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I. Background and Significance  

The world’s oceans span an immense and unparalleled expanse, encompassing over 70% of the 

Earth’s surface. This vast domain, characterized by its remote and challenging nature, poses a 

formidable monitoring and enforcement challenge for entities seeking to regulate maritime 

activities. This complexity has led to the ocean being aptly described by many as ‘the world's 

largest crime scene.’ Within this context, Illegal, Unreported, and Unregulated (IUU) fishing 

emerges as a global crisis, with the US Coast Guard declaring that “IUU fishing has replaced 

piracy as the leading global maritime security threat” (US Coast Guard, 2020). IUU fishing 

undermines ocean health by destroying marine ecosystems through destructive fishing practices, 

risks geopolitical stability as countries jostle over limited resources, and threatens global food 

security by jeopardizing a vital sea-based protein supply for millions of people.  

 

The Food and Agriculture Organization of the United Nations (UNFAO) estimates that almost 90 

percent of the world’s fisheries are being exploited or have been depleted, while the global 

demand for seafood products continues to increase (UNFAO, 2022). IUU fishing has emerged as 

a result of this demand, with an annual illegal profit of $15.5 to $36.4 billion annually (Shaver 

and Yozell, 2018). IUU fishing encompasses many illicit activities such as fishing within marine 

protected areas, unauthorized fishing in sovereign waters of other nations, discarding catch 

unlawfully, engaging in illegal transshipment (i.e., illegally transferring catches between vessels), 

misreporting or underreporting catch, and perpetrating human rights abuses. Instances of sea 

slavery and organized crime have also been linked with IUU fishing activity (Mackay et. al., 

2020). The challenges posed by IUU fishing is exacerbated by its disproportionate impact on 

under-resourced coastal nations, as many countries lack the capability for robust surveillance of 

their exclusive economic zones (EEZ). However, the integration of advanced technology offers 

promising avenues to address these resource deficiencies, potentially reducing the manpower and 

expenses required for comprehensive monitoring across vast marine territories. 

 

The Allen Institute for AI (Ai2) is a nonprofit research institute with a mission to conduct 

artificial intelligence (AI) research for the common good. As a part of this mission, Ai2 has 

developed Skylight, an AI-powered data visualization software platform that leverages machine 

learning and satellite data to identify suspicious fishing activity. With a real-time alert system, 

Skylight provides actionable intelligence to maritime domain awareness (MDA) practitioners and 

other ocean health stakeholders and is free to the end-user. Skylight was identified in a recent 

study by international maritime agents as one of the most effective approaches to combat IUU 

fishing (Burroughs & Mazurek, 2019). However, there are limitations to satellite-based 

technology to monitor and enforce against IUU fishing alone.  

 

Our team has identified three avenues to improve monitoring IUU fishing:  

1) Increase awareness of the IUU fishing problem and investment in effective assets to 

monitor and enforce against IUU fishing.  

2) Ensure that investments made in monitoring and enforcement result in quantifiable 

protection and restoration of marine resources.  

3) Expand the number of countries engaged in IUU fishing monitoring and deterrence. 

 

https://www.zotero.org/google-docs/?lNjai5
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Our project will address each of these elements through a three-pronged approach. The goal is to 

support Ai2 and its partners by improving access to information on IUU fishing events and 

detection strategies and quantifying the impact of increased investment in those strategies. 

Additionally, we aim to provide insights on which countries to target IUU fishing reduction 

engagements.   

II. Project Objectives  

Objective 1: IUU Fishing Dashboard 

Create an interactive web application for sustainable fisheries stakeholders to analyze possible 

monitoring strategies for various IUU fishing events based on specified parameters and 

preferences.  

We accomplish this by:  

● Conducting a literature review to determine the characteristics, capabilities, and costs of 

different monitoring technologies and strategies. 

● Building a body of knowledge on different IUU fishing types and monitoring strategies. 

● Developing a user-friendly Shiny Dashboard that allows IUU fishing events to be 

matched with monitoring strategies based on shared attributes and user constraints. 

 

The overarching goal of this objective is to create an accessible resource to facilitate an 

understanding of different IUU fishing events and the monitoring strategies that could be used to 

monitor and enforce against such IUU fishing within user-specified constraints. 

 
Objective 2: Bioeconomic Model  

Develop a model to explore the relationship between improved IUU fishing monitoring and the 

health of the Indian Ocean yellowfin tuna (Thunnus albacares) stock in Indonesia. The following 

questions are assessed through this workflow:  

● What is the optimal harvest level for yellowfin tuna? 

● How does optimal harvest differ from fishers’ actual decision on how much to harvest? 

● How do improvements in enforcement affect illegal harvest? 

 

The goal of this objective is to demonstrate the impact of increased enforcement on fish stock 

health.  

 
Objective 3: Skylight Adoption Analysis  

Analyze characteristics of active Skylight users to identify countries that are potential ‘likely 

adopters’ of Skylight technology. This will be accomplished by: 

● Examining 51 country characteristic indicators from the World Bank and IUU Fishing 

Risk Index.  

● Developing a binomial logistic regression model from key indicators to predict Skylight 

adoption.  

 

The goal of this objective is to inform Skylight on shared characteristics of their active users and 

identify good candidates to target for future engagement.  
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III. Methods 

The following sections are separated by project component, as each involves different 

workstreams, methods, and results.  

 

IUU Fishing Dashboard  
Goal 

The goal for this component of the project is to create an accessible resource for sustainable 

fisheries stakeholders to expand their knowledge of different types of IUU fishing and possible 

monitoring strategies. To do so, we built an interactive R Shiny Dashboard that allows users to 

select an IUU fishing type, filter by jurisdiction of interest, and further refine results by 

specifying cost constraints and data type parameters (e.g. vessel location, video footage, 

imagery). The output provides suitable monitoring options, accompanied by short descriptions of 

their capabilities and limitations. Further information about IUU types and monitoring strategies 

can be found in additional tabs. The purpose of this tool is to provide useful information on 

monitoring strategies for various IUU fishing types for a range of use cases. 

 
Data and Process 

To begin, we performed a literature review to determine the features of monitoring strategies in 

three different categories: sensors, platforms, and satellites. Sensors were categorized as 

technology used to gather data, and platforms were the technology used to transport or carry the 

sensors. Satellites were treated as their own category since satellite technology payloads are 

predetermined. We recorded raw values representing their detection ranges, costs, resolutions, 

and other capabilities (e.g., speed, payload capacity, endurance). We also conducted a literature 

review to learn about various IUU events and determined the granularity of data required to 

detect each event (e.g., geographical location, individual species identification). 

 

The literature review informed our sensor range values and the speed and endurance of the 

platforms. With the simplified assumption that a platform hosts one sensor, we calculated a 

sensor and platform combined range and approximate coverage area through the following 

process: 

1. Multiply speed (km/hr) and endurance (hrs) of platforms to get total platform range (km).  

2. Divide platform range in half to account for the need for a platform to return to 

deployment location after completing the monitoring mission.  

3. Add each platform range to each sensor range, creating a combined platform and sensor 

range for every platform-sensor combination. 

4. Calculate an approximate coverage area for each platform-sensor combination based on 

the area of a circle and assuming that the platform is deployed from its center. See 

illustration in Figure I for a visualization of this methodology.  

 

Finally, we divided the calculated coverage areas into three groups of equal size to reflect local, 

regional, and international jurisdictions, with greater coverage areas associated with more remote 

jurisdictions. This was to address spatial considerations: monitoring strategies with smaller 

ranges are less suitable to monitoring large jurisdictions such as international waters.  
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Figure I. Approximate coverage area of sensor and platform pairings. Area ranges are subsequently 
divided into local, regions, and international jurisdictions. 

To recommend monitoring strategies for specific IUU fishing events, we developed a granularity 

index and matching logic. The granularity score represents the level of granularity of the 

information needed to detect a specific IUU fishing event. A granularity score of 1 represents the 

least granular data, while a score of 5 represents the most granular data requirements, as shown 

in Table I. 

Table I. Granularity Index 

Granularity 

Score 
Definition 

5 Identify a fish species and detailed onboard information 

4 Identify the identity of a vessel and detailed fishing information 

3 Identify vessel activity (e.g., fishing) 

2 Identify vessel length and width 

1 Identify the location of a vessel 
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Each IUU fishing type was assigned a granularity score based on the type of data needed to 

detect it. Table II depicts IUU types paired with granularity scores. For example, 

‘Underreporting of fishing effort’ is assigned a score of ‘5’ because detailed onboard information 

is needed to detect this event. ‘Vessel in a prohibited zone’ only requires the location of the 

vessel, which corresponds with a ‘1’. ‘Illegal transshipment’ is assigned a ‘2’ since vessel size 

information is the minimum needed to detect two boats side-by-side for an extended duration.  

Table II. IUU Type and Granularity Score 

IUU Type Granularity Score 

Underreporting of fishing effort 5 

Underreporting of fishing catch 5 

Gear-related offense 4 

Vessel in a prohibited zone 1 

Illegal transshipment 2 

Dark vessels (not broadcasting via VMS/AIS) 1 

Fishing out of season 1 

Fishing above quota 5 

Vessel with false flag 4 

Fishing without license 4 

 

In addition to assigning index scores to IUU fishing events, we also developed an index matrix 

for sensor ranges to capture the change in detection capability based on distance from the target 

vessel. For example, a long-range camera can detect vessel presence at a distance of 20 

kilometers, but that distance is much shorter if onboard species need to be detected. An example 

of the matrix is given in Table III and the complete matrix can be found in the GitHub 

repository.  
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Table III. Example Sensor Ranges for each Granularity Score 

Granularity 

Score 

Long-range camera 

(km) 

Hydrophone 

(km) 

Onboard 

Observer (km) 

1 20 7 0 

2 9 1 0 

3 7 0 1 

4 4 0 1 

5 2 0 1 

 

From the literature review, we also collected rough cost estimates for each monitoring 

technology. As the costs of different models range significantly based on manufacturer and 

technical specifications and are often not publicly available, we were not able to provide specific 

cost details. However, cost is an important constraint for fisheries MCS, so we developed an 

index to give a rough order of magnitude cost estimate, shown in Table IV.  

Table IV. Cost Index 

Cost Score  
Order of Magnitude 

(USD) 

1 ($) 10s of thousands 

2 ($$) 100s of thousands 

3 ($$$) 1 million +   

 

The cost index allows the user to filter by cost constraint. Additionally, the data gathered by each 

sensor was categorized as ‘Location’, ‘Image’, ‘Video’, or ‘Eye-witness’ to allow another level 

of user specificity. Depending on a user’s needs and jurisdictional laws, certain data types will be 

more useful for ultimately prosecuting illegal fishing events.  

 

With help from Skylight’s data sources, we compiled a final dataset for satellites and assigned 

granularity and cost scores. Based on a user’s IUU fishing type selection and cost selection, 

appropriate satellite options will also appear under sensor and platform solutions.    

 

 

 
Ongoing Work 
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We intend for the IUU Fishing Dashboard web application to be updated as new information and 

better data becomes available. We anticipate that interviewing fisheries management 

stakeholders and discussing our app with potential users will provide valuable insights. These 

will be worth incorporating into the app to provide more accurate and useful outputs. Throughout 

the Spring 2024 quarter we intend to keep updating our repository and will discuss with our 

client how this should be handled in the future. We will also continue our work with 

incorporating scaled monitoring solutions (e.g., 100 smart buoys to cover desired area) to expand 

the application offerings.  

 

Bioeconomic Model 
Overview 

The bioeconomic model allows Skylight to analyze the relationship between fish stock status, 

IUU fishing enforcement, and fishing harvest. It projects how improvements in enforcement 

translate to improvements in yellowfin tuna (Thunnus albacares) fish stock status, using 

Indonesia as a case study.  

 

Yellowfin tuna management in Indonesia offers a compelling case study for numerous reasons. It 

is one of the most profitable fish stocks globally, with a recent Pew Charitable Trusts analysis 

valuing Indian Ocean yellowfin tuna at $4.19 billion USD annually (Pew, 2020). Despite – or 

perhaps due to – its economic value, yellowfin tuna is also overexploited. The graph below 

summarizes Indian Ocean yellowfin tuna biomass and catch data provided by the RAM Legacy 

Stock Assessment Database (RAM, n.d.). Catches (in blue) have increased steadily since the 

1980s, while spawning stock biomass (in red) has plummeted. 

 

 

Figure II. Yellowfin tuna (Thunnus albacares) spawning stock biomass vs. catch (1950 – 2020) 

 

Moreover, Indonesia is the only nation ranked within the IUU Fishing Risk Index’s top ten 
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countries at-risk from IUU fishing that also uses the Skylight tool (IUU Fishing Risk Index, 

2023). Given the prevalence of IUU fishing risks, a demonstrated commitment to address IUU 

fishing with methods like Skylight, and Ai2’s strong relationship with in-country officials and 

experts, Indonesia proves an ideal nation to test the bioeconomic model. 

 

Drawing on data about both Indian Ocean yellowfin tuna stock status and Indonesian IUU 

fishing enforcement, the bioeconomic model seeks to answer the following questions: 

1) What is the optimal harvest level for any given level of yellowfin tuna biomass? 

2) How does optimal harvest differ from actual harvest? 

3) How do varying levels of enforcement (i.e., no enforcement (e = 0); partial 

enforcement ( e = 0.5); full enforcement (e = 1)) affect illegal yellowfin tuna harvest? 

 

The model draws inspiration from McDonald et al., which evaluates optimal enforcement for a 

small-scale Caribbean lobster fishery (McDonald et al., 2016). Informed by both the article and 

primary research conducted at the Bren School, our analysis includes the following variables: 

 

X: Yellowfin tuna stock biomass (metric tons (MT)) 

h: Legal fishing harvest, e.g., quota (MT) 

ht: Total fishing harvest, e.g., the sum of legal and illegal fishing (MT) 

int_stock: Initial stock biomass (MT) 

δ: Discount rate 

p: Price of landed tuna ($/MT) 

c: Cost of fishing ($/MT) 

et: Level of enforcement 

γ: Enforcement effectiveness 

K: Carrying capacity (MT) 

r: Intrinsic population growth rate 

Table V. Bioeconomic model parameters 

Biological Parameters Economic Parameters Enforcement Parameters 

Initial Stock (int_stock) = 

883,400 MT 

Cost of fishing per unit (c) = 

$1,678 per metric ton 

Level of enforcement (et): 

(0 < et ≤ 1) 

Intrinsic growth rate (r) = 

0.2 

Price of fish per unit (p) = 

$2,397 per metric ton 

Detection probability at 

max enforcement = 0.25 

Carrying capacity (K) = 

2,265,128 metric tons 

Discount rate (δ) = 0.5 Fine (per MT illegal 

harvest): 

$8,398.50 

 

 

 

 

 
Three-Step Process: 

1) Find the dynamic economically optimal harvest (e.g., the optimal quota) assuming 

no illegal fishing occurs. Using value function iteration and backwards induction, the 
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model identifies the optimal policy function for Indian Ocean yellowfin tuna. This 

function quantifies the ideal quota, or harvest level (h), for any given biomass estimate 

(X). Note that instead of simply identifying Maximum Sustainable Yield (MSY) for a 

given level of biomass, the model relies on the Maximum Economic Yield (MEY). MEY 

evaluates both the revenue generated from a harvest and the cost of harvesting, which 

typically keeps harvest levels below MSY. 

 

a) Stock dynamics are described according to a logistic growth model, where future 

stocks  Xt+1 are a function of stocks at current (Xt), intrinsic growth rate (r), 

carrying capacity (K), and optimal legal harvest (ht). 

 
b) Public benefits, or profits, are a function of fish stock (Xt), optimal harvest (ht), 

the price of landed tuna (p), and the costs of fishing (c). 

 
c) Value is a function of fish stock (Xt), optimal harvest (ht), and the discounted 

value of future fish stocks (Xnext). By capturing the payoff value associated with 

future yellowfin tuna stocks, the model balances today’s profits with tomorrow’s 

healthy fishery. 

 

2) Introduce IUU fishing and find the actual total harvest. The second step introduces a 

separate optimization evaluating a private profit function for fishers. The private profit 

function aims to capture how actors behave in the real world, where fishers behave 

myopically (e.g., they do not consider the discounted future value of stock) and seek to 

maximize profits here and now. Fishers’ decision on how much to harvest is then based 

solely on the profits they can receive from their catch, the associated cost of fishing, and 

the likelihood of receiving a fine for fishing above the legal limit. Profits are calculated as 

a function of the current stock level (Xt), actual harvest (htt), and optimal harvest for that 

given stock level (ht). Illegal fishing harvest is defined as the difference between actual 

harvest and optimal harvest. Illegal fishing is penalized according to enforcement 

effectiveness (γ) at a given enforcement level (et). Because illegal fishing occurs in 

addition to legal fishing, instead of independently, fishers have a greater likelihood of 

receiving a fine the more they harvest above quota. The private profit optimization 

captures thus the decreased marginal productivity of illegal harvest compared to legal 

harvest. 

 
3) Evaluate how changes in enforcement level (et) affect tuna harvest and overall stock. 

We evaluated outcomes in Indian Ocean yellowfin tuna stock and harvests across five 

different levels of enforcement: no enforcement (et = 0), 25% enforcement (et = 0.25), 

50% enforcement (et = 0.50), 75% enforcement (et = 0.75), and full enforcement (et = 1). 

 

Skylight Adoption Analysis 
Analysis Methods 
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The goal of this analysis is to understand the factors that may influence whether or not a country 

adopts Skylight and to identify potential countries for targeted philanthropic outreach. This 

analysis can also be adapted to understand how Skylight offerings can evolve to better attract 

non likely adopting countries, or countries with a significant need for monitoring support (see 

Figure III). By examining the common characteristics among Skylight adopters, we can identify 

trends across countries that actively engage with Skylight. Non-Skylight countries that share 

those Skylight-user characteristics can be considered ‘likely adopters’, as they exhibit similar 

trends to Skylight countries. These likely adopters may be good candidates for future 

philanthropic engagement within the illegal fishing detection and prevention space.  

 

The first step in this analysis involves the identification of explanatory variables for Skylight 

adoption. We began by considering a comprehensive set of indicators from two sources: the 

World Bank and the Illegal, Unreported, and Unregulated Fishing Risk Index (detailed in the 

‘Data’ section below). The full suite of 51 indicators included measurements of national 

governance effectiveness, IUU fishing risks and prevention efforts, and GDP. To narrow down 

this large set of indicators, we excluded indicators with NA values for more than 10% of the 

dataset, used real-world context to eliminate irrelevant indicators, and tested the remaining batch 

for collinearity and discarded highly collinear indicators. The remaining 12 key indicators were 

used in the model selection phase of this assessment (see Table VI). 

 

Binomial logistic regression was employed to test various models and hypotheses, with the final 

model chosen using backwards model selection. Model selection was guided by Multi-Model 

Inference with Bayesian Information Criterion (BIC) scores as the selection criteria. Notably, no 

models fell within 2 delta BIC points from our best model, enabling us to focus the remainder of 

the analysis on this best model. Fit of the best model was then assessed using Area Under the 

Curve (AUC). The best model was used to populate a confusion matrix of predicted Skylight 

adopters and true adopters. In this matrix, all false positive countries—those predicted by the 

model to be Skylight users but are not—were identified as our likely adopters. 

 

 

 

 

 

 

 

 

 

 



 14 

 

Figure III. Map of active Skylight countries in blue and the top 10 countries with the highest IUU fishing 
risk in their EEZ outlined in red (IUU Fishing Risk Index 2023).  

 
Data 

Data for this analysis was obtained from 3 sources:  

1. IUU Fishing Risk Index 

2. World Bank Country Data  

3. Skylight User Engagement Metrics  

 

IUU Fishing Risk Index: This dataset was co-developed by Poseidon Aquatic Resource 

Management Ltd., a fisheries and aquaculture consultancy firm, and the Global Initiative Against 

Transnational Organized Crime (Macfadyen, G. and Hosch, G, 2023). The index consists of 40 

IUU fishing indicators across 152 maritime countries from 2019 to 2023. The 40 indicators are 

grouped by which state has responsibility: the coastal state responsible for the EEZ, the flag state 

of fishing vessels, or the port state where the fish is landed. Indicators are also grouped by 

vulnerability to IUU fishing risk, known or expected prevalence of IUU fishing, and response to 

IUU fishing. Our analysis focuses on the indicators that we believe are most relevant to IUU 

fishing monitoring.  

 

World Bank: We sourced three time series datasets from the World Bank including Governance 

Indicators, GDP, and World Development Indicators.  

 

Governance Indicators:  An aggregate of data from 30+ think tanks, international 

organizations, non-governmental organizations, and private firms capturing household, 

business, and citizen perception of the quality of governance in more than 200 countries. 

This data is developed in part through survey and expert opinion and features 6 

indicators. These indicators were highly collinear and therefore only one was included in 

the final set of 12 key indicators (Kaufmann, D. & Kraay, A, 2023). 

 

 

GDP:  Data on the per capita gross domestic product of 200+ countries (World Bank 

Group, 2022).  
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World Development Indicators: This dataset covers many facets of global 

development. For our analysis, we utilized aquaculture and capture-fisheries data 

(Worldwide Governance Indicators, n.d.).  

 

Skylight User Engagement Metrics: The Skylight team provided usage metrics for the 

countries that have been engaged with the Skylight tool. We used the weekly engagement 

metrics to determine which countries are actively Skylight users1. Note that the active user data 

was pulled in January 2024 and the list of active countries may have changed since then.  

Table VI. The covariant inputs to binomial logistic regression analysis  

Covariant  Definition Causation Hypothesis  Data Source  

Voice and 

Accountability  

This indicator 

measures the overall 

levels of democracy in 

a country. Ranked on a 

scale of 0 - 100, with 

100 being the most 

democratic.  

Countries with higher values will 

be more likely to adopt Skylight 

because the government is more 

accountable to the people.  

 

World Bank: 

Governance 

Indicators 

Capture-

Fisheries 

Production 

 

This indicator 

measures the annual 

weight (tons) of fish 

caught at sea and 

brought to port legally 

in a country.  

Higher quantities of sea-captured 

fish can be inferred to relate to a 

higher $ value. This will lead to 

higher Skylight adoption because 

legal fishing will be more 

valuable to protect in these 

countries.  

 

World Bank: 

Developmen

t Indicators 

Ratio of Capture 

Fisheries 

Production to 

Aquaculture 

Production   

This indicator 

measures the total 

capture-fishery 

production divided by 

the total aquaculture 

production in a country 

(in tons). 

If a country has a more 

productive aquaculture industry 

than capture-fishery, they may 

have less motivation to put 

resources towards protecting 

capture fishery, which will lead to 

less Skylight adoption.  

 

World Bank: 

Developmen

t Indicators 

Per Capita GDP This indicator 

measures the per capita 

gross domestic product 

of a country (in USD). 

Countries with a moderate GDP 

per capita will be likely Skylight 

adopters since they may have 

some resources available to invest 

in IUU fishing, but not enough to 

develop an entirely custom 

program.  

 

World Bank 

 
1 The Skylight team defines active engagement as using the Skylight platform 3 weeks out of the last 5. 
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Covariant  Definition Causation Hypothesis  Data Source  

Dependency on 

Fish for Protein 

This indicator 

measures the 

dependency of 

countries on fish as a 

source of protein, 

based on the volume of 

fish consumed per 

person. 

 

Countries with higher 

dependency on fish for protein 

are more likely to engage with 

Skylight because they have more 

to lose from IUU fishing  

 

IUU Fishing 

Risk Index 

Designated 

Ports Specific 

for Entry by 

Foreign Vessels  

This indicator 

measures whether the 

port country designates 

specific entry points for 

foreign vessels. 

Countries that designate specific 

port entries for foreign vessels are 

more likely to be keeping track of 

foreign vessel activity.  

IUU Fishing 

Risk Index 

Party to the 

PSMA  

This indicator 

measures whether 

countries have acceded 

to the FAO Agreement 

on Port State Measures. 

 

These countries will be more 

willing to adopt Skylight because 

they have a demonstrated history 

of commitment to IUU 

prevention.  

IUU Fishing 

Risk Index 

Provision of 

Vessel Data for 

Inclusion in the 

Global Record  

 

This indicator 

measures whether 

countries have 

provided data on their 

flagged vessels to the 

FAO for inclusion in 

the global record.  

These countries will be more 

willing to adopt Skylight because 

they have a demonstrated history 

of global maritime transparency 

and cooperation.  

IUU Fishing 

Risk Index 

Ratification 

Accession of 

UNCLOS 

Convention  

 

This indicator 

measures whether 

countries have signed 

on to the United Nation 

Convention on the Law 

of the Sea (UNCLOS)  

These countries will be more 

willing to adopt Skylight because 

they have a demonstrated history 

of commitment to global 

maritime cooperation and 

standards for acts at sea.  

IUU Fishing 

Risk Index 

Size of EEZ This indicator 

measures the size of a 

country’s EEZ. 

Countries with a larger EEZ are 

more likely to engage with 

Skylight, because they have more 

need for marine surveillance. 

 

IUU Fishing 

Risk Index 

Trade Balance 

for Fisheries 

Products  

This indicator 

measures whether 

countries import a lot 

of fish compared to 

exports or export a lot 

of fish compared to 

Countries with more fisheries 

exports will be more likely to 

engage with Skylight because 

they are more economically 

reliant on legal fishing.  

IUU Fishing 

Risk Index 
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Covariant  Definition Causation Hypothesis  Data Source  

imports (in value 

terms). 

 

Vessels on IUU 

Lists  

This indicator 

measures how many 

vessels a country has 

listed on Regional 

Fisheries Management 

Organization (RFMO) 

IUU vessel lists.  

Countries with high numbers of 

illegal vessels are less likely to 

adopt Skylight because they have 

potential economic ties to IUU 

activity and have a demonstrated 

history of inaction in IUU 

enforcement.  

IUU Fishing 

Risk Index 

 

IV. Results  

IUU Fishing Dashboard 
The latest version of our IUU Fishing Dashboard can be accessed through our public GitHub 

repository: https://github.com/sydneymayes/cirsea_dashboard. This repository reflects the most 

up to date data and code for the Shiny app. Based on feedback and interviews with fisheries 

management stakeholders, we will push changes to reflect best industry knowledge. 

 

The app allows users to select from ten different IUU fishing events, select a jurisdiction (local, 

regional, or high seas), filter by cost constraints ($, $$, $$$), and specify data needs (eyewitness, 

image, location, video). Outputs are possible sensor and platform monitoring pairings and 

satellites, accompanied by brief descriptions. Other tabs of the application include more details 

about monitoring solution capabilities, caveats, and use case examples, as well as an introductory 

page providing background and context on the global IUU fishing problem. 

 

Depending on our budget and discussion with Skylight, a version of the app may be hosted 

online. All questions related to the current status and accessibility of the app may be directed to 

our team, as future web-hosting capabilities are currently undetermined. Ultimately, we hope to 

share this tool broadly with global fisheries stakeholders to improve understanding of appropriate 

and effective IUU monitoring solutions.   

 

Bioeconomic Model 
Part 1: Optimal Harvest 

Graph A shows the results of the public profits value function iteration, assuming no illegal 

fishing. This function iterates through various harvest scenarios over time, with the initial runs 

shown in yellow. It ultimately converges on the optimal policy function (in purple), which is 

used to determine the dynamic economically optimal harvest, or legal harvest.  

https://github.com/sydneymayes/cirsea_dashboard
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Graph B plots value (the sum of the current profits from harvesting plus the discounted future 

value of fish), given Indian Ocean yellowfin tuna stock (MT). Like the optimal policy function, 

Graph B also iterates until it converges upon the optimal value function. 

 
 

 
 

Graph C applies the optimal harvest policy identified to current Indian Ocean yellowfin tuna 

stock estimates (883,400 MT per the RAM Legacy Stock Assessment database). Under the 

optimal harvest policy, yellowfin tuna populations will be allowed to grow (e.g., harvest is less 

than annual growth) for roughly ten years. Eventually, the yellowfin tuna stocks approach a 

steady state where harvest and growth near an equilibrium. 
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Understanding the optimal harvest for a given stock level is crucial to differentiating between 

legal and illegal harvest. While the above graph depicts how optimal harvest supports stock 

growth over 20 years – starting at today’s stock levels – the model produces a dataframe with 

100 discrete stock values between 0 MT and 2,265,128 MT (carrying capacity), their respective 

optimal harvest level, and respective value. Using spline interpolation, a type of piecewise 

polynomial interpolation, the subsequent private profit optimization determines the optimal 

harvest for stock values outside of the dataframe, allowing us to adapt to dynamic inputs and 

appropriately identify and penalize illegal harvest. 

 
Parts 2 and 3: Actual Harvest Under Different Levels of Enforcement 

With the optimal policy function and the ability to interpolate legal harvest for any given stock 

level, we ran a second private profit optimization to determine actual fishing harvest. We carried 

out this optimization across five levels of enforcement: no enforcement (et = 0), 25% 

enforcement (et = 0.25), 50% enforcement (et = 0.50), 75% enforcement (et = 0.75), and full 

enforcement (et = 1). Graph D, below, shows how Indian Ocean yellowfin tuna stock responds 

to different enforcement levels. No enforcement represents the lower bound (yellow), where 

stocks drop to near-zero levels within six years. Full enforcement (purple) represents the upper 

bound, where stocks continue to grow from current stock levels (883,400 MT) over the coming 

20 years. 
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In addition to stock dynamics, we evaluated how legal and illegal harvest changes across 

enforcement levels. Figure IV summarizes these results, with illegal harvest (in red) and legal 

harvest (in green) summing to total annual harvest. Together, Graph D and Figure IV illustrate 

how greater enforcement leads to higher stock levels and shifts harvesting dynamics from illegal 

harvest to legal harvest
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Figure IV. Breakdown of Indian Ocean yellowfin tuna harvest (MT) over time, under different levels of enforcement.  

“Total” refers to the cumulative total harvest (both illegal and legal) over the entire period. Graph 1: et = 0, total harvest = 

1,111,129 MT. Graph 2: et = 0.25, total harvest = 1,362,307 MT. Graph 3: et = 0.50, total harvest = 1,889,212 MT. Graph 4: et = 

0.75, total harvest = 2,217,507 MT. Graph 5: et = 1, total harvest = 2,145,349. Graph 6: Optimal harvest according to the optimal 

policy function (see Graphs A – C above), total harvest = 2,145,349 MT.
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Lastly, for each level of enforcement we recorded the final biomass after 20 years of harvest, 

total harvest across all 20 years, and the subsequent breakdown of illegal harvest and legal 

harvest. Because the bioeconomic model is first and foremost a conceptual model, illegal harvest 

and legal harvest are summarized here as a proportion of total harvest. Our primary goal is to 

reveal how the scale and magnitude of illegal fishing changes as enforcement level improves, not 

the raw counts themselves. 

 

Table VII. Stock dynamics and harvest across different enforcement levels (et = 0, et = 0.25, et = 

0.50, et = 0.75, et = 1).  

 
Enforcement level “Optimal” (light blue) refers to the optimal policy function. “Optimal” and “et 

= 1” share the same ending biomass, illegal harvest, and legal harvest. This is because the model 

is parameterized so that full enforcement (et = 1) yields near-optimal harvest levels. 

 

Skylight Adoption Analysis 

The indicators included in the best model from the Multi-Model Inference model selection 

method are listed in Table VIII along with the coefficients and significance level from the 

binomial logistic regression model.  

Table VIII. Logistic regression analysis of predictors for Skylight use in coastal countries.  

Outcome: 

Active Skylight 

User 

Coefficient 

Estimate 

Confidence 

Interval  
z-value  p-value  

Intercept  -1.417e+00 [-3.14 - 0.15]  -1.72 .086 .  

Size of EEZ 4.964e-01 [0.07 - 0.98] 2.17 0.029 * 

Voice and 

Accountability 

Estimate  

8.467e-01 [0.09 - 1.73] 2.05  0.040 * 

GDP per Capita  -8.924e-05 [0.00 - 0.00] -2.66 0.007 ** 

. significance at .1  

* significance at .05  

** significance at .01 



 23 

The confusion matrix depicted in Table IX provides a comprehensive overview of the model's 

predictive performance in classifying countries as Skylight adopters or non-adopters. This matrix 

compares the model's predictions against the actual Skylight adoption status of each country in 

the dataset. Specifically, it categorizes countries into four groups: true positive (correctly 

predicted as Skylight adopters), true negative (correctly predicted as non-adopters), false positive 

(incorrectly predicted as Skylight adopters), and false negative (incorrectly predicted as non-

adopters). 

Table IX. Logistic regression model accuracy in predicting Skylight use in coastal countries 

 Actual  

Predicted  

Skylight 

Adoption 

0 1 

0 93 25 

1 13 18  

Accuracy: 0.745 

AUC: 0.8232 

 

The false positive countries, or non-Skylight countries that the model predicted as Skylight 

adopters are: Chile, Costa Rica, India, Jamaica, Kiribati, Marshall Islands, Mozambique, 

Palau, Senegal, Seychelles, Solomon Islands, South Africa, Tuvalu. 

 

Figures V(a), V(b), and V(c) show the distribution of indicator values across three different 

groups. Blue represents non-Skylight countries that were predicted by the model as Skylight 

adopters, green represents non-Skylights countries that were not predicted to be Skylight 

adopters, and pink represents actual Skylight adopters.  
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Figure V(a). Voice and Accountability indicator distribution  

 

 

Figure V(b): Size of EEZ indicator distribution   
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Figure V(c). GDP per Capita distribution (up to $150,000) 

 

Figure VI visualizes the values of the three significant covariates across every country, with 

Skylight predicted countries outlined in blue and actually Skylight countries outlined in red. 

From this figure we can see the similarities between actual Skylight countries and predicted 

countries, and the differences between these countries and the rest of the world. 
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Figure VI. Geographic visualization of the three key covariates. A: Size of EEZ; B: Voice and 
Accountability; C: GDP per Capita.  
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V. Discussion and Conclusions 

IUU Fishing Dashboard 
The goal of this project component was to create a knowledge base and accessible tool for 

sustainable fisheries stakeholders to learn about suitable monitoring solutions for IUU fishing 

events. We recognize that there may be other types of IUU fishing events we have not addressed, 

but have included ten common occurrences in our Shiny app. Through an extensive review of the 

literature, we have attempted to provide monitoring solutions that best match a user’s 

jurisdictional interests, cost constraints, and data needs.  

 

While our web application is functional, informed by research, and producing outputs that we 

believe are logical, we recognize some limitations. First, we have not yet shown the app to 

stakeholders who may benefit from using the tool. Allowing them to trial the app and speaking 

with them to understand whether outputs are realistic and meet their needs will provide valuable 

information. Additionally, some monitoring technology categories are broad in the sense that 

there are many different models available (e.g., different types and sizes of manned vessels and 

aircraft may have different capabilities) but our data frames only contain one value for every 

sensor or platform. Future work may consider creating more specific categories of sensor and 

platform models to reflect more precise data and ultimately more accurate monitoring solution 

outputs. Finally, there are other monitoring strategies that the app does not yet represent, 

including scaled solutions. Technologies used for combating IUU fishing events are also 

evolving rapidly, driving changes in monitoring capabilities and costs. For our Shiny app to 

remain relevant and useful, periodically updating the data that informs our suggested monitoring 

solutions with new technological information will be critical.  

 

The IUU Fishing Dashboard represents just one small resource to help address a wicked 

problem. Our hope is that this resource will improve access to information about methods for 

combating illegal fishing events. The monitoring strategies our app produces are not meant to be 

conclusive, nor will they be effective for every use case. Stakeholders will need to assess what 

strategies are best based on their own constraints, critical areas of focus, and enforcement 

options. We hope that our app helps inform the IUU fishing prevention space and will assist with 

important fisheries management decision-making. 

 

Bioeconomic Model 
The bioeconomic model demonstrates how improved enforcement results in better stock 

outcomes, reduced illegal fishing harvest, and higher total harvest. 

 

Level of Enforcement and Stock 

Enforcement level determines how long – and how well – Indian Ocean yellowfin tuna stock 

persists. The difference in outcomes between full enforcement (et = 1; stock at time t = 20 equals 

914,558 MT; harvest equals 109,037 MT) and zero enforcement (et = 0; stock at time t = 20 

equals 1 MT; harvest equals 1 MT) is telling. Without enforcement, Indian Ocean yellowfin tuna 

goes extinct. With full enforcement, however, stocks can continue to grow well into the future. 

Level of Enforcement and Illegal Fishing Harvest 

Model results demonstrate an inverse relationship between enforcement level and the percent of 

harvest that is illegally caught. At lowest levels of enforcement (e.g., et = 0), the model predicts 
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the vast majority of catch is illegal (≈ 91% of total harvest). While illegal harvest increases 

slightly by 0.04% when enforcement level increases to 25% enforcement (see Table VII, et = 

0.25), this discrepancy is likely attributed to the fact that increased enforcement slows the decline 

of yellowfin tuna year over year, thereby extending the length of time that stocks persist and 

increasing the likelihood of harvesting at low stock levels. Despite this inconsistency, illegal 

harvest continues to decrease beyond 25% enforcement. 

 

Level of Enforcement and Total Harvest 

Another important insight generated from the model is that total harvest increases as 

enforcement level increases. An exception to this trend occurs at 75% enforcement (see Table 

VII, et = 0.75), where total harvest (2,217,507 MT) is ~ 3.36% greater than harvest under full 

enforcement (2,145,349 MT). This result may seem surprising at first glance, but only ~40% of 

the total harvest is legally harvested when enforcement equals 75%. If we extend the time 

horizon beyond 20 years, subsequent illegal harvest will eventually drive yellowfin tuna stock to 

crash. 

 

Looking Ahead 

The bioeconomic model, like the optimizations it relies upon, is dynamic. We anticipate 

integrating our model results into the IUU Fishing Dashboard and continuing to explore how 

changes in other parameters (i.e., fine amount, enforcement effectiveness) similarly affect the 

interplay between enforcement, stock, and legal, illegal, and total harvest. The bioeconomic 

model serves as a useful tool to examine the interplay between elements in a complex system 

where managers make stock-driven choices, while fishers make profit-driven choices. 

Ultimately, our results underscore the importance of enforcement in deterring IUU fishing. 

 

Skylight Adoption Analysis 
The indicators included in the final model were shown to be explanatory variables in predicting 

whether or not a country has adopted Skylight. Analysis reveals that Skylight adoption 

probability correlates positively with a country's level of democracy (or voice and accountability 

estimates) and the size of its Exclusive Economic Zone (EEZ), while displaying a negative 

correlation with per capita GDP. The association between EEZ size and Skylight adoption is 

logical, as this technology is only applicable to countries with an EEZ, with larger EEZs 

necessitating more robust monitoring. The slightly surprising finding of democracy being linked 

to Skylight adoption suggests that nations with high levels of citizen accountability are more 

inclined to invest in monitoring systems to mitigate resource exploitation and boost revenues for 

legal businesses. Notably, GDP emerges as the most significant covariate, indicating that higher 

GDP is associated with a lower probability of Skylight adoption within a country. These findings 

underscore the importance of targeting Skylight outreach efforts toward coastal countries with 

large EEZs, lower per capita GDPs, and relatively high levels of democracy. 

 

The false positives in our model were used to address countries that fit the guidelines outlined 

above. These were determined as the countries that the model predicted to be Skylight countries 

but are not active Skylight users. These countries were Chile, Costa Rica, India, Jamaica, 

Kiribati, Marshall Islands, Mozambique, Palau, Senegal, Seychelles, Solomon Islands, South 

Africa, Tuvalu. Due to these similarities these countries share with Skylight adopters, we 
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recommend that Skylight and other philanthropy organizations in the IUU fishing prevention 

space target engagement efforts towards these countries.  

 

Figures V(a), V(b), and V(c) illustrate that the distributions of Skylight Adopter and Likely 

Adopter groups are more similar to each other than to the non-Skylight group for each variable, 

further affirming the relevance of the identified indicators in distinguishing potential adopters. 

 

Although the best fit model achieved a 74.5% accuracy rate in predicting Skylight adoption, it 

misclassified 25 active Skylight users as non-adopters. This could have been influenced by the 

imbalanced dataset, which contains three times as many non-Skylight countries as Skylight 

countries. Nonetheless, with an Area Under the Curve of 0.8232, the model demonstrates 

robustness and reliability in its predictive performance. 

 

Conclusions 

Together, the IUU Fishing Dashboard, the bioeconomic model, and the Skylight adoption 

analysis represent a multifaceted approach to address the challenges and opportunities associated 

with IUU fishing monitoring and enforcement. These tools provide data-driven insights and 

accessible resources for sustainable fisheries management stakeholders. Supported by empirical 

modeling, data analysis, and a thorough literature review, this project offers a promising 

contribution to the global efforts to combat IUU fishing. Continued refinement and integration of 

these tools will support informed MDA decision-making and strategies to protect coastal 

economies, marine ecosystems, and the countless citizens that depend upon them. 
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