 Precision
Terrain Corrected
Registered At-Sensor
Radiance

Thermal Emission &
Reflection Radiometer

Terra

https://asterweb.jpl.
nasa.
gov/characteristics.asp

MODIS

NASA

Ongoing

250 m (bands 1-2), 500
m (3-7), 1000 m (8-36)

1-2 day revisit cycle

Level 1 data available
within 2 days

36
405 - 14385 nm
Very good

HDF-EOS

Sinusoidal projection
with WGS84

<45m

Surface reflectance,
corrected for
atmospheric gases and
aerosols, with best
possible observation
during 8-day period

Moderate-Resolution
Imaging
Spectroradiometer

Terra and Aqua

https://modis.gsfc.nasa.

gov/about/specification
s.php
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VIIRS

NOAA, NASA

Nov 2011, ongoing,
one in a series of 4
planned

16 bands with 750 m, 5
bands with 375 m

Full coverage every 12
hr

Level 1 data available
within 2 days

22

412 - 12010 nm

Very good
HDF-EOS5

Sinusoidal projection
with WGS84

<60m

Successor to MODIS

Visible Infrared Imaging

Radiometer Suite

JPSS-1

https://ladsweb.
modaps.eosdis.nasa.
gov/missions-and-
measurements/viirs/

Sentinel-2 MSI

ESA

March 2017, seven years

planned

Four bands at 10 m, six

at 20 m, three at 60 m

5 day revisit cycle

10 - 15 days

13

Very good
JPEG2000

UTM/WGS84

<12.5m

TOA reflectances in fixed

cartographic geometry,
bottom of atmosphere
reflectances can be

generated using Sentinel-

2 Toolbox

Multi-Spectral Instrument

Twin polar-orbiting
satellites

https://sentinel.esa.

GOES-R ABI
NOAA, NASA

One in a series of 4
planned through 2036

500 m for 640 nm, 1 km

other visible, 2 km IR

Daily

Level 1 within 24 hours

16
470 - 13300 nm
Good

NetCDF

Many available
products; level 1b
radiometrically
corrected radiances,
cloud and moisture
products, total
precipitable water,

Advanced Baseline
Imager (Multispectral)

Geostationary
Operational
Environmental Satellite

int/web/sentinel/missions/ https://www.goes-r.

sentinel-2/instrument-

payload/resolution-and-

swath

gov/education/ABI-
bands-quick-info.html

RapidEye

Planet
Ongoing

6.5m

Daily

2 weeks after
collection through
Open California
program

5

380 - 950 nm

Very good

GeoTIFF

UTM WGS84

<10m

Orthocorrected
using GCPs and 30-
90m DEM to <10m
RMSE positional
accuracy,
conversion to
absolute radiometric
values

Multispectral

Satellite
constellation

55-70nm for RGB,
90nm for NIR

nd PlanetScop

Planet
Ongoing

32m

Daily

2 weeks after
collection through
Open California
program

4
380 - 950 nm
Very good

Ortho Tile

UTM WGS84
<10m

Orthorectified using
GCPs and 30-90m
DEM to <10m
RMSE positional
accuracy, no
radiometric
calibration

Multispectral

Satellite
constellation

60-90nm



APPENDIX 15. Traceability matrix

Monitoring Category

Conservation Questions

MEASUREMENT

Observable (Remote or Field) Physical Features

Invasive Plant Species: Presence,
hotspots and other patterns of patial
distribution, abundance, spread.

What invasive plant species are present?

Where are invasive plants currently located?

How abundant are certain invasive species overall?

In locations where present, what is the density of the species of concern?
Where have invasive species spread through time?

How effective have invasive weed management activities been?

What changes in area covered and vegetation types are occuring over time?

Variation in climatic and environmental characteristics including soil
moisture, mean temperature, precipitaion.

Terrain variables includeing slope, aspect, elevation, proximity to streams.

Soil type
Species-level and vegetation community-level spectral signatures, i.e.
radiance in key wavelengths and differentials between them

Spatially distinct patches of different vegetation types

Decreased NDVI due to vegetation die-back

Moisture levels over time

Phenology, i.e. changes in spectral signatures or textures over time due to
seasonal changes in plants

Texture of vegetation and land cover

Canopy height

Conservation Easement Compliance:
Current noncompliance, locations of
infractions, types of infractions

What is the current compliance status of each conservation easement?
Are cattle grazing in acceptable locations?

Impermeable surfaces or structures

New soil deposits or new water bank areas

Major change in vegetation cover

Pasture color changes, not associated with phenology

Cattle drive or corral locations
Fence lines

Conifer Health: Health status of conifers,
extent and severity of conifer mortality,
cause of stress or mortality

What is the mortailty rate of conifers?

How many are dead (increases in canopy area of dead trees)?

How can the Conservancy monitor or track bark beetle infestation?
What is the health of conifers?

Where is conifer mortality or stress occurring?

What is the stress level of conifers on the ranch?

Spatially distinct stands of different tree types

Spectral signatures of healthy, conifers stressed by drought, and conifers
stressed by bark beetle pests

Density of canopy cover

Canopy height

Variation in climatic and environmental characteristics including soil
moisture, mean temperature, precipitaion.

Terrain variables includeing slope, aspect, elevation, proximity to streams.

Soil type
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MEASUREMENT

Observable (Remote or Field) Physical Features

Objective & Measurement Parameters

Instrument or Data Source

Variation in climatic and environmental characteristics including soil

moisture, mean temperature, precipitaion.

Terrain variables includeing slope, aspect, elevation, proximity to streams.

Soil type

Species-level and vegetation community-level spectral signatures, i.e.

radiance in key wavelengths and differentials between them

Spatially distinct patches of different vegetation types

Decreased NDVI due to vegetation die-back

Moisture levels over time

Phenology, i.e. changes in spectral signatures or textures over time due to

seasonal changes in plants

Texture of vegetation and land cover

Canopy height

Link environmental variables -- which may dictate
suitablility or preferred characteristics for species habitat --
to likelihood of invasive species presence. 10m resolution
for terrain variables, 0.5km for climatic.

Characterize full spectral signatures of invasive species,
radiometric errors <5%, at spatial resolution fine enough
that signal-to-noise ratio sufficient for detecting individual
plant species.

Create phenologic calendars of invasives and of dominant
native species, via groundtruthed "image library" of
species, in order to be able to separate changes in spectra
due to phenology from those associated with changes
species composition. Plant size, foliage and flower color,
flowering or not, etc.

Characterize spectral sigatures of native, uninvaded
vegetation communities, with radiometric errors <10%

Identify spatially distinct patches of invasive species.
Spatial resolution 4m or better

Measure success of weed management strageties by
assessing health of managed patches of invasive species,
via NDVI. Spatial resolution on par with mean size of plant
individuals or groups being monitored, about 4m

Assess if invasive species e.g. tamarisk are altering local
hydrology or soil resources. Spatial resolution ~1km,
measurement error <10%.

Create phenologic calendars of invasives and of dominant
native species, via groundtruthed "image library" of
species, in order to be able to separate changes in spectra
and texture due to phenology from those associated with
changes species composition. Spatial resolution fine
enough that signal-to-noise ratio sufficient to resolve
plants.

Measure canopy height, within 10cm vertical accuracy, and
with horizontal resolution 10-100cm

CalCommons: California Landscape
Conservation Cooperative, or

National elevation dataset (NED)

State Soil Geographic (STATSGO2)
Quadcopter with RGB+NIR sensor
capabilities or UAV with lightweight
imaging spectrometer

Landsat 8

Planet.com PlanetScope, or UAV RGB
e.g. DJI Phantom 4 Advanced
Planet.com PlanetScope, or UAV
RGB+NIR e.g. DJI Phantom 4 Advanced
with NIR sensor upgrade

SMAP (3km), Sentinel-1 (1km)

Quadcopter with RGB+NIR sensor
capabilities or UAV with lightweight
imaging spectrometer

UAV RGB e.g. DJI Phantom 4 Advanced

UAV-based or aircraft-based lidar

Impermeable surfaces or structures

New soil deposits or new water bank areas

Major change in vegetation cover

Pasture color changes, not associated with phenology

Cattle drive or corral locations
Fence lines

Determine if structures are being built on conserved lands.
Imagery with infrared band, to help discriminate between
vegetation, water bodies, and impervious surfaces. Spatial
resolution <10m.

Identify areas of major vegetation change e.g. illegal
farming or timber harvest activity

Assess impact of intensive cattle/grazing activity

Planet.com RapidEye, or UAV RGB+NIR
e.g. DJI Phantom 4 Advanced with Near
Infrared sensor upgrade

UAV RGB e.g. DJI Phantom 4 Advanced

Spatially distinct stands of different tree types

Spectral signatures of healthy, conifers stressed by drought, and conifers

stressed by bark beetle pests

Density of canopy cover

Canopy height

Variation in climatic and environmental characteristics including soil

moisture, mean temperature, precipitaion.

Terrain variables includeing slope, aspect, elevation, proximity to streams.

Soil type

Assess overall health over conifer stands using NDVI

Use NDVI and other vegetation indices to distinguish red-
attack or earlier phases of beetle infestation of within
conifer stands

Estimate area coverage of conifers within larger pixels of
Landsat or Sentinel imagery, via photogrammetric image
processing tools or with lidar imagery

Measure canopy height and foliage density, within 1m
vertical accuracy, and with horizontal resolution 10-100cm
Determine if there are significant factors besides spatial
proximity to previously infected stands, that influence
direction and rates of infection

Planet.com RapidEye
Sentinel-2
Landsat 8

UAV RGB+NIR e.g. DJI Phantom 4
Advanced with Near Infrared sensor
upgrade

UAV-based or aircraft-based lidar

CalCommons: California Landscape
Conservation Cooperative, or
WorldClim: Global Climate Data
National elevation dataset (NED)

State Soil Geographic (STATSGO2)
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