
Supplemental Materials

1. Santa Clara River Background

1.1 Geology

The Santa Clara River Watershed is one of the largest coastal watersheds in Southern California,
spanning roughly 100 miles from the San Gabriel Mountains in Los Angeles County to the
Pacific Ocean above the Oxnard Plain in Ventura County (Beller et al. 2011). It is located within
the Western Transverse Ranges, west of the San Andreas Fault. The watershed as a whole is
prone to high natural rates of sediment supply and high erosion rates from rapid uplift and
fracturing and faulting of bedrock (Downs et al. 2013). The upper portion of the watershed is
composed of older igneous and metamorphic rock, while the lower portion is made up of
younger marine sedimentary rocks. The lower areas of the watershed are prone to high rates of
erosion and sediment transport due to poor consolidation and a structure composed of deformed
and fractured sedimentary rocks (UWCD 2021).

Within the Santa Clara River, there are groundwater basins such as the Piru Basin, Fillmore
Basin, and the Santa Paula Basin. The Piru Basin is an unconfined basin about 10 miles long and
2 miles wide, consisting of alluvium deposited above thick Pleistocene deposits from the Saugus
and San Pedro Formations (UWCD 2021). The alluvium is characterized by coarse sand and
gravel, while deposits from the San Pedro formation consist of permeable sand and gravel
(UWCD 2021). The Fillmore basin is similarly unconfined and made up of westward-sloping
alluvial deposits underlain by Saugus and San Pedro Formations. It is located south of the river,
stretching about 5 miles wide, and contains recent sand and gravel deposits from the Santa Clara
River. The northern portion of the basin contains complex terrace deposits—south-sloping
alluvium fan deposits (UWCD 2021). The Santa Paula basin is approximately 10 miles long and
4 miles wide, consisting of semi-confined, continuing thick clay deposits below alluvium
deposits. It is located downstream of the Fillmore Basin and borders the Oxnard Basin (UWCD
2021).

1.2 Lithology

Other common stratigraphic units underlying the Santa Clara Basin include the Pico, Sisquoc,
Monterey, Rincon, Vaqueros, Coldwater, Cozy Dell, and Jamala formations. The previously
mentioned Saugus formation is Pilo-Pleistocene in age. It is nonmarine in origin, specifically
fluvial transitioning to alluvial fan closer to the basin margins. It can be described as
moderately-sorted, usually cross-bedded and channeled. It consists of various shades of brown



interbedded sandstones and siltstones with sparse conglomerate beds/lenses (Levi & Yeats,
1993). Portions contain clay-rich lamellae and appear darker and more oxide-stained. The Pico
formation is uniquely susceptible to mass wasting. Its Pliocene in age and mostly nonmarine in
origin, however, certain areas indicate a marine depositional environment. It consists of
conglomerate, thick to very-thick bedded sandstone, medium-bedded sandstone and mudstone,
thin to very-thin bedded sandstone, siltstone, and mudstone ranging from brownish- to
brownish-gray color (Rotzien et al. 2014).

The Sisquoc formation is Miocene in age and mostly marine in origin. It contains diatomaceous
mudstone and shale as well as conglomerate and subordinate dolomite (Minor et al. 2009). The
conglomerate beds are thick and prominent, composed of angular clasts which range from
granules to boulders. Mudstone and shales are tan to white weathering gray to brown. Marine
fossils are common to abundant and include fish fragments, radiolarians, sponge spicules, and
molluscan shell fragments. The Coldwater formation is approximately Eocene in age, its marine
in origin. It contains shallow-marine sandstone with small interbeds and thin intervals of
siltstone, shale, and mudstone (Minor et al. 2009). They can be as thick as 3 meters in some
areas. Sandstone is generally fine-to medium-grained, feldspathic, arkosic, silty to clayey or
micaceous, and weakly cemented with calcium carbonate. Sandstones are typically gray, and
yellowish-tan. Siltstone, shale, and mudstone interbeds can be as thin as 1 cm while bedded
intervals can be as thick as 5 meters. The finer grained rocks of the Coldwater are generally
poorly exposed due to the higher erosion when compared to the sandstone. The arrangement and
distribution of these lithologies dictates regional groundwater flow and dynamics. The results of
this project will be enhanced by a thorough analysis of the complexity, connectivity, and
permeability of the many stratigraphic layers in the system.

1.3 Land Use

Increases in land development and urbanization can lead to various changes in streamflow
discharge, ground recharge, and over water availability. This is especially critical for areas like
the Santa Clara River which support various vegetation types and groundwater-dependent
ecosystems. Despite increases in population growth and urbanization over the years, the Santa
Clara River’s dominant land use is agriculture. Most of the urbanization and building
development in this area occurred before 1985, with not much expansion since then (UWCD
2021). In the past 20 years, most changes were agricultural. The Piru and Fillmore Basins went
from growing citrus to row crops, while the Fillmore and Santa Paula Basins saw major increases
in avocado acreage (UWCD 2021).



1.4 Site Hydrology and Groundwater Influence

The Santa Clara River has a two-season Mediterranean climate. This climate type results in low
daily mean flows in the summer, while receiving most of its precipitation during the winter
months, resulting in flash flood discharges (Beller et al. 2011, Beller et al. 2016). Flow within the
river is typically low and can be described as an interrupted perennial flow. The river receives
most of its water from controlled releases from Lake Piru, Lake Castaic and upstream of the Piru
Basin (Stillwater Sciences 2021). The major tributaries feeding into the river are Piru Creek,
Sespe Creek, and the Santa Paula Creek (UWCD 2021). The interaction between surface water
and groundwater is very crucial to this site, and primary groundwater recharge occurs from the
percolation of surface waters of the Santa Clara River and its tributaries (Stillwater Sciences
2021). The largest discharge volumes of groundwater come from the Piru and Fillmore Basins,
where the groundwater elevations are higher and the geology restricts groundwater flow, leading
to groundwater upwelling (UWCD 2021).

Within the Santa Clara River watershed, groundwater plays a key role in sustaining habitat for
steelhead in intermittent stretches by contributing the necessary stream flow for juvenile rearing
in the summer months. Groundwater extraction has been identified as one of the major threats to
the recovery of steelhead due to its ability to disconnect migratory corridors within the watershed
(NMFS 2012). Steelhead recovery plans have noted that groundwater management activities and
conservation releases from diversion projects influence the level of baseflow that is needed to
sustain critical habitat areas. Such plans have made recommendations to align the management
of groundwater extractions and conservation releases with the life-cycle of steelhead (NMFS
2012).

Stillwater Sciences has identified the Cienega and East Grove GDE Unit as study regions with
high ecological value (Stillwater Sciences 2021). Both the Cienega and East Grove
groundwater-dependent ecosystems support riparian plant species of interest in addition to
special-status fish and bird species (Stillwater Sciences 2021). The East Grove
groundwater-dependent ecosystem was selected as this project’s area of focus by Stillwater
Sciences.

1.5 Riparian Vegetation

Due to the relatively low level of urban development, the Santa Clara River supports large,
diverse plant communities and extensive riparian vegetation. Some of these classes of vegetation
found in the river include forests, woodland, shrubland, and herbaceous (Stillwater Sciences
2021). Regions where rising groundwater is absent have minimal bank vegetation, while invasive
species like Arundo donax—which dominates the Santa Clara River—can be found adjacent to
areas with access to surface water and shallow groundwater flows (UWCD 2021). Most of the
habitat in the river consists of tall grasslands and scrub vegetation, with minimal trees and



groves. Dryland habitats within the region have limited tree covers and are dominated by
grassland and scrub. Oaks, sycamores, and timbered areas can be found near the alluvial fan
deposit of the river (Beller et al. 2011). Wetland habitat regions contain many willow brush and
groves, most of which can be found near Sespe Creek (Beller et al. 2011).

1.6 Special Status Species

1.6.1 Southern Steelhead Trout

Historical evidence indicates that California Southern Steelhead Trout (Oncorhynchus mykiss)
populations were once abundant in the major watersheds of Southern California, including the
Santa Clara River with average annual runs of 9,000 (TNC 2023). However, since the beginning
of the 20th century, populations have declined, with very few adult steelhead returning to the
river. The steelhead first became listed as an endangered species specific to the Southern
California region in 1997 and has since continued to be listed (NMFS 2012). It is understood that
this decline in observed populations is likely due to factors such as flow alterations from surface
water diversions, groundwater pumping, and barriers obstructing key migratory pathways in
connecting tributaries (Oakley et al. 2019).

Documentation of Santa Clara River’s ecological history has shed light on the major tributaries
and confluences that supported high abundances of steelhead (Beller et al. 2011). These
tributaries provided favorable conditions such as temperature, flow, and coverage during critical
life stages (Beller et al. 2011). The Sespe, Santa Paula, and Piru Creeks have been identified as
tributaries that have historically supported key ecological behaviors of the steelhead such as
spawning, rearing, and migration. Prior to the construction of the Santa Felicia Dam in 1955 and
the Pyramid Dam in 1970, Piru Creek supported over twenty-five miles of steelhead spawning
and rearing habitat (TNC 2023). These barriers have fragmented the historical habitat of the Piru
drainage and has hindered its ability to support suitable habitat for the species (Kløve et al.
2014). The Vern Freeman Diversion, located roughly 10 miles upstream of the mouth of the
river, provides a fish ladder for migratory purposes (Stillwater Sciences, n.d.). The Santa Paula
tributary has lost over sixty percent of its historical habitat within the river due to barriers created
by natural flood occurrences (TNC 2023). This leaves Sespe Creek as the remaining undammed
and unregulated major tributary for the steelhead (TNC 2023). However, it still experiences
variations in flow from the watershed’s dams and diversions (TNC 2023).

1.6.2 Other Species

The Santa Clara River supports a multitude of threatened and endangered species which rely on
the groundwater. Some of the federally endangered bird species which rely on the
groundwater-dependent ecosystems in the region include the southwestern willow flycatcher



(Empidonax traillii extimus) and least Bell’s vireo (Vireo bellii pusillus) (Stillwater Sciences
2021). The California condor (Gymnogyps californianus) is also present in the watershed, but is
not reliant on any of Santa Clara River’s groundwater-dependent ecosystems (Stillwater Sciences
2021). The presence of federally endangered species mandates the protection of critical
habitat—particularly groundwater-dependent ecosystems—in the watershed through the
Endangered Species Act in conjunction with the requirements of the Sustainable Groundwater
Management Act (USFWS, 1973; TNC 2023).

Two sensitive amphibian species—California red-legged frog (Rana draytonii) and arroyo toad
(Anaxyrus californicus)—may be present in some parts of the watershed (Utom Conservation
Fund, n.d.). The California red-legged frog is federally listed as a threatened species, while the
arroyo toad is federally endangered (USFWS, 1994;USFWS, 1996). The unarmored threespine
stickleback (Gasterosteus aculeatus williamsoni) is a federally endangered fish species which
may be found in the upper reaches of the Santa Clara River (Utom Conservation Fund, n.d.;
USFWS 2018). There is little known about the presence of these elusive species and their
reliance on groundwater-dependent ecosystems. However, ecosystem restoration efforts should
keep all sensitive species in mind.

1.7 Equity

The first human inhabitants of the Santa Clara River Watershed were the Chumash people
(Wishtoyo Chumash Foundation 2022). There is evidence of their presence on the Central Coast
stretching back thousands of years. Chumash tribes lived near the coast from San Luis Obispo all
the way down to Malibu (Wishtoyo Chumash Foundation 2022). The Chumash who lived near
the lower reaches of the Santa Clara River called it the Utom, which roughly translates to
phantom (Utom Conservation Fund, n.d.). The name refers to the river’s unpredictable flow,
where water seems to come and go like a phantom or spirit (Utom Conservation Fund, n.d.). The
river appears dry in the summer, but groundwater flows are usually present just beneath the
surface, allowing for the success of diverse groundwater-dependent ecosystems. The shallow
subsurface flows and their exchange with surface water also supported the prosperous
livelihoods of the Chumash (Utom Conservation Fund, n.d.).

The Chumash people in the southern Central Coast region led rich lives with diverse diets and
activities (Wishtoyo Chumash Foundation 2022). The Chumash tribe fished and hunted for much
of their food, but they also relied on the local plant communities. Many of the riparian plants
present in the Santa Clara River’s groundwater-dependent ecosystems were vital to Chumash
livelihoods, such as black cottonwood for building houses and treating bruises, chamise for
making tools and weapons, common reed for thatching roofs, and goldenrod for medicine
(Wishtoyo Chumash Foundation 2022; Santa Barbara Museum of Natural History 2023). The
abundant ecosystems of the lower Santa Clara River allowed the Chumash to subsist in their
natural environment (Wishtoyo Chumash Foundation 2022).



In California, all indigenous groups were victimized at the hands of the Padres of the Spanish
Missions, and then by the U.S. government during the Gold Rush (Cordero 2015; Wolf 2017).
The Chumash people—-nearly wiped out by the spread of the Missions to the Central
Coast—-are one of the many California tribes whose cultures have survived against all odds
(Wolf 2017). It is essential that their culture and knowledge continue to be recognized in all
spaces, but particularly in environmental management. The Chumash people of the Utom
watershed “...feared and respected the natural world as their greatest teacher of Traditional
Knowledge” (Wishtoyo Chumash Foundation 2022). Furthermore, many Chumash have a desire
to be “stewards of nature, the source of our spiritual and bodily health” (Practitioners of Nature
2011). Their deep ecological knowledge has been transferred from generation to generation, and
will be necessary for future management of the sensitive habitats of the Santa Clara River. The
Wishtoyo Chumash Foundation is an organization located in Ventura with goals of cultural and
environmental stewardship (Wishtoyo Chumash Foundation 2022). They should be considered as
a partner in the Santa Clara River Watershed Integrated Regional Watershed Management Plan.

2. Supplemental Methods

2.1 Lithology
[no additional methods]

2.2 Vertical Hydraulic Gradient

To quantify the existence and magnitude of groundwater upwelling in East Grove, we used data
acquired from United Water Conservation District which contains the State Well ID, Date of
Measurement, Reference Point Elevation (where the measurement was taken), Water Level
Elevation (WLE), Depth to Groundwater (DTW) in feet below ground surface, coordinates
(latitudes and longitudes), and the well depths (ft) for a nested monitoring well that contains 4
wells screened at different intervals within the same borehole. Table 2.2a provides the different
well specifications at the nested monitoring well site. For the purpose of the vertical hydraulic
gradient analysis, only the wells with a 100 ft (Well ID: 03N20W08B07S) and 530 ft (Well ID:
03N20W08B04S) total well depth were used.

Table 2.2a. Well attributes for the UWCD Nested Monitoring Wells in East Grove

Well ID RP Lat. Long. Well Depth
(ft)

Comments

03N20W08B
04S

315.24 34.3623453 -118.9963953 530 East Grove
Site,
FPBGSA



nested
monitoring
well 530

03N20W08B
05S

315.24 34.3623453 -118.9963953 400 East Grove
Site,
FPBGSA
nested
monitoring
well 400

03N20W08B
06S

315.24 34.3623453 -118.9963953 220 East Grove
Site,
FPBGSA
nested
monitoring
well 220

03N20W08B
07S

315.24 34.3623453 -118.9963953 100 East Grove
Site,
FPBGSA
nested
monitoring
well 100

Table 2.2b. Nested Monitoring Well Data — DTG recorded measurements for deep well (530 feet)

State Well ID Date of
Measurement

DTG WLE Well Depth
(ft.)

Well Top Perf.
(ft.)

Well Bottom
Perf. (ft.)

03N20W08B04S 11/16/2022 9.06 306.18 530 490 530

03N20W08B04S 1/25/2023 2.81 312.43 530 490 530

03N20W08B04S 2/8/2023 2.11 313.13 530 490 530

03N20W08B04S 3/20/2023 0.45 314.79 530 490 530

03N20W08B04S 5/3/2023 1.55 313.69 530 490 530

03N20W08B04S 5/8/2023 1.06 314.18 530 490 530

03N20W08B04S 7/17/2023 2.35 312.89 530 490 530

03N20W08B04S 9/11/2023 2.99 312.25 530 490 530



03N20W08B04S 10/11/2023 3.21 312.03 530 490 530

03N20W08B04S 10/23/2023 2.44 312.80 530 490 530

Table 2.2b. Table of all recorded measurements taken at the deepest well at the nested monitoring well
site. DTG is the depth-to-groundwater, measured in feet below ground ground surface. WLE is the Water
Level Elevation in feet above sea level. Well Depth (ft.) is the total well depth in feet below ground
surface. Well Top Perf. (ft.) is the top of the screened interval of the well. Well Bottom Perf. (ft.) is the
bottom of the screened interval of the well.

Table 2.2c. Nested Monitoring Well Data — DTG recorded measurements for shallow well (100 feet)

State Well ID Date of
Measurement

DTG WLE Well Depth
(ft.)

Well Top Perf.
(ft.)

Well Bottom
Perf. (ft.)

03N20W08B07S 11/16/2022 5.18 310.06 100 60 100

03N20W08B07S 1/25/2023 1.98 313.26 100 60 100

03N20W08B07S 2/8/2023 2.92 312.32 100 60 100

03N20W08B07S 3/20/2023 1.53 313.71 100 60 100

03N20W08B07S 5/3/2023 2.35 312.89 100 60 100

03N20W08B07S 5/8/2023 2.25 312.99 100 60 100

03N20W08B07S 7/17/2023 2.99 312.25 100 60 100

03N20W08B07S 9/11/2023 3.62 311.62 100 60 100

03N20W08B07S 10/11/2023 3.71 311.53 100 60 100

03N20W08B07S 10/23/2023 3.24 312.00 100 60 100

Table 2.2c. Table of all recorded measurements taken at the shallow-most well at the nested monitoring
well site. DTG is the depth-to-groundwater, measured in feet below ground ground surface. WLE is the
Water Level Elevation in feet above sea level. Well Depth (ft.) is the total well depth in feet below ground
surface. Well Top Perf. (ft.) is the top of the screened interval of the well. Well Bottom Perf. (ft.) is the
bottom of the screened interval of the well.

The well development process for the East Grove nested monitoring well was completed in
November of 2022. The first measurements were recorded on or around the date of well
development (November 2022). The last recorded measurement of the two wells was on
10/23/2023. Since the well development phase was completed in late 2022, the 2023 water level
measurements were used to assess changes in water levels.



To assess the vertical hydraulic gradient, the depth to groundwater measurements were used to
find the changes in hydraulic head, denoted by Δh, where the hydraulic head is a measurement of
the potential energy of the groundwater at a specific point. To find the change in vertical distance
between the two wells, we used the difference between the total well depths of the two wells
(100 ft and 530 ft respectively). This change in vertical distance is denoted by Δz.

The equation for determining the vertical hydraulic gradient is Δh/Δz, where Δh is calculated by
the depth to groundwater measurement (DTG) of the 100 ft well subtracted to the DTG
measurement of the 530 ft well at a certain date, and Δz is calculated by taking the the total well
depth of the shallowest well (100 ft) and subtracting the total well depth from a deeper well (530
ft).

Using this equation, we calculated the Δh for each of the 10 recorded measurements and
calculated a Δz value of -430 (100ft - 530 ft). Table 2.2d, below, contains the date of
measurements, each calculated Δh value, Δz, and Δh/Δz (vertical hydraulic gradient).

Table 2.2d. Vertical hydraulic gradient calculations of a shallow (100 ft) and deep (530 ft) well
in East Grove.

2.3 Hydrology

2.3.1 Data Acquisition

A. East Grove Shallow Groundwater Monitoring Wells

In late 2015, shallow groundwater monitoring wells were installed in the Santa Clara River
watershed by a UCSB research team consisting of Adam Lambert and other Marine Science
Institute researchers. Our team received depth-to-groundwater data from these shallow

https://docs.google.com/spreadsheets/u/0/d/1QRkhlR6b3ipxk7cp-3KKgKGhVFXSAYLDb-MOf5J4OhU/edit


groundwater monitoring wells from measurements taken approximately once a month from
December 2015 to March 2023. This data was then filtered to exclude wells outside of the East
Grove, using a Geographic Information System Area-of-Interest received from the RIVR Lab at
UCSB.

There are 21 UCSB wells within East Grove with depth-to-groundwater data, as shown in Figure
2.1.1a. Within East Grove, there are 2 wells on Taylor Ranch (referred to as Taylor 1 and 2), 9
wells in the Hedrick Ranch Preserve (referred to as HRP 1-9), and 10 wells located in the
Ventura County Watershed Protection District (referred to as VCWPD 1-10).

Figure 2.1.1a. UCSB shallow groundwater monitoring well locations within the East Grove
region of the Santa Clara River (HRP 1-9, Taylor 1 and 2, VCWPD 1-10).

The data received for each well included latitude, longitude, well elevation, height of well lip
(measured in 2015 2017, and 2019), total well depth, and depth-to-groundwater measurements
for each date of measurement. We then simplified the data to include latitude, longitude, date of
measurement, and depth-to-groundwater at each measurement for further analysis. When the
UCSB team noted “no water,” the depth-to-groundwater was changed to the total well depth to
account for the uncertainty of depth-to-groundwater in dry periods.

We looked to the nearest meteorological station to our East Grove study site to obtain relevant
precipitation data for our study’s time series and recharge analysis. We found a nearby Santa
Paula CIMIS station that was missing measurements from 2015 to 2023 (DWR 2023). To obtain
complete precipitation data for the study area region, modeled daily and monthly precipitation



data was downloaded from PRISM from 2010 to 2023 (PRISM Climate Group 2023). The
nearest meteorology station to East Grove—the Santa Paula CIMIS station—has missing and
sporadic data for many years in the study period (2015-2023) (DWR 2023). The downloaded
precipitation data from PRISM was representative of the coordinates 34.6644, -119.0304
(PRISM Climate Group 2023). Using the data that was available from the CIMIS station, we
completed a Pearson correlation analysis between the PRISM and CIMIS data to verify that the
modeled PRISM results were a valid replacement. We found that results were highly correlated
for the timestamps in which both PRISM and CIMIS had monthly precipitation measurements,
with a Pearson correlation of 0.928 (Figure 2.1.1b). Thus, it was appropriate to use the
PRISM-modeled precipitation as a replacement for actual precipitation measurements. In R, we
calculated PRISM's total monthly precipitation values' mean and standard deviation during the
study period. Using these numbers, we included months where total precipitation was greater
than one standard deviation above mean monthly precipitation as “High Precipitation Intervals”.

Figure 2.1.1b. Correlation between CIMIS station measurements and PRISM modeled daily
precipitation (Pearson’s r=0.928).

B. Fillmore Subbasin Wells

Groundwater level data for deeper wells was pulled from the Department of Water Resources
(DWR)’ SGMA Data Viewer web tool. The web tool provides groundwater-related datasets
under the spatial extent of the State of California (DWR 2023). The groundwater-related datasets
contain collections of groundwater level data at different spatial and temporal extents. The
groundwater level and groundwater wells information is a collection of data from the following
cooperating agencies:

https://cimis.water.ca.gov/WSNReportCriteria.aspx
https://prism.oregonstate.edu/explorer/
https://sgma.water.ca.gov/webgis/?appid=SGMADataViewer#gwlevels


I. Data collected through the CASGEM (California Statewide Groundwater Elevation
Monitoring) Program;

II. The California Natural Resources Agency Open Data Platform (https://data.cnra.ca.gov/);
III. The Water Data Library (https://wdl.water.ca.gov/waterdatalibrary/)
IV. Sustainable Groundwater Management Act (SGMA) Portals Monitoring Network

The web tool’s water level dataset includes groundwater level measurements that were taken
manually twice per year (to capture the peak high and low values in groundwater elevations), or
taken on a more frequent basis (monthly, weekly, daily). Daily measurements come from the
DWR’s automated monitoring network of groundwater sites.

To obtain relevant historical groundwater level data near our specific area of interest (the East
Grove GDE), periodic and continuous water level measurements wells were filtered to the spatial
extent of the Fillmore Subbasin. This filtering step produced a total of 81 active wells. We did
not filter for wells with a specific use (irrigation, industrial, observation, public supply,
residential, other, and unknown wells), so the 81 wells ranged from observation to production
wells (i.e., irrigation, residential, and public supply).

We then downloaded the wells and water level data in bulk for the 81 wells in the Fillmore
Subbasin. The raw downloaded data can be found in the project’s shared Google Drive folder,
“Raw Data - SGMA Data Viewer” and the raw zip file is called
“Query_Result_559952799307774”. The raw downloaded zip folder contains a series of
different well attributes and water level data information such as site_code, well perforations,
well coordinates, well use, well type, well owner, date of measurement, reference point
elevation, ground surface elevation, in feet, using NAVD88, ground surface elevation to water
surface elevation in feet (GSE_WSE), etc.

Data Filtering & Cleaning

Goal: Find wells that contain data within the time period of 2010 to 2023

The “._GroundwaterElevation.csv” and the “._Stations.csv” files from the full query download
were opened in Excel spreadsheets. To make the data accessible to all student members of the
project, the files were copied into two different tabs on a google spreadsheet—one tab hosting
the groundwater level records (from the ._GroundwaterElevation.csv file) and one tab to host the
well station information (from the ._Stations.csv file). The station's csv contained parameters that
were needed to make sense of the groundwater level measurements. The “=VLOOKUP” formula
was used to bring relevant well information into the groundwater level measurement data tab,
using the site codes for each well as the unique identifier in the formula. The well station
attributes that were pulled over included:

I. Coordinates of each of the wells ​​(latitude and longitude)
II. Well use

https://data.cnra.ca.gov/
https://wdl.water.ca.gov/waterdatalibrary/
https://drive.google.com/drive/folders/13D8GVryd-7q9ijcP10mfgrNPOej7j4lJ
http://groundwaterelevation


III. Well type
IV. Well depth
V. Top and bottom perforation measurement (TOP_PRF & BOT_PRF)

VI. Ground surface elevation (GSE)
VII. Reference point elevation (RPE)

A copy of the data was made and moved to a separate google drive folder called “All Fill Wells -
Data from 2010 - 2023”. Using this copy of the spreadsheet, called Fillmore_Wells_Data_2010
to 2023 we placed filters on all columns and filtered the “MSMT_DATE” column from A to Z.
We then deleted any rows that contained data prior to 2010. We then filtered the “GSE_WSE”
column, which is the column that provided the depth to groundwater level (in feet) data, from A
to Z. To obtain accurate results in our pivot tables (see the Data Filtering by Count of
Measurements subsection below), the rows whose cells did not have any GSE_WSE recorded
were deleted. At this point, we were left with a total of 39 wells in the Fillmore sub basin that
had at least one depth-to-groundwater level measurements recorded during the years 2010
through 2023.

Data Filtering: Count of Measurements Per Year

Goal: Find the number of measurements taken each year for each well during 2010 through
2023 using pivot tables and “COUNT” and “COUNTIFs” formulas

We created a copy of the Fillmore_Wells_Data_2010 to 2023 spreadsheet, titled it “Fill Wells - #
of Measurements by Year [2010 to 2023]” and placed it in a new shared google drive folder
called # of Measurements Per Year [2010 - 2023]. The following wells were removed since these
wells are included in the shallow groundwater monitoring wells analysis:

I. SITE_CODE: 343639N1189918W001
A. Well_Name: 03N20W08VCWPD8 and
B. Well name used in shallow groundwater analysis: HRP9

II. SITE_CODE: 343556N1190092W001
A. Well_Name: 03N20W07HRP9
B. Well name used in shallow groundwater analysis: VCWPD8

To observe how many measurements were recorded each year for each well, we created a new
unique identifier for each row to include the well site code and the respective year for that row’s
measurement. To do this, the following steps were taken:

1. Highlight the “MSMT_DATE” column (column that includes the month, day, year, and
time the respective measurement was taken) and change the value type to “short date” so
that only the month, day, and year values are reported and not the time of record

2. Create three new columns to the right of the “MSMT_DATE” column
3. Copy the values from the MSMT_DATE in the empty column to the right of it

https://docs.google.com/spreadsheets/d/1uHTNebWHlP-VWUj6-hE6hZnm8_SbQlB5e2psvYB2GhA/edit#gid=1047737162
https://docs.google.com/spreadsheets/d/1uHTNebWHlP-VWUj6-hE6hZnm8_SbQlB5e2psvYB2GhA/edit#gid=1047737162
https://docs.google.com/spreadsheets/d/1nYV1bDSbb2eSyZsCdxro2KjFv-aRLU1zfQ3jLgbSCNo/edit#gid=1047737162
https://docs.google.com/spreadsheets/d/1nYV1bDSbb2eSyZsCdxro2KjFv-aRLU1zfQ3jLgbSCNo/edit#gid=1047737162


4. Highlight the entire column, go to the ribbon bar, select Data, then Text to Columns
a. For the separator identifier, select the custom option and use the “/” symbol as the

custom separator
b. The three columns are populated with the month, day, and year among the three

respective columns
c. The column that contained just the year was given a column header

“MSMT_YEAR” and the columns that contained the month and day were deleted

After separating out the year from each record date, we created a new unique identifier by using
the `=CONCATENATE’ function, using the values under the SITE_CODE column and the
MSMT_YEAR column. Figure 2.2.1a below is a screenshot of the spreadsheet representing what
the new unique IDs (called UNIQUE_ID_FOR_FILTER) looks like after completing these steps.

Figure 2.2.1a. Creation of the “UNIQUE_ID_FOR_FILTER” column

A new tab on the spreadsheet was created and called Count # of measurements Per Yr and the
values in the UNIQUE_ID_FOR_FILTER column were copied over. We then removed any
duplicates from the UNIQUE_ID_FOR_FILTER column, highlighted the column, and made a
copy of the column values to the right of it. We then used the split text to columns feature in the
ribbon bar so that the site codes and years were separated into two different columns. To the right
of these two columns, a new column called “Measurements in Year” was created. In this column,

https://docs.google.com/spreadsheets/d/1nYV1bDSbb2eSyZsCdxro2KjFv-aRLU1zfQ3jLgbSCNo/edit#gid=989394113&range=A1


we used the `=COUNTIF’ function to count how many times each unique value in the
UNIQUE_ID_FOR_FILTER column was counted.

A pivot table was created in a new tab that contained the following data from the Count # of
measurements Per Yr tab:

1. ​​Rows: SPLIT_TEXT_TO_COLUMNS_YEARS
2. Columns: SPLIT_TEXT_TO_COLUMNS_SITE_CODE
3. Values: Measurements in Year

Under the newly created pivot table, a sequence of rows were titled: Unique Count of Year,
CONTF_GRTR_3, CONTF_GRTR_4, CONTF_GRTR_5, CONTF_GRTR_6,
CONTF_GRTR_7, CONTF_GRTR_8, CONTF_GRTR_9, and CONTF_GRTR_10. For each of
these rows, we used a series of formulas, namely the =COUNT and =COUNTIF functions. For
each of these rows, a series of formulas was used, namely the =COUNT, and =COUNTIF
functions. The range used for each of the `=COUNTIF’ functions looked to the “Measurements
in a Year” values in the pivot table for each of the wells. The following breaks down the different
row headers, the formulas used for each, and a general description of what the formula means:

1. Unique Count of Year
a. =COUNT(C4:C17)

i. Formula is counting how many years of data there is during 2010 to 2023,
with 14 being the maximum count.

2. CONTF_GRTR_3
a. =COUNTIF(C4:C17,">3")

i. Count the number of years that had more than 3 recorded measurements
(during the time period of 2010 to 2023).

3. CONTF_GRTR_4
a. =COUNTIF(C4:C17,">4")

i. Count the number of years that had more than 4 recorded measurements
(during the time period of 2010 to 2023).

4. CONTF_GRTR_5
a. =COUNTIF(C4:C17,">5")

i. Count the number of years that had more than 5 recorded measurements
(during the time period of 2010 to 2023).

5. CONTF_GRTR_6
a. =COUNTIF(C4:C17,">6")

i. Count the number of years that had more than 6 recorded measurements
(during the time period of 2010 to 2023).

6. CONTF_GRTR_7
a. =COUNTIF(C4:C17,">7")

https://docs.google.com/spreadsheets/d/1nYV1bDSbb2eSyZsCdxro2KjFv-aRLU1zfQ3jLgbSCNo/edit#gid=989394113&range=A1
https://docs.google.com/spreadsheets/d/1nYV1bDSbb2eSyZsCdxro2KjFv-aRLU1zfQ3jLgbSCNo/edit#gid=989394113&range=A1


i. Count the number of years that had more than 7 recorded measurements
(during the time period of 2010 to 2023).

7. CONTF_GRTR_8
a. =COUNTIF(C4:C17,">8")

i. Count the number of years that had more than 8 recorded measurements
(during the time period of 2010 to 2023).

8. CONTF_GRTR_9
a. =COUNTIF(C4:C17,">9")

i. Count the number of years that had more than 9 recorded measurements
(during the time period of 2010 to 2023).

9. CONTF_GRTR_10
a. =COUNTIF(C4:C17,">10")

i. Count the number of years that had more than 10 recorded measurements
(during the time period of 2010 to 2023).

After completing these functions for the first well in the pivot table (the well whose values
corresponded to the “C4:C17” range in the functions above), the formula was dragged across to
populate all “COUNTIF” values for all wells in the pivot table.

We then created a new tab and called it “transpose_for_attributes”. In this tab, we used the
`=TRANSPOSE’ function to pull over the corresponding values for each of the
“CONTF_GRTR_” headers. Figure 2.2.1b represents what this formatted table looks like.

Figure 2.2.1b. Formatted Pivot Table Data for all DWR wells in the SGMA Data Viewer, with
all COUNT_IF Values shown.



Setting Thresholds for Data Robustness
Goal: Utilize the output from the Pivot Table data to identify and categorize wells with sufficient
to suboptimal measurement data essential for conducting thorough time-series and recharge
analyses.
To categorize wells based on the quality of their data, with the 'quality' being defined by the
number of measurements taken each year for each well, we established a standardized threshold.
Using a standardized approach, we looked to each of the CONTF_GRTR_ columns and used the
columns’ corresponding values to identity wells that fit the following criteria:

I. Criteria:
A. BEST:

1. Wells that have 10 or more measurements per year over a course of at least
9 years during the time period of 2010 to 2023

2. Data Used: "CONTF_GRTR_9" and "CONTF_GRTR_10" columns
whose values are 9 or greater

B. GOOD:
1. Wells that have 8 or 9 measurements per year over a course of at least 9

years during the time period 2010 to 2023
2. Data Used: "CONTF_GRTR_8" to "CONTF_GRTR_7" columns whose

values are 9 or greater
C. OKAY:

1. Wells that have 6 or 7 measurements per year over the course of at least 9
years during the time period of 2010 to 2023

2. Data Used: "CONTF_GRTR_6" to "CONTF_GRTR_5" columns whose
values are 9 or greater

D. POOR:
1. Wells that have 3 or 4 measurements per year over the course of at least 9

years during the time period of 2010 to 2023
2. Data Used: "CONTF_GRTR_4" to "CONTF_GRTR_3" columns whose

values are 9 or greater
Utilizing this threshold and criteria methods, we found that 22 out of the 39 wells filled these
different criteria. We organized each well by the category they fit into (i.e., Best, Good, Okay,
Poor). To make further analysis easier to interpret and establish a more relevant name for each of
these 22 wells, a new internal id was created for each well:

I. Fill 1 - Fill 3 = “Best”
II. Fill 4 - Fill 6 = “Good”

III. Fill 7 - Fill 10 = “Okay”
IV. Fill 11 - Fill 22 = “Poor”

After naming each of the wells, the `=VLOOKUP’ formula was used to bring over the
corresponding internal id in the spreadsheet’s tab that contained the well measurement data, and
matched the new internal ids based on the original “SITE_CODE” IDs for each well. To have



this data prepared for the mapping, time series, and recharge analysis, we created 4 individual
spreadsheets (one Best, Good, Okay, and one Poor) with each spreadsheet containing a separate
tab of data for each well (Fill 1, Fill 2, Fill 3, etc.).

2.3.2 Time-Series Plots
With data on depth-to-groundwater and precipitation, time-series graphs were created using the
“ggplot” package in R for each of the 21 wells located within East Grove. Each of these graphs
have dates on the x-axes and depth-to-groundwater in centimeters on the left y-axes. The graph is
reversed so that ground level is shown at the top in black, and total well depth is near the bottom
in red. The right y-axes have daily precipitation in millimeters. Depth-to-groundwater
measurements as taken by the UCSB team are shown with connected black dots corresponding to
measurement dates on the x-axis and depths in centimeters on the left y-axis. Dates with no
depth-to-groundwater measurements, indicated by notes of “no water,” are represented by gray
vertical lines below total well depth to represent uncertainty in the actual depth-to-groundwater.
If a well is dry, depth-to-groundwater must be below the total depth of the well, so the true
measurement cannot be known.

Daily precipitation values in millimeters are shown as light blue lines coming from the top of the
graph, corresponding to dates on the x-axis and estimates of precipitation in millimeters on the
right y-axis. Finally, “high precipitation intervals” are indicated with gray-blue rectangles
corresponding to the months with higher than average precipitation (mean + 1 standard
deviation) on the x-axis.

2.3.3 Water-Level Rise Analysis
Least-squares regression is often the default method for completing analyses of linear regression.
However, when quantitative data contains outliers, there are more accurate methods for
computing regressions. These are considered “robust regressions,” and include methods such as
Theil-Sen, L1 and L2, and iteratively reweighted least squares (Pennsylvania State University
2023). Theil-Sen regression was chosen for this study because it is particularly resistant to
outliers and “odd data” (Goldstein-Greenwood 2023).

Theil first developed his method of regression to perform regression analysis using the medians
between two points, rather than means, in 1950 (Goldstein-Greenwood 2023). Sen changed the
method to omit infinite slopes in 1968 (Goldstein-Greenwood 2023). Theil-Sen regression is a
powerful tool in statistical analysis because it can correct for unusual data, particularly in the
case of extreme outliers (Goldstein-Greenwood 2023). The method is described as follows:

1. Slope is calculated between every pair of points in the data set as shown below:
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𝑖
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2. The Theil-Sen regression slope is the median of the slopes between each pair of points.

m=median{ , …}𝑚
𝑖
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3. The y-intercept (b) is calculated by plugging in the values of each data point into the
equation with the median slope.
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4. The median of all y-intercepts is the Theil-Sen regression intercept.

b= median{ , , , …}𝑏
𝑖

𝑏
𝑗

𝑏
𝑘

This method results in an estimate of linear regression with one slope and one y-intercept.

Using the median instead of the mean resists the impact of outliers (Goldstein-Greenwood 2023).
For example, in the data set {1,2,3,4,5}{2,4,6,8,10}, the mean and median slopes are both equal
to 2. However, if the final data point is changed from (5,10) to (10,100), the mean slope would
be 7.78, while the median slope would remain at 2. Thus, Theil-Sen regression is more likely
than least-squares linear regression to estimate the true nature of a data set
(Goldstein-Greenwood 2023).

We used Theil-Sen regression to estimate recharge ratios for all UCSB shallow groundwater
monitoring wells. The previously described methods on the water-table fluctuation method
resulted in a data frame containing information for all wells. The well data frames had data
points corresponding to each recharge event, with information on the timing, water-level rise,
and total precipitation. We used R to run Theil-Sen models between precipitation and water-level
rise (dH).

The Theil-Sen models estimated dH/precipitation ratios using precipitation as the controlling
factor. They resulted in estimates of slopes and y-intercepts for each well’s recharge events, with
corresponding p-values. Using R’s ggplot package, we used the Theil-Sen models to add
regression lines to scatter plots for each well. This allowed us to visualize the impact of
precipitation on recharge. The differing recharge and water-level rise/precipitation ratios of all
the UCSB monitoring wells were used to generate maps in ArcGIS.



3. Supplemental Results

3.1 Lithology
Each of the wells were individually plotted with the corresponding lithologies per depth in using
the StratigrapheR package. Each well plot contains the wells depth on the y-axis along with the
corresponding category id on the left side of each of the wells. Table 3.1.2 contains the
corresponding well completion reports with the well id.

3.1.1 Well Plots

Well 1 (WCR2004-015336) & Well 2 (WCR2001-015789)



Well 3 (WCR2016-008253) & Well 4 (WCR2001-012698)



Well 5 (WCR2012-008680) & Well 6 (WCR2008-011034)



Well 7 (WCR2002-012607) & Well 8 (WCR2018-009168)



Well 9 (WCR2007-012990) & Well 10 (WCR2007-012895)



Well 11 (WCR2003-015339) & Well 12 (WCR2010-010156)



Well 13 (WCR2004-015524) & Well 14 (WCR2010-010413)



Well 15 (WCR2003-011868) & Well 16 (WCR1987-014407)



Well 17 (WCR2016-008246) & Well 18 (WCR1992-017541)



Well 19 (WCR2002-014221) & Well 20 (WCR1975-003220)



Well 21 (WCR2004-012771) & Well 22 (WCR1998-010940)



Well 23 (WCR2004-015953) & Well 24 (WCR1998-011367)



Well 25 (WCR1998-010943) & Well 26 (WCR2016-003545)



Well 27 (WCR2017-006033) & Well 28 (WCR2010-010863)



Well 29 (WCR2010-010444) & Well 30 (WCR2014-007922)



Well 31 (WCR2017-002288) & Well 32 (WCR2018-005473)



Well 33 (WCR2011-008722) & Well 34 (WCR2017-006208)



Well 35 (WCR2002-012305) & Well 36 (WCR2005-014510)



Well 37 (WCR2013-009374) & Well 38 (WCR2017-006096)



Well 39 (WCR2001-014788) & Well 40 (WCR1974-004128)



Well 41 (WCR2007-012988) & Well 42 (WCR2006-011431)





Well 43 (WCR1999-010350) & Well 44 (WCR2016-005853)

Well 45 (WCR2011-008721) & Well 46 (WCR2005-014414)



Well 47 (WCR2005-011645) & Well 48 (WCR2005-016688)





Well 49 (WCR2010-010106) & Well 50 (WCR2010-010159)

Well 51 (WCR2014-008854) & Well 52 (WCR1988-016945)





Well 53 (WCR2013-009055) & Well 54 (WCR2006-013424)

Well 55 (WCR2011-009259) & Well 56 (WCR2005-016695)



Well 57 (WCR0307632) & Well 58 (WCR2008-010999)



Well 59 (WCR2007-012991) & Well 60 (WCR2013-011287)





Well 61 (WCR1995-012328) & Well 62 (WCR1998-010945)



Well 63 (WCR2001-015603)



3.1.2. Table of Well Id and Well Completion Number



3.2 Hydrology

3.2.1 Time-Series Plots

A. Time-Series Plots for East Grove Shallow Groundwater Monitoring Wells

Time-Series Plots of UCSB Shallow Groundwater Monitoring Wells

Hedrick Ranch Preserve











Taylor Ranch



Ventura County Watershed Protection District









B. Time-Series Plots of Fillmore Subbasin Wells by Category

Date Range Exception:

All Fillmore subbasin time series graphs had a date range of 2010 to 2023 with one exception for
the Fillmore 9 well. An exception was made for Fill 9 to change the x-axis scale to range from
2015 to 2023 since this well had 8 out of 9 years where there were at least 16 measurements



taken in those 8 years. The breakdown of Fill 9’s number of recorded measurements each year is:
17(2015),16(2016), 18(2017), 36(2018) 26(2019) 22(2020), 22(2021), 18(2022), 6(2023).

Total Well Depth Exceptions:

There were some wells whose known total well depth greatly exceeded the maximum
(“deepest”) depth to groundwater (DTG) measurements. This skewed the visual representation of
these wells. Therefore, for wells whose known total well depth was over 100 meters (~328 feet)
from their respective maximum depth to groundwater measurement, we used a green dashed line
at the bottom of the graph to represent the maximum recorded depth to groundwater (as opposed
to the red dashed line representing the true total well depth, or the blue dashed line representing
the maximum depth to groundwater when the true well depth was not known) and provided the
known total well depth in the subtitles of the graph. An example of this exeption can be seen in
the Fillmore 10 time series graph.

Category: Best

Specification: Wells that have 10 or more measurements per year over a course of at least 9 years during
the time period of 2010 to 2023





Category: Good

Specification: Wells that have 8 or 9 measurements per year over a course of at least 9 years during the
time period 2010 to 2023









Category: Okay

Specification: Wells that have 6 or 7 measurements per year over the course of at least 9 years during the
time period of 2010 to 2023.









Category: Poor

Specification: Wells that have 3 or 4 measurements per year over the course of at least 9 years during the
time period of 2010 to 2023.























3.2.2 Water-Level Rise Regressions

A. East Grove Shallow Groundwater Monitoring Wells
For all plots and regressions below, water-level rise (delta-H) is assumed to be a linear function of
precipitation. The slope equals the average ratio between delta-H and total precipitation during the same
time interval. None of the intercepts calculated in the models were significant.



Hedrick Ranch Preserve

Estimate t-value p-value

Mean
dH/precipitation

1.898 1.718 0.111



Estimate t-value p-value

Mean
dH/precipitation

1.5452 3.085 0.0104



Estimate t-value p-value

Mean
dH/precipitation

1.1946 1.643 0.139



Estimate t-value p-value

Mean
dH/precipitation

1.998 1.890 0.0783



Estimate t-value p-value

Mean
dH/precipitation

1.426 2.094 0.0549



Estimate t-value p-value

Mean
dH/precipitation

2.1020 4.878 0.000244



Estimate t-value p-value

Mean
dH/precipitation

3.1650 6.984 9.57e-06



Estimate t-value p-value

Mean
dH/precipitation

2.5757 3.078 0.0105



Estimate t-value p-value

Mean
dH/precipitation

0.9856 1.7388 0.589



Taylor Ranch

Estimate t-value p-value

Mean
dH/precipitation

0.9378 1.374 0.203



Estimate t-value p-value

Mean
dH/precipitation

1.8749 4.852 0.000669



Ventura County Watershed Protection District

Estimate t-value p-value

Mean
dH/precipitation

2.3495 4.781 0.000571



Estimate t-value p-value

Mean
dH/precipitation

5.226 1.611 0.354



Estimate t-value p-value

Mean
dH/precipitation

2.4742 5.003 0.000736



Estimate t-value p-value

Mean
dH/precipitation

2.539 2.229 0.061



Estimate t-value p-value

Mean
dH/precipitation

1.1451 1.469 0.185



Estimate t-value p-value

Mean
dH/precipitation

3.8394 7.596 1.85e-05



Estimate t-value p-value

Mean
dH/precipitation

2.276 1.776 0.119



Estimate t-value p-value

Mean
dH/precipitation

3.0266 4.093 0.00217



Estimate t-value p-value

Mean
dH/precipitation

2.5332 4.920 0.00457



B. Fillmore Subbasin Wells



Estimate t-value p-value

Mean
dH/precipitation

5.736 4.676 0.0000403



Estimate t-value p-value

Mean
dH/precipitation

4.1065 5.193 0.0000255



Estimate t-value p-value

Mean
dH/precipitation

2.469 1.438 0.169



Estimate t-value p-value

Mean
dH/precipitation

14.063 9.413 9.76e-11



Estimate t-value p-value

Mean
dH/precipitation

3.186 1.714 0.101



Estimate t-value p-value

Mean
dH/precipitation

5.207 2.266 0.0328



Estimate t-value p-value

Mean
dH/precipitation

1.808 1.318 0.212



Estimate t-value p-value

Mean
dH/precipitation

9.094 2.902 0.0175



Estimate t-value p-value

Mean
dH/precipitation

25.756 7.51 4.97e-10



Estimate t-value p-value

Mean
dH/precipitation

5.040 2.153 0.0395



Estimate t-value p-value

Mean
dH/precipitation

6.546 2.416 0.0342



Estimate t-value p-value

Mean
dH/precipitation

7.786 3.576 0.00276



Estimate t-value p-value

Mean
dH/precipitation

9.301 3.714 0.00482



Estimate t-value p-value

Mean
dH/precipitation

10.387 4.683 0.000352



Estimate t-value p-value

Mean
dH/precipitation

9.477 4.429 0.000421



Estimate t-value p-value

Mean
dH/precipitation

11.417 4.344 0.000955



Estimate t-value p-value

Mean
dH/precipitation

13.118 2.454 0.0252



Estimate t-value p-value

Mean
dH/precipitation

9.026 3.638 0.00542



Estimate t-value p-value

Mean
dH/precipitation

16.673 3.585 0.00428



Estimate t-value p-value

Mean
dH/precipitation

9.788 6.011 0.0000437



Estimate t-value p-value

Mean
dH/precipitation

9.370 2.894 0.00967



Estimate t-value p-value

Mean
dH/precipitation

5.696 2.316 0.0431



Theil-Sen Water-Level Rise (dH) to Precipitation Rations for All 22 Fillmore Subbasin Wells

3.3 Remote Sensing

3.3.1 NDVI and NDMI Rasters

well_id ratio_slope ratio_p

Fill 1 5.73609277430865 4.02612394043707E-05

Fill 2 4.10654224224454 2.54888562031856E-05

Fill 3 2.46915968820843 0.168661774534442

Fill 4 14.0626654527628 9.76123529322504E-11

Fill 5 3.18612411768817 0.100577467998777

Fill 6 5.2072072072072 0.0327793471376941

Fill 7 1.80784536668561 0.212107847093178

Fill 8 9.09429569266588 0.0175240677656191

Fill 9 25.7560650493202 4.96586936699484E-10

Fill 10 5.04000498504486 0.0395030999667617

Fill 11 6.54625748809062 0.0342427604852901

Fill 12 7.78553736704034 0.00275614091166747

Fill 13 9.30133333333334 0.00481787420417588

Fill 14 10.3874157303371 0.000352272094712116

Fill 15 9.47698825361125 0.000421296597876631

Fill 16 11.4168377823409 0.000955075429025639

Fill 17 13.1180124223602 0.0252061478090487

Fill 18 9.0255737704918 0.00542059776543052

Fill 19 16.6731701161029 0.00428073581266174

Fill 20 9.78782608695651 4.36950782028084E-05

Fill 21 9.37041352952192 0.00967233262422815

Fill 22 5.69564276439186 0.043097877572954



Maps of June NDVI and NDMI for the years 2016 to 2023

















3.3.2 NDVI/NDMI * Depth-to-Groundwater

A. Time-Series







































Unset

B. All Data
Taylor 1 NDVI

## Call:
## rfit.default(formula = NDVI_Median ~ mean_dtg, data = rd_taylor1)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.34494107 0.08326582 4.1426 0.000224 ***
## mean_dtg 0.00045481 0.00059501 0.7644 0.450079
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.01899854
## Reduction in Dispersion Test: 0.63909 p-value: 0.42976



Unset

Taylor 1 NDMI

## Call:
## rfit.default(formula = NDMI_Median ~ mean_dtg, data = rd_taylor1)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.20008954 0.07611275 2.6289 0.01291 *
## mean_dtg -0.00053863 0.00057471 -0.9372 0.35546
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.02978721
## Reduction in Dispersion Test: 1.01316 p-value: 0.32147



Unset

Taylor 2 NDVI

## Call:
## rfit.default(formula = NDVI_Median ~ mean_dtg, data = rd_taylor2)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.47178576 0.04833421 9.7609 1.79e-12 ***
## mean_dtg -0.00030225 0.00036580 -0.8263 0.4132
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.01459905
## Reduction in Dispersion Test: 0.63706 p-value: 0.42916



Unset

Taylor 2 NDMI

## Call:
## rfit.default(formula = NDMI_Median ~ mean_dtg, data = rd_taylor2)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.19501889 0.03775538 5.1653 5.88e-06 ***
## mean_dtg -0.00053847 0.00034530 -1.5594 0.1262
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.05319175
## Reduction in Dispersion Test: 2.41574 p-value: 0.12745



Unset

Unset

## [1] -0.1551258

HRP 1 NDVI

## Call:
## rfit.default(formula = NDVI_Median ~ mean_dtg, data = rd_hrp1)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.33264445 0.02905243 11.4498 7.899e-16 ***
## mean_dtg -0.00011928 0.00019694 -0.6057 0.5474
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.00597395
## Reduction in Dispersion Test: 0.31251 p-value: 0.57854



Unset

HRP 1 NDMI

## Call:
## rfit.default(formula = NDMI_Median ~ mean_dtg, data = rd_hrp1)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.11245256 0.01777001 6.3282 5.815e-08 ***
## mean_dtg -0.00050616 0.00012622 -4.0101 0.0001948 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.1774028
## Reduction in Dispersion Test: 11.21442 p-value: 0.00152



Unset

HRP 2 NDVI

## Call:
## rfit.default(formula = NDVI_Median ~ mean_dtg, data = rd_hrp2)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.50281272 0.02832403 17.7522 <2e-16 ***
## mean_dtg -0.00067262 0.00042726 -1.5743 0.1206
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.0314022
## Reduction in Dispersion Test: 1.97764 p-value: 0.16471



Unset

HRP 2 NDMI

## Call:
## rfit.default(formula = NDMI_Median ~ mean_dtg, data = rd_hrp2)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.2460254 0.0253858 9.6915 5.831e-14 ***
## mean_dtg -0.0011146 0.0003418 -3.2609 0.00182 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.141729
## Reduction in Dispersion Test: 10.07312 p-value: 0.00236



Unset

HRP 3 NDVI

## Call:
## rfit.default(formula = NDVI_Median ~ mean_dtg, data = rd_hrp3)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.35018688 0.03321372 10.5434 3.412e-15 ***
## mean_dtg -0.00013353 0.00023491 -0.5684 0.5719
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.00541207
## Reduction in Dispersion Test: 0.32105 p-value: 0.57313



Unset

HRP 3 NDMI

## Call:
## rfit.default(formula = NDMI_Median ~ mean_dtg, data = rd_hrp3)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.14976916 0.01976010 7.5794 2.821e-10 ***
## mean_dtg -0.00062616 0.00014823 -4.2241 8.423e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.1915458
## Reduction in Dispersion Test: 13.97878 p-value: 0.00042



Unset

HRP 4 NDVI

## Call:
## rfit.default(formula = NDVI_Median ~ mean_dtg, data = rd_hrp4)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.32020333 0.03410283 9.3893 5.074e-13 ***
## mean_dtg -0.00015133 0.00013699 -1.1047 0.2741
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.01614741
## Reduction in Dispersion Test: 0.90268 p-value: 0.34622



Unset

HRP 5 NDMI

## Call:
## rfit.default(formula = NDMI_Median ~ mean_dtg, data = rd_hrp4)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.07749858 0.02440929 3.175 0.002456 **
## mean_dtg -0.00027555 0.00010075 -2.735 0.008379 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.142889
## Reduction in Dispersion Test: 9.16905 p-value: 0.00374



Unset

HRP 5 NDVI

## Call:
## rfit.default(formula = NDVI_Median ~ mean_dtg, data = rd_hrp5)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 4.1770e-01 4.3759e-02 9.5454 1.691e-13 ***
## mean_dtg -6.0241e-05 3.9631e-04 -0.1520 0.8797
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.0001112422
## Reduction in Dispersion Test: 0.00645 p-value: 0.93625



Unset

HRP 5 NDMI

## Call:
## rfit.default(formula = NDMI_Median ~ mean_dtg, data = rd_hrp5)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.17536364 0.02748472 6.3804 3.191e-08 ***
## mean_dtg -0.00054115 0.00025121 -2.1542 0.0354 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.05678411
## Reduction in Dispersion Test: 3.49175 p-value: 0.06673



Unset

HRP 6 NDVI

## Call:
## rfit.default(formula = NDVI_Median ~ mean_dtg, data = rd_hrp6)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 3.8756e-01 2.1775e-02 17.7986 <2e-16 ***
## mean_dtg 4.6283e-06 2.0573e-04 0.0225 0.9821
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 1.087886e-05
## Reduction in Dispersion Test: 0.00064 p-value: 0.97987



Unset

HRP 6 NDMI

## Call:
## rfit.default(formula = NDMI_Median ~ mean_dtg, data = rd_hrp6)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.12388481 0.01320493 9.3817 2.656e-13 ***
## mean_dtg -0.00043642 0.00014289 -3.0543 0.003383 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.1236345
## Reduction in Dispersion Test: 8.32351 p-value: 0.00546



Unset

HRP 7 NDVI

## Call:
## rfit.default(formula = NDVI_Median ~ mean_dtg, data = rd_hrp7)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 4.2331e-01 2.7419e-02 15.4383 <2e-16 ***
## mean_dtg 7.7812e-05 2.4422e-04 0.3186 0.7512
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.002782356
## Reduction in Dispersion Test: 0.16183 p-value: 0.68896



Unset

HRP 7 NDMI

## Call:
## rfit.default(formula = NDMI_Median ~ mean_dtg, data = rd_hrp7)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.15357120 0.01576094 9.7438 8.049e-14 ***
## mean_dtg -0.00030873 0.00017321 -1.7824 0.07991 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.0513588
## Reduction in Dispersion Test: 3.14008 p-value: 0.08164



Unset

HRP 8 NDVI

## Call:
## rfit.default(formula = NDVI_Median ~ mean_dtg, data = rd_hrp8)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 4.3616e-01 2.4674e-02 17.6768 <2e-16 ***
## mean_dtg -8.9468e-06 2.4236e-04 -0.0369 0.9707
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 3.546449e-05
## Reduction in Dispersion Test: 0.00213 p-value: 0.96336



Unset

HRP 8 NDMI

## Call:
## rfit.default(formula = NDMI_Median ~ mean_dtg, data = rd_hrp8)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.15197661 0.01890756 8.0379 4.223e-11 ***
## mean_dtg -0.00028253 0.00019677 -1.4358 0.1562
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.02967777
## Reduction in Dispersion Test: 1.83513 p-value: 0.1806



Unset

HRP 9 NDVI

## Call:
## rfit.default(formula = NDVI_Median ~ mean_dtg, data = rd_hrp9)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 4.5757e-01 3.0225e-02 15.1384 <2e-16 ***
## mean_dtg -3.3947e-05 2.3819e-04 -0.1425 0.8872
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.0002859514
## Reduction in Dispersion Test: 0.01659 p-value: 0.89796



Unset

HRP 9 NDMI

## Call:
## rfit.default(formula = NDMI_Median ~ mean_dtg, data = rd_hrp9)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.16197876 0.02390543 6.7758 6.969e-09 ***
## mean_dtg -0.00029248 0.00019089 -1.5322 0.1309
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.02994057
## Reduction in Dispersion Test: 1.79015 p-value: 0.18613



Unset

VCWPD 1 NDVI

## Call:
## rfit.default(formula = NDVI_Median ~ mean_dtg, data = rd_vc1)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 4.3693e-01 4.4311e-02 9.8605 2.892e-12 ***
## mean_dtg -3.4559e-05 3.0113e-04 -0.1148 0.9092
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.0004662098
## Reduction in Dispersion Test: 0.01866 p-value: 0.89204



Unset

VCWPD 1 NDMI

## Call:
## rfit.default(formula = NDMI_Median ~ mean_dtg, data = rd_vc1)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.16486501 0.03984526 4.1376 0.0001753 ***
## mean_dtg -0.00024763 0.00032149 -0.7703 0.4456739
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.0199036
## Reduction in Dispersion Test: 0.81231 p-value: 0.37283



Unset

VCWPD 2 NDVI

## Call:
## rfit.default(formula = NDVI_Median ~ mean_dtg, data = rd_vc2)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.27893197 0.12450058 2.2404 0.05539 .
## mean_dtg 0.00037266 0.00072530 0.5138 0.62128
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.08685165
## Reduction in Dispersion Test: 0.7609 p-value: 0.40846



Unset

VCWPD 2 NDMI

## Call:
## rfit.default(formula = NDMI_Median ~ mean_dtg, data = rd_vc2)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) -0.09426662 0.09035212 -1.0433 0.3273
## mean_dtg 0.00041689 0.00047877 0.8707 0.4093
##
## Multiple R-squared (Robust): 0.1288386
## Reduction in Dispersion Test: 1.18314 p-value: 0.3084



Unset

VCWPD 3 NDVI

## Call:
## rfit.default(formula = NDVI_Median ~ mean_dtg, data = rd_vc3)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.36256903 0.04820857 7.5208 4.174e-09 ***
## mean_dtg -0.00014689 0.00034144 -0.4302 0.6694
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.005792228
## Reduction in Dispersion Test: 0.22721 p-value: 0.63626



Unset

VCWPD 3 NDMI

## Call:
## rfit.default(formula = NDMI_Median ~ mean_dtg, data = rd_vc3)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.06409781 0.03135847 2.0440 0.04774 *
## mean_dtg -0.00026629 0.00034205 -0.7785 0.44097
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.01393095
## Reduction in Dispersion Test: 0.55098 p-value: 0.46236



Unset

VCWPD 4 NDVI

## Call:
## rfit.default(formula = NDVI_Median ~ mean_dtg, data = rd_vc4)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 3.6211e-01 5.7785e-02 6.2664 2.738e-07 ***
## mean_dtg -7.8113e-05 3.2574e-04 -0.2398 0.8118
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.003318981
## Reduction in Dispersion Test: 0.12321 p-value: 0.72757



Unset

VCWPD 4 NDMI

## Call:
## rfit.default(formula = NDMI_Median ~ mean_dtg, data = rd_vc4)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.07463118 0.04993706 1.4945 0.1435
## mean_dtg -0.00033060 0.00032631 -1.0131 0.3176
##
## Multiple R-squared (Robust): 0.03155565
## Reduction in Dispersion Test: 1.2056 p-value: 0.2793



Unset

VCWPD 5 NDVI

## Call:
## rfit.default(formula = NDVI_Median ~ mean_dtg, data = rd_vc5)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.33244587 0.07179400 4.6306 7.612e-05 ***
## mean_dtg 0.00063378 0.00059199 1.0706 0.2935
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.03471725
## Reduction in Dispersion Test: 1.00704 p-value: 0.32421



Unset

VCWPD 5 NDMI

## Call:
## rfit.default(formula = NDMI_Median ~ mean_dtg, data = rd_vc5)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.08264372 0.07825158 1.0561 0.2999
## mean_dtg 0.00012388 0.00067183 0.1844 0.8550
##
## Multiple R-squared (Robust): 0.000849614
## Reduction in Dispersion Test: 0.02381 p-value: 0.87848



Unset

VCWPD 6 NDVI

## Call:
## rfit.default(formula = NDVI_Median ~ mean_dtg, data = rd_vc6)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.39429654 0.05079457 7.7626 1.412e-09 ***
## mean_dtg -0.00011511 0.00029148 -0.3949 0.695
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.004399026
## Reduction in Dispersion Test: 0.18116 p-value: 0.67261



Unset

VCWPD 6 NDMI

## Call:
## rfit.default(formula = NDMI_Median ~ mean_dtg, data = rd_vc6)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.10057779 0.04009567 2.5084 0.01618 *
## mean_dtg -0.00025363 0.00031451 -0.8064 0.42466
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.02066794
## Reduction in Dispersion Test: 0.86527 p-value: 0.35771



Unset

VCWPD 7 NDVI

## Call:
## rfit.default(formula = NDVI_Median ~ mean_dtg, data = rd_vc7)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.39307417 0.05359773 7.3338 1.023e-08 ***
## mean_dtg 0.00001413 0.00037318 0.0379 0.97
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 5.734796e-05
## Reduction in Dispersion Test: 0.00212 p-value: 0.96351



Unset

VCWPD 7 NDMI

## Call:
## rfit.default(formula = NDMI_Median ~ mean_dtg, data = rd_vc7)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.08767207 0.05068526 1.7297 0.09201 .
## mean_dtg -0.00014511 0.00047789 -0.3037 0.76309
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.002228692
## Reduction in Dispersion Test: 0.08265 p-value: 0.77535



Unset

VCWPD 8 NDVI

## Call:
## rfit.default(formula = NDVI_Median ~ mean_dtg, data = rd_vc8)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.50999468 0.03787728 13.4644 < 2e-16 ***
## mean_dtg -0.00042332 0.00021732 -1.9479 0.05705 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.0637347
## Reduction in Dispersion Test: 3.40367 p-value: 0.07098



Unset

VCWPD 8 NDMI

## Call:
## rfit.default(formula = NDMI_Median ~ mean_dtg, data = rd_vc8)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.20753733 0.02285689 9.0799 3.73e-12 ***
## mean_dtg -0.00050893 0.00018920 -2.6899 0.009689 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.1094074
## Reduction in Dispersion Test: 6.1424 p-value: 0.01662



Unset

Unset

## [1] -0.1408458

VCWPD 9 NDVI

## Call:
## rfit.default(formula = NDVI_Median ~ mean_dtg, data = rd_vc9)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 4.8113e-01 3.7640e-02 12.7823 4.562e-16 ***
## mean_dtg 9.5552e-05 2.9091e-04 0.3285 0.7442
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.002277554
## Reduction in Dispersion Test: 0.09588 p-value: 0.75837



Unset

VCWPD 9 NDMI

## Call:
## rfit.default(formula = NDMI_Median ~ mean_dtg, data = rd_vc9)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.20956616 0.03525329 5.9446 4.772e-07 ***
## mean_dtg -0.00020604 0.00027161 -0.7586 0.4523
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.01450608
## Reduction in Dispersion Test: 0.61822 p-value: 0.43612



Unset

VCWPD 10 NDVI

## Call:
## rfit.default(formula = NDVI_Median ~ mean_dtg, data = rd_vc10)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.47481008 0.03273687 14.504 <2e-16 ***
## mean_dtg 0.00010651 0.00025605 0.416 0.6794
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.003560883
## Reduction in Dispersion Test: 0.16081 p-value: 0.69031



Unset

VCWPD 10 NDMI

## Call:
## rfit.default(formula = NDMI_Median ~ mean_dtg, data = rd_vc10)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.18618867 0.02399436 7.7597 7.73e-10 ***
## mean_dtg -0.00015223 0.00021771 -0.6992 0.488
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.009826298
## Reduction in Dispersion Test: 0.44657 p-value: 0.50738



Unset

C. Summer Isolated
Taylor 1

## Call:
## rfit.default(formula = NDVI_Median ~ mean_dtg, data = rd_taylor1_summer)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.81314119 0.04485308 18.1290 5.444e-05 ***
## mean_dtg -0.00183967 0.00026942 -6.8282 0.002406 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.8656585
## Reduction in Dispersion Test: 25.77487 p-value: 0.0071



Unset

## Call:
## rfit.default(formula = NDMI_Median ~ mean_dtg, data = rd_taylor1_summer)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.45001338 0.06743728 6.6731 0.002621 **
## mean_dtg -0.00169391 0.00045999 -3.6825 0.021158 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.7816976
## Reduction in Dispersion Test: 14.3232 p-value: 0.01936



Unset

Taylor 2

## Call:
## rfit.default(formula = NDVI_Median ~ mean_dtg, data = rd_taylor2_summer)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.68652283 0.04122479 16.653 4.536e-08 ***
## mean_dtg -0.00119744 0.00025477 -4.700 0.00112 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.7012313
## Reduction in Dispersion Test: 21.12363 p-value: 0.0013



Unset

## Call:
## rfit.default(formula = NDMI_Median ~ mean_dtg, data = rd_taylor2_summer)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.34298705 0.03089821 11.1005 1.491e-06 ***
## mean_dtg -0.00114519 0.00018512 -6.1863 0.0001615 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.7595849
## Reduction in Dispersion Test: 28.43526 p-value: 0.00047



Unset

hrp1

## Call:
## rfit.default(formula = NDVI_Median ~ mean_dtg, data = rd_hrp1_summer)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.5387431 0.0307032 17.547 1.136e-07 ***
## mean_dtg -0.0012827 0.0001865 -6.878 0.0001273 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.753826
## Reduction in Dispersion Test: 24.49735 p-value: 0.00112



Unset

## Call:
## rfit.default(formula = NDMI_Median ~ mean_dtg, data = rd_hrp1_summer)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.17231478 0.01654507 10.4149 6.261e-06 ***
## mean_dtg -0.00082850 0.00010992 -7.5372 6.689e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.8148262
## Reduction in Dispersion Test: 35.20265 p-value: 0.00035



Unset

hrp2

## Call:
## rfit.default(formula = NDVI_Median ~ mean_dtg, data = rd_hrp2_summer)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.64489783 0.01920386 33.5817 1.952e-12 ***
## mean_dtg -0.00199366 0.00023456 -8.4995 3.656e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.7868273
## Reduction in Dispersion Test: 40.60135 p-value: 5e-05



Unset

## Call:
## rfit.default(formula = NDMI_Median ~ mean_dtg, data = rd_hrp2_summer)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.3558380 0.0230331 15.4490 8.352e-09 ***
## mean_dtg -0.0019872 0.0003147 -6.3145 5.720e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.724204
## Reduction in Dispersion Test: 28.88456 p-value: 0.00023



Unset

hrp3

## Call:
## rfit.default(formula = NDVI_Median ~ mean_dtg, data = rd_hrp3_summer)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.51320095 0.04244039 12.0923 2.718e-07 ***
## mean_dtg -0.00099530 0.00029403 -3.3851 0.006943 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.5245097
## Reduction in Dispersion Test: 11.03092 p-value: 0.00773



Unset

## Call:
## rfit.default(formula = NDMI_Median ~ mean_dtg, data = rd_hrp3_summer)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.22312554 0.01855366 12.026 2.863e-07 ***
## mean_dtg -0.00102924 0.00013155 -7.824 1.430e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.777862
## Reduction in Dispersion Test: 35.01706 p-value: 0.00015



Unset

hrp4

## Call:
## rfit.default(formula = NDVI_Median ~ mean_dtg, data = rd_hrp4_summer)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.44755253 0.04885603 9.1606 1.627e-05 ***
## mean_dtg -0.00055005 0.00019789 -2.7796 0.02394 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.5470251
## Reduction in Dispersion Test: 9.66102 p-value: 0.01448



Unset

## Call:
## rfit.default(formula = NDMI_Median ~ mean_dtg, data = rd_hrp4_summer)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.11304874 0.03895476 2.9021 0.01983 *
## mean_dtg -0.00036428 0.00015749 -2.3130 0.04945 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.5217081
## Reduction in Dispersion Test: 8.72619 p-value: 0.01831



Unset

hrp5

## Call:
## rfit.default(formula = NDVI_Median ~ mean_dtg, data = rd_hrp5_summer)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.70189859 0.02492734 28.1578 4.369e-10 ***
## mean_dtg -0.00256163 0.00026146 -9.7973 4.242e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.8494428
## Reduction in Dispersion Test: 50.77793 p-value: 6e-05



Unset

## Call:
## rfit.default(formula = NDMI_Median ~ mean_dtg, data = rd_hrp5_summer)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.29162393 0.01783894 16.3476 5.332e-08 ***
## mean_dtg -0.00128351 0.00019688 -6.5193 0.000109 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.7714855
## Reduction in Dispersion Test: 30.38481 p-value: 0.00037



Unset

hrp6

## Call:
## rfit.default(formula = NDVI_Median ~ mean_dtg, data = rd_hrp6_summer)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.50343025 0.02863658 17.5800 2.122e-09 ***
## mean_dtg -0.00073056 0.00025966 -2.8135 0.01686 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.4967722
## Reduction in Dispersion Test: 10.85889 p-value: 0.00714



Unset

## Call:
## rfit.default(formula = NDMI_Median ~ mean_dtg, data = rd_hrp6_summer)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.18478795 0.01794959 10.295 5.526e-07 ***
## mean_dtg -0.00085749 0.00014495 -5.916 0.0001008 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.7055442
## Reduction in Dispersion Test: 26.35704 p-value: 0.00033



Unset

hrp7

## Call:
## rfit.default(formula = NDVI_Median ~ mean_dtg, data = rd_hrp7_summer)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.56855915 0.02382174 23.8672 7.962e-11 ***
## mean_dtg -0.00083186 0.00019297 -4.3109 0.001233 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.6353423
## Reduction in Dispersion Test: 19.16527 p-value: 0.0011



Unset

## Call:
## rfit.default(formula = NDMI_Median ~ mean_dtg, data = rd_hrp7_summer)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.24808341 0.02239265 11.0788 2.632e-07 ***
## mean_dtg -0.00089543 0.00017403 -5.1453 0.0003206 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.6806061
## Reduction in Dispersion Test: 23.44023 p-value: 0.00052



Unset

hrp8

## Call:
## rfit.default(formula = NDVI_Median ~ mean_dtg, data = rd_hrp8_summer)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.56316047 0.02057545 27.3705 1.806e-11 ***
## mean_dtg -0.00074700 0.00021852 -3.4185 0.005738 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.5259032
## Reduction in Dispersion Test: 12.20201 p-value: 0.00503



Unset

## Call:
## rfit.default(formula = NDMI_Median ~ mean_dtg, data = rd_hrp8_summer)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.24414520 0.01953940 12.4950 7.67e-08 ***
## mean_dtg -0.00087443 0.00022406 -3.9027 0.002465 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.6101854
## Reduction in Dispersion Test: 17.21854 p-value: 0.00162



Unset

hrp9

## Call:
## rfit.default(formula = NDVI_Median ~ mean_dtg, data = rd_hrp9_summer)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.56451063 0.01774133 31.8190 3.513e-12 ***
## mean_dtg -0.00046894 0.00018751 -2.5008 0.02946 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.3327002
## Reduction in Dispersion Test: 5.48435 p-value: 0.03904



Unset

## Call:
## rfit.default(formula = NDMI_Median ~ mean_dtg, data = rd_hrp9_summer)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.22730791 0.00536082 42.402 1.529e-13 ***
## mean_dtg -0.00050545 0.00007196 -7.024 2.200e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.7042292
## Reduction in Dispersion Test: 26.19096 p-value: 0.00033



Unset

vc1

## Call:
## rfit.default(formula = NDVI_Median ~ mean_dtg, data = rd_vc1_summer)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.67731489 0.05052212 13.406 3.013e-06 ***
## mean_dtg -0.00105039 0.00027198 -3.862 0.006196 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.6512118
## Reduction in Dispersion Test: 13.06949 p-value: 0.00856



Unset

## Call:
## rfit.default(formula = NDMI_Median ~ mean_dtg, data = rd_vc1_summer)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.33035219 0.04919666 6.7149 0.0002737 ***
## mean_dtg -0.00109387 0.00030876 -3.5428 0.0094339 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.6259536
## Reduction in Dispersion Test: 11.71425 p-value: 0.0111



Unset

vc2

## Call:
## rfit.default(formula = NDVI_Median ~ mean_dtg, data = rd_vc2_summer)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.66798977 NaN NaN NaN
## mean_dtg -0.00091227 NaN NaN NaN
##
## Multiple R-squared (Robust): NaN
## Reduction in Dispersion Test: 0 p-value: NaN



Unset

## Call:
## rfit.default(formula = NDMI_Median ~ mean_dtg, data = rd_vc2_summer)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.29839937 NaN NaN NaN
## mean_dtg -0.00089549 NaN NaN NaN
##
## Multiple R-squared (Robust): NaN
## Reduction in Dispersion Test: 0 p-value: NaN



Unset

vc3

## Call:
## rfit.default(formula = NDVI_Median ~ mean_dtg, data = rd_vc3_summer)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.56355715 0.04380953 12.8638 3.983e-06 ***
## mean_dtg -0.00103419 0.00053571 -1.9305 0.09486 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.2466697
## Reduction in Dispersion Test: 2.29207 p-value: 0.17381



Unset

## Call:
## rfit.default(formula = NDMI_Median ~ mean_dtg, data = rd_vc3_summer)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.18314334 0.04999297 3.6634 0.008034 **
## mean_dtg -0.00071899 0.00063127 -1.1390 0.292190
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.1982992
## Reduction in Dispersion Test: 1.73144 p-value: 0.22968



Unset

vc4

## Call:
## rfit.default(formula = NDVI_Median ~ mean_dtg, data = rd_vc4_summer)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.6378032 0.0206969 30.816 9.781e-09 ***
## mean_dtg -0.0012781 0.0001422 -8.988 4.303e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.8439916
## Reduction in Dispersion Test: 37.86939 p-value: 0.00047



Unset

## Call:
## rfit.default(formula = NDMI_Median ~ mean_dtg, data = rd_vc4_summer)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.27814501 0.03625878 7.6711 0.0001191 ***
## mean_dtg -0.00114989 0.00026321 -4.3687 0.0032792 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.7018897
## Reduction in Dispersion Test: 16.48124 p-value: 0.00481



Unset

vc5

## Call:
## rfit.default(formula = NDVI_Median ~ mean_dtg, data = rd_vc5_summer)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.66401585 0.10410675 6.3782 0.0031 **
## mean_dtg -0.00090084 0.00086243 -1.0445 0.3552
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.437008
## Reduction in Dispersion Test: 3.1049 p-value: 0.15285



Unset

## Call:
## rfit.default(formula = NDMI_Median ~ mean_dtg, data = rd_vc5_summer)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.35120174 0.09595676 3.6600 0.02158 *
## mean_dtg -0.00108604 0.00076528 -1.4191 0.22886
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.5162703
## Reduction in Dispersion Test: 4.26908 p-value: 0.1077



Unset

vc6

## Call:
## rfit.default(formula = NDVI_Median ~ mean_dtg, data = rd_vc6_summer)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.65206869 0.01670358 39.038 2.038e-10 ***
## mean_dtg -0.00106507 0.00010435 -10.207 7.285e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.8419074
## Reduction in Dispersion Test: 42.60324 p-value: 0.00018



Unset

## Call:
## rfit.default(formula = NDMI_Median ~ mean_dtg, data = rd_vc6_summer)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.32384805 0.03565618 9.0825 1.733e-05 ***
## mean_dtg -0.00106185 0.00022011 -4.8241 0.001314 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.6673508
## Reduction in Dispersion Test: 16.04936 p-value: 0.00392



Unset

vc7

## Call:
## rfit.default(formula = NDVI_Median ~ mean_dtg, data = rd_vc7_summer)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.62740827 0.03592253 17.4656 4.964e-07 ***
## mean_dtg -0.00076865 0.00028168 -2.7288 0.02939 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.460938
## Reduction in Dispersion Test: 5.98552 p-value: 0.04433



Unset

## Call:
## rfit.default(formula = NDMI_Median ~ mean_dtg, data = rd_vc7_summer)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.27737132 0.06754232 4.1066 0.004535 **
## mean_dtg -0.00069672 0.00055945 -1.2454 0.253061
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.1779071
## Reduction in Dispersion Test: 1.51485 p-value: 0.25815



Unset

vc8

## Call:
## rfit.default(formula = NDVI_Median ~ mean_dtg, data = rd_vc8_summer)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.65050893 0.01536870 42.3269 1.300e-12 ***
## mean_dtg -0.00099649 0.00014801 -6.7325 5.152e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.746469
## Reduction in Dispersion Test: 29.44291 p-value: 0.00029



Unset

## Call:
## rfit.default(formula = NDMI_Median ~ mean_dtg, data = rd_vc8_summer)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.31605423 0.01861712 16.9765 1.059e-08 ***
## mean_dtg -0.00103589 0.00014676 -7.0585 3.463e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.7672719
## Reduction in Dispersion Test: 32.9686 p-value: 0.00019



Unset

vc9

## Call:
## rfit.default(formula = NDVI_Median ~ mean_dtg, data = rd_vc9_summer)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.66726691 0.02858223 23.3455 1.204e-08 ***
## mean_dtg -0.00083151 0.00012277 -6.7729 0.0001417 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.7629999
## Reduction in Dispersion Test: 25.75526 p-value: 0.00096



Unset

## Call:
## rfit.default(formula = NDMI_Median ~ mean_dtg, data = rd_vc9_summer)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.32516060 0.03385083 9.6057 1.145e-05 ***
## mean_dtg -0.00079383 0.00020325 -3.9056 0.004509 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.6620588
## Reduction in Dispersion Test: 15.67275 p-value: 0.00418



Unset

vc10

## Call:
## rfit.default(formula = NDVI_Median ~ mean_dtg, data = rd_vc10_summer)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 0.63540518 0.01648677 38.5403 3.301e-12 ***
## mean_dtg -0.00062827 0.00010432 -6.0222 0.0001283 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.714992
## Reduction in Dispersion Test: 25.08673 p-value: 0.00053



Unset

## Call:
## rfit.default(formula = NDMI_Median ~ mean_dtg, data = rd_vc10_summer)
##
## Coefficients:
## Estimate Std. Error t.value p.value
## (Intercept) 3.1517e-01 1.4464e-02 21.7904 9.267e-10 ***
## mean_dtg -6.7753e-04 9.3052e-05 -7.2812 2.659e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared (Robust): 0.7692756
## Reduction in Dispersion Test: 33.34175 p-value: 0.00018
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