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Abstract
Groundwater dependent ecosystems are ecological communities that depend on groundwater
occurring at or near the surface, many of which are vulnerable to drought and groundwater
extraction. California’s Sustainable Groundwater Management Act requires agencies to consider
impacts to local groundwater dependent ecosystems, yet specific guidelines are not provided.
Many groundwater dependent ecosystems are biodiversity hotspots and provide refuge for
threatened species. Shallow groundwater is often accessible near the surface in these systems,
allowing phreatophytes to thrive even during times of drought. In this study, we analyzed the
impacts of groundwater flow and storage on ecosystem health in a riparian woodland—deemed a
“likely groundwater dependent ecosystem.” We assessed the influence of lithology and
precipitation on shallow groundwater levels and the subsequent impacts of changing
depth-to-groundwater on riparian vegetation health. We found a correlation between shallow
groundwater levels and ecosystem health, which was even more evident during the summer
months. These results are consistent with previous assumptions that this ecosystem relies on
shallow subsurface flows, especially during dry periods. Remote sensing proved to be a valuable
tool for assessing ecosystem health in groundwater dependent ecosystems. Our results and
methodological framework can aid managers in determining the minimum groundwater level
thresholds needed for these sensitive ecosystems to thrive. As interest in the management and
protection of groundwater dependent ecosystems increases, the continued monitoring of these
systems will be crucial to ensure the protection of these sensitive habitats from groundwater
extraction and future droughts.

1. Introduction

1.1 Project Significance
Groundwater resources play a critical role in fulfilling the needs of both human and ecological
water demands (Howard et al. 2023; Rohde et al. 2021a). In California, roughly four million
acres of irrigated agriculture rely on groundwater supplies (Congressional Research Service
2015) and over two million acres of wetlands and riparian woodlands depend on groundwater to
fulfill their ecological needs (Howard et al. 2023). During an average year, groundwater accounts
for 40 percent of the state's total water supplies for human use and 60 percent or more during
drought or dry years (California Department of Water Resources 2024). However, recurring
droughts over the past four decades have intensified the strain on California's aquifers to fulfill
agricultural and urban water requirements (Diffenbaugh et al. 2015; Gleick et al. 2014; Kibler et
al. 2021). This demand management strategy, while crucial for sustaining human activities
during dry periods, has often overlooked or underestimated the requirements of ecological

https://water.ca.gov/water-basics/groundwater#:~:text=Layers%20of%20alluvial%20aquifers%20make,the%20State%27s%20total%20water%20supply


communities that also rely on groundwater (Howard et al. 2023; Nelson, R., Szeptycki, L. 2014;
Rohde et al. 2021b).

Across California, groundwater dependent wetlands and riparian woodlands serve as crucial
refuges for a diverse array of ecological communities. These ecosystems are commonly referred
to as groundwater dependent ecosystems, defined as “ecological communities or species that
depend on groundwater emerging from aquifers or on groundwater occurring near the ground
surface” (Cal. Code Regs. Tit. 23, § 351; California Department of Water Resources 2018).
Ecological communities within these ecosystems can include phreatophytic trees and species
reliant on groundwater upwelling in interconnected surface water zones (Mattia Saccò et al.
2023; Stromberg 2013). Interconnected surface waters are defined by the California Code of
Regulations as “surface water that is hydrologically connected at any point by a continuous
saturated zone to the underlying aquifer and the overlying surface water is not completely
depleted (Cal. Code Regs. Tit. 23, § 351).”

Phreatophytic trees can adjust their rooting depth according to local aquifer conditions and
uptake groundwater in the capillary fringe above the water table (Stromberg 2013). While
phreatophytes exhibit a level of plasticity, they are sensitive to rapid or prolonged declines in
groundwater levels in shallow alluvial aquifers (Fan et al. 2017; Kibler et al. 2021; Rohde et al.
2021b; Scott et al. 1999; Stromberg 2013; Wang et al. 2021). The surface expression of
groundwater (i.e., groundwater upwelling) in interconnected surface waters can also support
critical habitat needs for aquatic communities in groundwater dependent ecosystems (Rohde et
al. 2019). However, declining groundwater levels can reduce inflows to streams and rivers,
making aquatic communities vulnerable to depletions of interconnected surface waters
(California Department of Water Resources February 2024).

Climatic and hydrologic disturbances have been documented to impact groundwater dependent
ecosystem health (Kibler et al. 2021; Rohde et al. 2021a; Rohde et al. 2021b). Declining shallow
groundwater levels are found to be more prevalent during prolonged dry periods in California
and can contribute to riparian woodland die-off and declines in vegetative greenness, especially
in semi-arid regions (Kibler et al. 2021; Rohde 2021a). Given historical trends of increased
groundwater pumping during dry and drought periods in California, research has suggested that
groundwater extractions can also contribute to groundwater levels declining past the critical
rooting depth of riparian phreatophytes, resulting in declining vegetative health (Cooper et al.
2003; Dong et al. 2019; Rohde at al. 2021a; Scott et al. 1999). Additionally, groundwater
extractions can reduce or eliminate baseflows in locations where surface waters are
hydrologically connected to the underlying aquifer (California Department of Water Resources
February 2024). Implementing practical management tools is crucial for balancing human and
ecological groundwater demands in future cyclical dry periods and prolonged droughts.



Until the enactment of the California Sustainable Groundwater Management Act (SGMA) in
2014, groundwater pumping in the state was largely unregulated. This groundwater regulation
provides a management framework for Groundwater Sustainability Agencies to bring the state’s
groundwater subbasins to a sustainable balance by 2040 while preventing negative hydrologic
impacts such as groundwater overdraft and depletion of interconnected surface waters
(Department of Water Resources 2014; Miro & Famiglietti 2019). Given the substantial declines
of California riparian wetlands and woodlands due to hydrologic alterations (California Natural
Resource Agency 2010; Rohde et al. 2021a; Vaghti & Greco 2007), SGMA presents an
opportunity to integrate protective measures for riparian vegetation, especially within
groundwater dependent ecosystems. Nonetheless, existing regulatory constraints under SGMA
must be addressed to ensure adequate assessment and management of groundwater dependent
ecosystems for long-term sustainability.

1.2 Knowledge Gaps

Protecting groundwater dependent ecosystems is not a specific requirement of SGMA. Instead,
Groundwater Sustainability Agencies must “consider impacts on groundwater dependent
ecosystems” (Sustainable Groundwater Management Act 2014). The California Department of
Water Resources has not adopted standardized protocols to inform the effective assessment,
monitoring, or conservation of these ecosystems. There are 260 Groundwater Sustainability
Agencies in California, many of which are responsible for protecting multiple groundwater
dependent ecosystems (California Department of Water Resources 2024). The absence of
specific requirements has left these agencies to navigate these issues independently. As a result,
many Groundwater Sustainability Agencies have failed to comprehensively assess the impact of
groundwater extraction and other activities on local groundwater dependent ecosystems.
Evaluating the connection between hydrology and ecology is essential in managing groundwater
dependent ecosystems, but there are no standard methods to measure these relationships
(Tomlinson 2011). The challenge in establishing standardized methods stems from the spatial
and temporal diversity of groundwater dependent ecosystems.

Groundwater dependent ecosystems can occur in different habitats and landscapes—from
wetlands to springs and from beaches to mountains—and can support a variety of ecological
communities (Rohde et al. 2020; Kibler et al. 2021). Furthermore, diverse ecosystems require
varying amounts of groundwater, and may access groundwater using different methods (Kibler et
al. 2021). Since groundwater dependent ecosystems are impacted differently by groundwater
extraction, managers must assess the health and functioning of groundwater dependent
ecosystems on a local scale. There is a pressing need to establish a standard framework for
evaluating and monitoring the hydrology and ecology of these complex systems.

Due to the designation of groundwater dependent ecosystems as “beneficial users” under the
Sustainable Groundwater Management Act (SGMA), agencies must grasp the impacts of



groundwater extraction on these sensitive communities (Sustainable Groundwater Management
Act 2014). As such, Groundwater Sustainability Agencies should assess how groundwater
extraction affects local ecosystems. By implementing a clear framework for assessment and
management, these agencies can ensure the protection of groundwater dependent ecosystems for
the foreseeable future.

1.3 Study Objectives
The primary objective of this study is to quantify the impact of local lithology,
depth-to-groundwater, and climatic influences on riparian ecosystem health in a specific
groundwater dependent ecosystem in California.

Our primary objective is split up into four sub-objectives: (a) characterize lithologies to
determine vertical and lateral heterogeneity, (b) quantify direction and magnitude of vertical
hydraulic gradient, (c) assess responses of shallow groundwater levels to precipitation events,
and (d) analyze impacts of groundwater-level changes on plant water content in riparian
ecosystems. Our study will consist of four distinct methodologies to assess the interactions
between the geology, hydrology, and ecology within our study area (Figure 1).

Figure 1. Schematic of the four components of this study’s methodologies to complete the
objectives above in Section 1.3: lithology, vertical hydraulic gradient, shallow groundwater, and
ecosystem health. Lithology of the Fillmore Subbasin was analyzed to determine the impact of
soil permeability on groundwater flow. Vertical hydraulic gradient was calculated to verify the



existence of rising groundwater in the system. Changes in shallow groundwater hydrology were
assessed and compared to climatic conditions over the study period. This assessment was then
used to determine the impact of shallow groundwater levels on ecosystem health in East Grove.

2. Study Area
The Santa Clara River, located in Ventura and Los Angeles Counties, is considered one of the
last natural rivers in Southern California, as its primary channel remains relatively unobstructed
by artificial barriers (United States Fish and Wildlife Service 2019). The river's watershed
stretches from the San Gabriel Mountains in Los Angeles County to the Pacific Ocean in Ventura
County. The watershed encompasses five groundwater subbasins—Santa Clara River Valley
East, Piru, Fillmore, Santa Paula, and Mound Basin. Sections of the river can run dry during the
summer months due to a lack of precipitation (Stillwater Sciences 2021; Western Regional
Climate Center 2013). The local geology impacts subsurface and surface flows (Stillwater
Sciences 2021). Shallow groundwater can saturate soil above the water table and has the
potential to rise into the floodplain (Stillwater Sciences 2021). The hydrogeological connection
between the shallow aquifer and the riverbed can be described as “interconnected surface
waters,” where groundwater can rise up through geologic seeps and contribute to surface flows
during dry periods (Cal. Code Regs. Tit. 23, § 351; Stillwater Sciences 2021). This connectivity
between surface and subsurface flows has the potential to sustain groundwater dependent
ecosystems.

The Santa Clara River Watershed supports several groundwater dependent ecosystems (Kibler et
al. 2021; Stillwater Sciences 2021). These ecosystems are inhabited by native plants and several
species listed under the Endangered Species Act, which depend on both shallow groundwater
and the surface expression of groundwater (Beller et al. 2016; Downs et al. 2013; Rohde et al.
2021a; Stillwater Sciences 2021). Some of the native riparian plants include cottonwoods
(Populus spp.) and willows (Salix spp.) which provide critical habitat for the endangered least
Bell’s vireo (Vireo bellii pusillus) and willow flycatcher (Empidonax traillii) (Rohde et al.
2021a). Some of the watershed has supported rearing and spawning grounds for the federally
listed southern steelhead trout (Oncorhynchus mykiss) and the endemic Santa Ana sucker
(Catostomus santaanae) (National Marine Fisheries Service 2016; Stillwater Sciences 2021;
Stoecker & Kelley 2005). The aforementioned species make up the complex and sensitive
ecosystems found in the Santa Clara River, which are at risk from several environmental and
anthropogenic factors.

The many groundwater dependent ecosystems in the Santa Clara River Watershed are adversely
affected by the spread of the deep-rooted giant reed (Arundo donax)—an invasive plant that
outcompetes native plants for shallow groundwater (Stephens and Associates 2021). These
ecosystems face additional risks, including extensive groundwater pumping for agricultural



production and precipitation deficits (Court et al. 2000; Kibler et al. 2021). Groundwater
pumping can lower groundwater levels beyond the rooting depths of native riparian woodlands,
leading to declines in riparian health and the potential loss of habitats (Court et al. 2000;
Environmental Science Associates 2021). Prolonged precipitation deficits have been associated
with decreased vegetation cover and riparian woodland die-off in recognized groundwater
dependent Santa Clara River ecosystems (Kibler et al. 2021). More information on the Santa
Clara River and its groundwater dependent ecosystems can be found in Supplemental Materials,
Section 1.

Figure 2. Location of East Grove within the Fillmore Subbasin of the lower Santa Clara River
Watershed.

The Fillmore Subbasin (Figure 2) of the Santa Clara River Watershed was classified as a
“high-priority basin” under California’s Sustainable Groundwater Management Act (SGMA)
(Moore 2018). Under SGMA, high-priority basins are required to form Groundwater
Sustainability Agencies. These agencies are responsible for submitting Groundwater
Sustainability Plans—long-term plans to ensure sustainable groundwater management—to the
Department of Water Resources (Sustainable Groundwater Management Act 2014; California
Department of Water Resources 2024). Fillmore’s “high priority” status reflects the basin’s risk
of groundwater overdraft and local reliance on groundwater for agricultural and domestic water
demands (Moore 2018; Stephens and Associates 2021). In 2023, pumping in the Fillmore
Subbasin groundwater totaled 33,000 acre-feet. Agricultural use accounted for 94% of total
groundwater extractions (Stephens and Associates 2021).

The Department of Water Resources recently ranked Fillmore Subbasin’s 2018 Groundwater
Sustainability Plan as “Incomplete” (California Department of Water Resources 2023).



According to the Department of Water Resources, the Groundwater Sustainability Plan failed to
specify which of the Sustainable Groundwater Management Act’s “undesirable results” were of
most concern in the Fillmore Subbasin (Sustainable Groundwater Management Act 2014;
California Department of Water Resources 2023). Furthermore, the Department of Water
Resources found that the Plan had an inadequate assessment of “minimum thresholds'' for
groundwater levels in the basin and how these may impact beneficial use in the basin (California
Department of Water Resources 2023). The Fillmore Basin Groundwater Sustainability Agency
should consider the conservation of groundwater dependent ecosystems when determining
minimum thresholds in the basin.

For the purposes of this study, we focused on a riparian woodland called East Grove, classified
as a “likely groundwater dependent ecosystem” within the Fillmore Subbasin (Figure 2)
(Stillwater Sciences 2021). East Grove presents specific indicators of groundwater dependent
ecosystems, including the upward movement of groundwater (Stillwater Sciences 2021). East
Grove is comprised of riparian habitat that houses multiple threatened and endangered species,
and is thus considered to have “high ecological value” (Rohde et al. 2018; Stillwater Sciences
2021). Therefore, agencies must consider the protection and management of East Grove under
SGMA and the California and federal Endangered Species Acts (Sustainable Groundwater
Management Act 2014; Cal. Fish & G. Code § 2050-2118; 16 U.S.C. § 1531-1544).

3. Methods

3.1 Lithology

3.1.1 Data Acquisition & Sorting
To obtain information on the lithology of the Santa Clara River, we reviewed well-completion
reports from the California Department of Water Resources. Well-completion reports are
separated by the Public Land Survey System (PLSS), a method of subdividing land. Using the
well-completion report map, we searched for 1-4 reports per available PLSS. Well drilling
reports are imperfect, may be publicly unavailable, or have limited lithological information. We
transcribed 63 well reports, extracting public land survey system numbers, well-completion
numbers, geologic log descriptions per depth, street addresses, coordinates, total well depths, and
distance to perforate intervals. We used Geocoder for wells lacking exact coordinates to obtain
coordinates from reported street addresses. From transcribing the well completion reports, we
ultimately ended up with 61 wells along the Santa Clara River, with only one in East Grove
(Figure 3.1.1). We reclassified the numerous lithologic descriptions into 12 simplified
lithological categories (Table 3.1.1). These new categories separate lithologies based on grain
size, level of consolidation, and the relative abundance of material. Grain size refers to the



diameter of either individual sediment grains or particles in clastic rocks. Consolidation refers to
the level of lithification; unconsolidated materials can be more easily drilled.

Figure 3.1.1
A map of the 61 wells across the Santa Clara River where well completion reports were
obtained. Well-completion reports were gathered from the Department of Water Resources.

Table 3.1.1 Simplified lithological categories along with some example descriptions.

Number Category Examples

1 Coarse-grained material Sand, gravel, cobbles, boulders

2 Mostly coarse-grained, some fine-grained material Silty sand, silty gravel, sand with clay

3 Mixture of coarse and fine grained Sand and clay, gravel and clay

4 Mostly fine-grained, some coarse-grained material Sandy clay, clay with sand

5 Fine grained material Clay, silt



Number Category Examples

6 Consolidated: Coarse-grained material Sandstone, conglomerate

7
Consolidated: Mostly coarse-grained material with some
unconsolidated material

Sandstone and or with unconsolidated
material like; sand/cobbles/gravel/clay

8 Consolidated: Mixture of coarse and fine grained Shale and sandstone

9
Consolidated: Mostly fine-grained material, some
unconsolidated material Shale and/with sand, shale and/with clay

10 Consolidated: Fine grained material Shale, Siltstone

11 Bedrock Bedrock, volcanics, rock

12 Unknown “Hand augered to 4 feet”, “neat cement”

3.1.2 Cross-Sections
First, we plotted wells with their corresponding lithologies using “StratigrapheR”, an
open-source integrated stratigraphy package for RStudio. This package allowed us to generate
plots of the individual wells using the 12 simplified lithologic categories.

To plot each of the wells with the corresponding elevations, we used a digital elevation model of
the Santa Clara River to obtain land surface elevation for each of the wells. We then filtered for
wells with a total depth greater than 100 feet and at least 3 unique categories. We produced 3
cross-sectional diagrams using these filtered wells, the lengths of each cross-section ranged from
10 to 16 km (Figure 3.1.3, Table 3.1). Two of our chosen cross-sections run west to east along
the valley near the East Grove site, crossing the Santa Clara River at least once. One
cross-section has a north-eastern trend, terminating near the north of Fillmore (Figure 3.1.3). We
aimed to adequately represent the varied lithologies of East Grove and the surrounding area. We
used a lithostratigraphic correlation strategy to connect the observed lithologies across wells. In
the cross-section diagram, full lines connect similar sections while dashed lines indicate inferred
correlation.



Figure 3.1.2 Lithological cross-section lines of the wells along the Santa Clara River used to
create cross-section plots. The cross-section lines include wells gathered from the California
Department of Water Resources and the data from a nested well (more information on the nested
well is described in section 3.2) provided by the United Water Conservation District.

Table 3.1 Well ID and completion number of wells found in each of the lithological
cross-sections.

Cross-section Line Well ID Well Completion Number

Cross-section Line 1 Well 12 WCR2010-010156

Cross-section Line 1 Well 13 WCR2004-015524

Cross-section Line 1 Well 14 WCR2010-010413

Cross-section Line 1 Well 22 WCR1998-010940

Cross-section Line 1 Well 42 WCR2006-011431

Cross-section Line 1 Well 44 WCR2016-005853

Cross-section Line 1 Well 41 WCR2007-012988



Cross-section Line 2 Well 17 WCR2016-008246

Cross-section Line 2 Well 1 WCR2004-015336

Cross-section Line 2 Well 6 WCR2008-011034

Cross-section Line 2 Well 8 WCR2018-009168

Cross-section Line 2 Nested Well WCR2022-013828

Cross-section Line 2 Well 29 WCR2010-010444

Cross-section Line 2 Well 54 WCR2006-013424

Cross-section Line 2 Well 40 WCR1974-004128

Cross-section Line 2 Well 57 WCR0307632

Cross-section Line 3 Well 8 WCR2018-009168

Cross-section Line 3 Well 22 WCR1998-010940

Cross-section Line 3 Well 32 WCR2018-005473

Cross-section Line 3 Well 37 WCR2013-009374

Cross-section Line 3 Well 53 WCR2013-009055

Cross-section Line 3 Well 52 WCR1988-016945

3.2 Vertical Hydraulic Gradient
Previous studies have characterized East Grove as a gaining reach of the Santa Clara River
(Beller at al. 2016; Stillwater Sciences 2021), wherein groundwater is observed to flow upwards,
or upwell, into the riparian corridor. However, to our knowledge, empirical quantification of the
magnitude of groundwater upwelling in East Grove has not been documented in existing
literature before this study (Beller at al. 2016; Stillwater Sciences 2011; Stillwater Sciences
2021). To quantify the magnitude and existence of groundwater upwelling in East Grove, we
calculated the vertical hydraulic gradient, which evaluates the vertical movement and magnitude
of groundwater in an aquifer. We completed nine different vertical hydraulic gradient
calculations using depth-to-groundwater measurements and well bottom elevations of a deep and
shallow well within a nested monitoring well. The nested monitoring well is located within the
East Grove boundary (Figure 3.2.1) and was installed in November of 2022. The East Grove
nested monitoring well contains four wells that are screened at different intervals—all of which



are embedded in the same borehole at the same ground surface elevation (see Section 2.2 in the
Supplemental Materials for specifications on all wells).

3.2.1 Data Acquisition
Unpublished data from the United Water Conservation District was used to evaluate the
magnitude of vertical hydraulic gradients. The dataset included nine depth-to-groundwater
measurements that were recorded throughout 2023 (see Supplemental Materials, Section 2.2).

The Ventura County Watershed Protection District provided lithology data of the nested
monitoring well in the form of a well completion report. Using this report, we applied identical
lithologic categorization methods, as described in Section 3.1 above, to delineate the various
geologic materials surrounding the well. This allowed us to assess the lithologic influence on
groundwater upwelling in East Grove. We used Adobe Illustrator to represent the surrounding
geologic materials at the nested monitoring well site (Figure 4.2a).

Figure 3.2.1. Map of the nested monitoring well located on the south-central border of East
Grove. East Grove is represented by the green-shaded polygon.



3.2.2 Data Analysis
To assess the vertical hydraulic gradient, we used the 2023 static water level measurements from
the deepest well and the shallow-most well (see Supplemental Materials, Section 2.2 for all water
level measurements). A depth-to-groundwater time-series plot for these two wells is shown
below (Figure 3.2.2a.).

Figure 3.2.2a. Time-series graph of depth-to-groundwater levels of a deep well (in red) and a
shallow well (in blue). The total well depth of the deep well is 161 meters below ground surface
(~530 feet). The total well depth for the shallow well is 31 meters below ground surface (~100
feet). Depth-to-groundwater levels are represented on the y-axis as centimeters below the ground
surface, with the ground surface at 0 centimeters. The date of the recorded depth-to-groundwater
measurement is represented as monthly values on the x-axis. Water level measurements at the
deeper well are consistently shallower, or closer to the land surface, than the shallow well’s water
level measurements from 2/8/2023 to 10/23/2023. This trend implies the existence of an
upward-oriented vertical hydraulic gradient, indicating the presence of groundwater upwelling
(Jasechko & Perrone 2020). The water level measurements on 1/25/2023 deviated from the
observed trends between 2/8/2023 and 10/23/2023. This discrepancy may be attributed to
significant rainfall in late December 2022 and early January 2023, following a period of reduced
precipitation throughout the 2022 calendar year.



We calculated nine vertical hydraulic gradients (Δh/Δz) using total well depths and
depth-to-groundwater measurements from the shallow and deep wells. In these calculations, we
evaluated the change in water level from the shallow well to that of the deep well divided by the
change in vertical distance of these two wells. Below is the formula used to calculate the nine
vertical hydraulic gradient magnitudes.

(h1 - h2) (z1 - z2)𝚫ℎ/𝚫𝑧 =   /

The change in hydraulic heads is denoted as 𝚫h and the change in vertical distance is denoted as
𝚫z. h1 represents one depth-to-groundwater measurement taken at the shallow well at a certain
date and h2 represents one depth-to-groundwater measurement taken at the deep well on the
same date. z1 is the total well depth of the shallow well and z2 is the total well depth of the deep
well.

3.3 Groundwater Fluctuations
To further assess groundwater flow and storage in the Fillmore Subbasin, we analyzed changes
in groundwater levels using production and monitoring wells both in and outside the East Grove
boundary. We obtained records of depth-to-groundwater measurements from 43 wells between
2010 and 2023 to understand fluxes in deep and shallow aquifers in this system. Furthermore, we
assessed the impact of differing precipitation regimes on groundwater storage in East Grove and
the encompassing Fillmore Subbasin.

3.3.1 Groundwater Data Acquisition

East Grove Shallow Groundwater Monitoring Wells

In late 2015, a UCSB research team installed 21 shallow groundwater monitoring wells within
East Grove (Figure 3.3.1a). These shallow wells range from 2 to 3.6 meters in total well depth.
From late 2015 to early 2023, monthly water level measurements were taken manually at these
21 wells. These recorded depth-to-groundwater measurements were used in time-series plots and
subsequent regression analyses.



Figure 3.3.1a. UCSB shallow groundwater monitoring well locations within East Grove. See
Supplemental Materials, Section 2.3.1 for well naming conventions.

Fillmore Subbasin Wells

Groundwater level data for wells with various well depths were retrieved from the Department of
Water Resources’ SGMA Data Viewer web tool. We used data cleaning and filtering protocols to
evaluate wells suitable for the study’s groundwater fluctuation analysis (see 2.3.1 in
Supplemental Materials for a description of the data and protocols). Using these protocols, we
identified 22 wells in the Fillmore Subbasin and categorized them according to the reliability and
completeness of their data spanning from 2010 to 2023 (Figure 3.3.1b ). Data from these 22
wells were used for time-series and recharge analysis.



Figure 3.3.1b. Map of the 22 Fillmore Subbasin wells used to evaluate groundwater level
conditions surrounding East Grove. Wells are categorized based on data relevance (Best, Good,
Okay, Poor). See Section 2.3 in Supplemental Materials for the categorization protocols.

3.3.2 Depth-to-Groundwater and Precipitation Time-Series
Using the “ggplot” package in R, we created time-series graphs for the 21 shallow monitoring
wells in East Grove and the 22 wells in the surrounding Fillmore Subbasin (see Supplemental
Materials, Section 3.2.1 for all plotted time-series). Each time-series includes
depth-to-groundwater measurements and precipitation data. The depth-to-groundwater
measurements reflect the vertical distance between the ground surface and the
groundwater level.

We could not obtain consistent precipitation data from the closest CIMIS weather station—an
automated weather station paid for by the Department of Water Resources, located in Santa Paula
(California Department of Water Resources 2023). Therefore, we needed to use model data to
estimate the daily precipitation during the study period. We selected PRISM Climate Data



precipitation estimates for Fillmore (PRISM Climate Group 2023). To verify the accuracy of the
PRISM model for this region, we completed a Pearson correlation analysis between the PRISM
and limited CIMIS data from the Santa Paula station to verify that the modeled PRISM results
were a valid replacement (see Supplemental Materials, Section 2.3.1). We found that the PRISM
and CIMIS precipitation measurements were highly correlated, with a Pearson correlation of
0.928 (Figure 3.3.2). Thus, using the precipitation data modeled by PRISM as a replacement for
actual precipitation measurements was appropriate. The precipitation data was used throughout
our time-series and water-level rise analyses (see Section 2.3.1 and 3.2 in Supplemental
Materials).

Figure 3.3.2. PRISM modeled daily precipitation and CIMIS station measurements between
2015 to 2023. All common months were paired, so months in which CIMIS did not have
measurements were not included. PRISM modeled data and CIMIS precipitation measurements
were highly positively correlated (Pearson’s r=0.928). The blue line represents the linear
relationship between PRISM-modeled precipitation and CIMIS measurements.

3.3.3 Water-Level Rise

Water-Level Rise Analysis

The filtered groundwater level data was used to assess water-level rise within East Grove and the
Fillmore Subbasin. Water-level rise events were calculated by first identifying the local
maximums (or “valleys”) and local minimums (or “peaks”) in the fluctuations of groundwater
levels at each well site. The difference between the valley and the peak that followed was then
calculated to represent a water-level rise event (Figure 3.3.3). Using our time-series data, we
applied for-loops in R to return all peaks (local minimums) and valleys (local maximums) for
each well. A data frame was generated with data points for each water-level rise event and its



respective date. These values were used to calculate the total time interval (t) and water-level rise
(delta-H) for each event of water-level rise for each well.

This provided us with a data frame with all water-level rise events containing information on the
timing, water-level rise (delta-H), and total precipitation for all wells’ water-level rise events.
See Supplemental Materials, Section 2.3.3 for details on water-level rise calculations and
calculations for the ratios between water-level rise and precipitation.

Figure 3.3.3. Visual representation of depth-to-groundwater peaks (pink) and valleys (green) on
time-series of Hedrick Ranch Preserve (HRP) 3. These peaks and valleys were used to calculate
water-level rise (delta-H) and time intervals of water-level rise events. The water-level rise
(delta-H) is the vertical change between a valley and a peak in centimeters, and the total
precipitation is the summed precipitation during the same time interval. Not all water-level rise
events are represented in this image.

Theil-Sen Linear Regression

Theil-Sen regression is a statistical tool that resists the impact of outliers (Goldstein-Greenwood
2023). The output data frames were used to create Theil-Sen models on the relationship between
precipitation and recharge for each well. The Theil-Sen models estimated ratios of water-level
rise to precipitation to assess the influence of surface processes on groundwater fluctuations. The
models resulted in estimates of slopes and y-intercepts for each well’s water-level rise events,
with corresponding p-values. Using R’s ggplot package, we used the Theil-Sen models to add
regression lines to scatter plots for each well (see Supplemental Materials, Section 3.2.2). The



regression lines allowed us to visualize the impact of precipitation on water-level rise. See
Supplemental Methods, Section 2.3.3 for detailed Theil-Sen regression methods.

3.4 Remote Sensing

3.4.1 NDVI

The normalized difference vegetation index (NDVI) is a metric used to quantify greenness in
vegetation as a proxy for vegetative health (Pettorelli et al. 2005). In this study, we calculated
NDVI using high-resolution, top-of-atmosphere, satellite-derived imagery from the Copernicus
Sentinel-2 program. Using 10 meter by 10 meter resolution spectral data, NDVI was calculated
from the near-infrared to red reflectance ratio:

𝑁𝐷𝑉𝐼 =  𝑁𝐼𝑅 − 𝑅𝐸𝐷
𝑁𝐼𝑅 + 𝑅𝐸𝐷

NIR represents the near-infrared wavelength reflectance, and RED represents the red wavelength
reflectance. Healthy vegetation reflects more near-infrared radiation and absorbs more energy
from the red wavelength because chlorophyll absorbs red light while the mesophyll structure of a
plant scatters near-infrared radiation, indicating photosynthetic activity (Rhew et al. 2011;
Pettorelli et al. 2005). NDVI values range from -1 to +1. Negative values indicate the absence of
vegetation, and values closer to +1 correspond to higher vegetation greenness (Pettorelli et al.
2005).

We calculated NDVI using Google Earth Engine. We also used Google Earth Engine to acquire
monthly satellite imagery from the Copernicus Sentinel-2 program for the years 2016-2023
(Gorelick et al. 2017; Copernicus Sentinel-2 2021). We loaded the Harmonized Sentinel-2 MSI:
MultiSpectral Instrument, Level-1C image collection into Google Earth Engine and filtered it to
the bounds of our study area (East Grove) and dates of interest (01-01-2016 to 12-31-2023). The
NDVI function was added, where the band B8 represented the NIR wavelength reflectance and
B4 represented the RED wavelength reflectance. The resulting NDVI was clipped to our region
of interest, where the median NDVI value per month was calculated. An image collection of
monthly composites was created, listing the months of January to December as 1 to 12,
respectively.

3.4.2 NDMI

The normalized difference moisture index (NDMI) is a metric used to quantify water stress
levels in plants and is commonly used to monitor changes in vegetation water content and
drought stress (Gao 1996; Strashok et al. 2022). We used 20 meter by 20 meter resolution



spectral data derived from the Copernicus Sentinel-2 program to calculate NDMI, using the
short-wave infrared to near-infrared reflectance ratio:

𝑁𝐷𝑀𝐼 =  𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅
𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅

NIR represents the near-infrared wavelength reflectance, and SWIR represents the short-wave
infrared wavelength reflectance. (Kim et al. 2015; Strashok et al. 2022). Changes in plant water
content and the spongy mesophyll structure of plants influence SWIR. While water is absorbed
strongly in SWIR, the leaf's internal structure scatters NIR (Kim et al. 2015; Strashok et al.
2022). NDMI values range from -1 to +1. Negative values indicate water stress and positive
values closer to +1 correspond to abundant water content (Strashok et al. 2022).

To calculate NDMI, Google Earth Engine was used to acquire monthly satellite imagery from the
Copernicus Sentinel-2 program for the years 2016-2023 (Gorelick et al. 2017; Copernicus
Sentinel-2 2021). The Harmonized Sentinel-2 MSI: MultiSpectral Instrument, Level-1C image
collection was loaded into Google Earth Engine and filtered to the bounds of our study area (East
Grove) and dates of interest (01-01-2016 to 12-31-2023). The NDMI function was added, where
the band B8A represented the NIR wavelength reflectance and B11 represented the SWIR
wavelength reflectance. We clipped the resulting NDMI to our region of interest, where the
median monthly NDMI value was calculated. An image collection of monthly composites was
created, listing the months of January to December as 1 to 12, respectively.

3.4.3 Zonal Statistics

Radius buffers of 50 meters and 100 meters were created around each shallow groundwater
monitoring well. The median NDVI and NDMI values previously calculated were clipped to
these radius buffers in Google Earth Engine. Zonal statistics of these clipped NDVI and NDMI
values were subsequently calculated for the 10th through 90th percentiles.

3.4.4 Ecohydrological Analysis

Data Cleaning and Assessment

The previous zonal statistics resulted in a dataset of monthly median values of NDVI and NDMI
for each well from January 2016 to September 2023. We then created a dataset that combined the
remote sensing data with the depth-to-groundwater data from the shallow groundwater
monitoring analyses from the corresponding months. We removed remote sensing medians for
months without depth-to-groundwater data, which excluded months following March 2023.
Furthermore, in months when there were multiple groundwater measurements, we averaged
depth-to-groundwater measurements to a singular value. We used R to construct time-series plots
that compared trends in depth-to-groundwater, NDVI, and NDMI over the study period.



Rank Regression Analyses

We used the R package “Rfit” to perform rank-based estimation analyses on the association
between mean depth-to-groundwater and monthly median NDVI and NDMI values (Torgo
2012). Rank-based regressions are used as a substitute for least-squares regression to protect
against the influence of outliers in results. Rfit calculates the regression estimator using Jaeckel’s
dispersion function instead of minimizing Euclidean distance (Torgo 2012; Jaeckel 1972).

We used the “rfit” function to calculate regression coefficients and p-values of the relationship
between depth-to-groundwater and remote sensing indicators (NDVI and NDMI) over the study
period. We completed these analyses for all wells and individual wells over the entire study
period and overlaid the rank regression functions onto scatter plots.

We separated the data into seasonal categories by month as shown in Table 3.4.4. We isolated the
summer values and performed the same analyses as in the complete data set. In the study region,
riparian ecosystems are highly productive in summer, and there is little to no precipitation
(Garsen et al. 2014; Western Regional Climate Center n.d.). We created the same scatter plots
with rank regression slopes for the summer as for the full dataset.

Table 3.4.4. Season groups by month as used in this analysis, with month numbers included.
Month groupings were selected based on the start date of each season (equinoxes and solstices;
winter: December 21, spring: March 20, summer: June 21, fall: September 20).

Month Grouping Month # Season

December, January, February 12, 1, 2 Winter

March, April, May 3, 4, 5 Spring

June, July, August 6, 7, 8 Summer

September, October, November 9, 10, 11 Fall

Spearman Correlation

Spearman’s rank-order correlation is a non-parametric alternative to Pearson correlation and
results in a single value (ρ, rho) that indicates the magnitude and direction of the relationship
between two ranked variables (Laerd Statistics 2018). Spearman’s rho is calculated by assessing
monotonic association, rather than a linear relationship, appropriate when analyzing
non-parametric data. We used R to calculate Spearman’s rank-order correlation values on
depth-to-groundwater and remote sensing indicators (NDVI and NDMI) and
depth-to-groundwater in all wells and for each individual well. We also determined Spearman
correlations for the summer-isolated data.



4. Results

4.1 Lithology
Of the final 61 wells, 29.5% of them had depths of around 61 meters and 14.8% of around 91
meters. For individual wells' plots, see Section 3.1 in the Supplemental Materials. Our resulting
cross-sections show lithology can vary greatly with depth even within a single valley. However,
after visual inspection some trends become apparent. Cross-sections exhibit an abundance of
unconsolidated, coarse-grained layers at shallower depths. In 74% of wells (greater than 61
meters), the uppermost 60 meters of the subsurface was composed of either coarse (Number 1,
Table 3.1.1) or mostly coarse material (Number 2, Table 3.1.1). About 8.5% of wells were
comprised of fine (Number 4, Table 3.1.1) to mostly fine (Number 5, Table 3.1.1) material in the
uppermost 60 meters. There is a relative lack of both consolidated and unconsolidated
fine-grained material with few exceptions. Cross-section 1 features the least amount of
lithological variability with only one layer of coarse, laterally noncontinuous, consolidated
material appearing in Well 12. Cross-sections 2 and 3 exhibit a more significant variability of
observed lithologies, notably the presence of more consolidated material and bedrock around 80
to 120 meters depth (Figure 4.1b, Figure 4.1c). The presence of mixed coarse and fine material
(Number 3, Table 3.1.1) is difficult to characterize visually. It can appear at both depth and near
the surface, however, cross-section 3 has the least amount of mixed material (Figure 4.1c.).
Cross-section 3 has the most consolidated material, however, these are not laterally continuous,
they appear once or twice and don’t seem to connect in adjacent wells. Possible explanations
include a lateral thinning of layers near Well 52 and 53.



Figure 4.1a. The lithological cross-section of line 1, which travels about 10,500 m from west to
east of East Grove. The cross-section consists of the following wells: Well 12
(WCR2010-010156), Well 13 (WCR2004-015524), Well 14 (WCR2010-010413), Well 22
(WCR1998-010940), Well 42 (WCR2006-011431), Well 44 (WCR2016-005853), Well 41
(WCR2007-012988). There are generally few consolidated materials and more abundance of
coarse-grained materials above 0 meters in elevation.



Figure 4.1b.
The lithological cross-section of line 2, that travels about 16,000 m from west to east of East
Grove. The cross-section consists of the following wells: Well 17 (WCR2016-008246), Well 1
(WCR2004-015336), Well 6 (WCR2008-011034), Well 8 (WCR2018-009168), Nested Well,
Well 29 (WCR2010-010444), Well 54 (WCR2006-013424), Well 40 (WCR1974-004128), Well
57 (WCR0307632). There is a relatively even distribution of wells along the cross-section. Some
fine material can be found near the land surface as shown by wells 29, 54, and 57.



Figure 4.1c.
The lithological cross-section of line 3, that travels about 12,000 m from southwest to northeast
of East Grove. The cross-section consists of the following wells: Well 8 (WCR2018-009168),
Well 22 (WCR1998-010940), Well 32 (WCR2018-005473), Well 37 (WCR2013-009374), Well
53 (WCR2013-009055), Well 52 (WCR1988-016945). Lithological cross-section line 3
increases approximately 81 meters in elevation from beginning to end. There is a close grouping
of wells starting around 7,000 meters. Relatively more consolidated material is present along
with some discontinuous strata. However, coarse-grained material remains prevalent.

4.2 Vertical Hydraulic Gradient
A 2-D cross-section was created where one of the deep and shallow wells of the nested well were
plotted with their 2023 median water levels (Figure 4.2a). The cross-section schematic is a visual
representation of the upward-oriented vertical hydraulic gradient trends experienced between the
deep and shallow well at the East Grove nested monitoring site, where the deeper well has a
median water level (h2) that is closer to the land surface than that of the shallow well (h1).



Figure 4.2a. A 2-D schematic of the upward-oriented vertical hydraulic gradient trends
experienced between the deep and shallow well at the East Grove nested monitoring well site
(located at 34.362 °N, -118.996 °W). h1 and h2 represent the 2023 median water level in meters
below ground surface for the shallow and deep well respectively. The change in head, or the
difference between h1 and h2, is represented as 𝚫h. The change in vertical distance between the
two wells, or the difference between z1 and z2, is represented as 𝚫z. z1 is referencing the total
well depth of the shallow well at 31 meters below ground surface (100 feet) and z2 is the total
well depth of the deep well at 161 meters below ground surface (530 feet). The surrounding
lithology consists of coarse to mostly coarse-grained material, with fine to mostly fine-grained
material appearing below 200 meters.

Out of the nine calculated vertical hydraulic gradients, eight of the calculations were negative
(Figure 4.2b). A negative Δh/Δz represents an inverse correlation between the change in head
(Δh) and the change in vertical distance (Δz). This would imply that a lower elevation head
results in a higher hydraulic head. This relationship is consistent with the hydrologic behavior of
a gaining river reach, or an area experiencing groundwater upwelling. Gaining streams are areas
in a drainage basin where groundwater can naturally flow upwards towards the surface. This
upward-flow dynamic is also called groundwater discharge or “baseflow” (Batelaan et al. 2003).
In these gaining reaches, groundwater levels tend to naturally reside at shallower depths, closer
to the land surface.



Figure 4.2b Graphical representation of the 2023 vertical hydraulic gradients (Δh/Δz) at the East
Grove nested monitoring well site. The change in hydraulic heads is denoted as 𝚫h and the
change in vertical distance is denoted as 𝚫z. The variable h1 corresponds to a
depth-to-groundwater measurement taken at the shallow well on a specific date, while h2

represents a measurement taken at the deep well on the same date. Similarly, z1 and z2

correspond to the total well depths of the shallow and deep well, respectively. Each data point on
the graph reflects the calculated magnitude of the vertical hydraulic gradient on a particular date.
Negative vertical hydraulic gradients are plotted above the red horizontal line, which serves as
the threshold. The threshold distinguishes between magnitudes indicating events of
"downwelling" (a downward-oriented vertical hydraulic gradient) and "upwelling" (an
upward-oriented vertical hydraulic gradient).

4.3 Groundwater Trends

4.3.1 Time-Series Analysis

UCSB Shallow Monitoring Wells

Figure 4.3.1a is a histogram of depth-to-groundwater measurements for all wells over the study
period. It is skewed to the right, and values between 50 and 120 centimeters are the most
common. Values between -5 and 5 centimeters were the second-most common depth
measurement.



Figure 4.3.1a. Histogram of 1,414 depth-to-groundwater measurements in all UCSB wells
December 2015 to March 2023, with a bin-width of 10. The median depth-to-groundwater
measurement was 89 centimeters and mean of 100 centimeters. The maximum depth and
minimum depth were 320 centimeters and -30 centimeters, respectively. 50% of the values fell
between 41 and 143 centimeters.

depth-to-groundwater measurements in each of the 21 UCSB monitoring wells varied greatly
over the study period (Figure 4.3.1b). Measurements were often taken on the same day at
different wells, leading to overlap between points (Figure 4.3.1b). The deepest
depth-to-groundwater measurement was 320 centimeters, measured on January 10, 2017, at
Hedrick Ranch Preserve Well #4. The greatest height of standing water above ground level was
-30 centimeters, measured on April 20, 2020 in Ventura County Watershed Protection District’s
Well #8. The mean depth-to-groundwater measurement was 100 centimeters, and the median
measurement was 89 centimeters.

Periods of high precipitation were found to have a qualitative association with water-level rise
(Figure 4.3.1c). Each high precipitation interval is followed by a drop in depth-to-groundwater;
this is prominent when looking at individual well plots such as Well HRP 1 (Figure 4.3.1d).



Figure 4.3.1b. All depth-to-groundwater measurements (1,414 total measurements) taken by the
UCSB team in the East Grove shallow groundwater monitoring wells from December 2015 to
March 2023. Values are often clustered, reflecting patterns of groundwater levels in the shallow
aquifer. The extreme drought in California between 2013 and 2017 is reflected in the plot, where
groundwater levels are deeper on average in 2016 and 2017 than in periods following heavy
rains (2019-2023).



Figure 4.3.1c. All depth-to-groundwater measurements for all UCSB wells during the study
period December 2015 to March 2023. High precipitation intervals are months with total
precipitation greater than one standard deviation above the mean. This plot displays a pattern,
where groundwater levels are shallower during and after high precipitation intervals. This
suggests a relationship between precipitation and groundwater storage.



Figure 4.3.1d. Depth-to-groundwater time-series plot for Hedrick Ranch Preserve Well #1,
including total well depth, daily precipitation, and high precipitation intervals—months with
total precipitation greater than one standard deviation above the mean. Gray bars below the red
dashed line represent dates when researchers recorded “no water” at the well, meaning that
depth-to-groundwater was below the total well depth and was thus unknown. See Supplemental
Materials, Section 3.2.1 for all time-series graphs for the East Grove monitoring wells.



Fillmore Subbasin Wells  

Figure 4.3.1e. Histogram of 2,118 depth-to-groundwater measurements in all 22 Fillmore
Subbasin wells from 2010 to 2023. (Bin-width = 70). The maximum and minimum depths were
6,848 centimeters and -71 centimeters, respectively. 50% of the values fell between 436
centimeters and 3601 centimeters. The median depth-to-groundwater is 1143 centimeters.

All recorded depth-to-groundwater for the Fillmore wells were plotted (Figure 4.3.1f).
Depth-to-groundwater measurements in each of the 22 Fillmore wells varied over the 2010 to
2023 study period, with larger values (indicating lower/deeper groundwater levels) during the
2016 to 2019 drought and early drought recovery period.



Figure 4.3.1f. All depth-to-groundwater measurements for the Fillmore Subbasin wells from
January 2010 to March 2023, accessed via the SGMA data viewer. The deepest
depth-to-groundwater measurement was 6,848 centimeters (224.68 feet), measured on December
3, 2018, at the Fillmore 9 well. The greatest height of standing water in the well casing (above
ground level) was -71 centimeters (-2.34 feet), measured on May 6, 2019, at the Fillmore 5 well.
The mean depth-to-groundwater measurement was 1,951 centimeters (64 feet) and the median
measurement was 1143 centimeters (37.5 feet).

Time-series graphs were plotted for each of the 22 Fillmore Wells (see Supplemental Materials,
Section 3.2 for all time-series graphs). The subtitles of these graphs include additional
information about each well, including the well type (Irrigation, Residential, Observation, or an
Unknown well), the reported total well depth, and the site code of each well (a unique identifier
provided by the Department of Water Resources). The graph is reversed so that ground level is
shown at the top in black, and total well depth near the bottom of the graph is represented by a
red dashed line (see Figure 4.3.1g below as an example). For wells with unknown total well
depths, a dashed blue line was utilized to represent the maximum recorded depth-to-groundwater
measurements during the specified time period (refer to Figure 4.3.1h for a visual example).
Additionally, the legend series includes the “Max Recorded DTG” to denote the maximum



recorded depth-to-groundwater in meters (Figure 4.3.1h). As a reference for each well’s location,
please refer to Figure 3.3.1b.

Figure 4.3.1g. Depth-to-groundwater time-series plot for Fillmore Well 1 located including the
total well depth, daily precipitation, and high precipitation intervals—months with total
precipitation greater than one standard deviation above the mean. Daily precipitation values in
inches are shown as light blue lines coming from the top of the graph, corresponding to dates on
the x-axis and estimates of precipitation in inches on the right y-axis. The known total well depth
of this residential supply well is 28 meters below the ground surface.



Figure 4.3.1h. Depth-to-groundwater time-series plot for Fillmore Well 2 located on the south
border of East Grove, including an unknown total well depth, daily precipitation, and high
precipitation intervals—months with total precipitation greater than one standard deviation above
the mean. Daily precipitation values in inches are shown as light blue lines coming from the top
of the graph, corresponding to dates on the x-axis and estimates of precipitation in inches on the
right y-axis. The total well depth of this irrigation well is unknown, therefore the maximum
depth-to-groundwater measurement at 9.12 meters below ground surface was used and
represented by the blue dashed line at the bottom of the graph. This maximum
depth-to-groundwater value was recorded in 2017, during the 2012–2019 California drought.

4.3.2 Water-Level Rise

East Grove Shallow Groundwater Monitoring Wells

Water-level rise events for all wells during the study period are displayed in a histogram (Figure
4.3.2a). Water-level rise was most commonly between 0.1 and 15 centimeters during a single
event. Larger jumps in water level are less frequent, showing that smaller amounts of water-level
rise are far more common.



Figure 4.3.2a. Histogram of water-level rise (delta-H) values for all wells for all recharge events
2016 to 2023 (bin-width=5). Water-level rise values for individual water-level rise events for the
East Grove UCSB shallow groundwater monitoring wells range from 0.2 centimeters to 323
centimeters, with a median of 27 centimeters. Water-level rise in all recharge events has a
right-skewed distribution. Furthermore, the recharge events happened over varying lengths of
time, ranging from 8 to 644 days (median = 51 days).

To analyze how water-level rise was associated with precipitation, we completed a Theil-Sen
regression for all East Grove shallow groundwater monitoring wells (Figure 4.3.2b). The
regression resulted in a linear regression with a slope of 2.09 and a p-value less than 0.0001. The
slope represents the median ratio between water-level rise and precipitation, i.e., each centimeter
of precipitation leads to 2 centimeters of water-level rise. The y-intercept was not statistically
significant.



Figure 4.3.2b. Theil-Sen regression plot of the ratio between water-level rise (delta-H) and
precipitation in all water-level rise events calculated for East Grove UCSB shallow groundwater
monitoring wells during the study period. Theil-Sen regression is robust and resists influence
from outliers. Thus, the association between the two variables is not as strong as it would be if a
least-squares linear regression was used. There are some outliers in extremely high water-level
rise and precipitation, due to some cases of very long time intervals between valleys and peaks.
On average, 1 centimeter of precipitation leads to approximately 2 centimeters of water-level rise
(slope=2.09, p<0.0001).

Separate Theil-Sen regression analyses were completed for each of the East Grove UCSB
shallow groundwater monitoring wells (see Supplemental Materials, Section 3.2.2 for all
regression plots). Results of the Theil-Sen regression (ratios of delta-H/precipitation) for the 20
UCSB shallow groundwater monitoring wells throughout East Grove were mapped in ArcGIS
(Figure 4.3.2c).



Figure 4.3.2c. Map of East Grove UCSB shallow groundwater monitoring wells, differing by
their median Theil-Sen regression slopes of water-level rise (delta-H) to precipitation for
individual recharge events, shown with a yellow to red gradient. Wells with significant Theil-Sen
regressions are indicated with larger circles than wells without significant regressions. Higher
slopes are clustered in the east, while lower slopes are more common in the west. This may result
from differing soil types leading to variations in water-level rise, or differences in surface
processes such as runoff or river flow.

Fillmore Subbasin Wells

Water-level rise values for individual recharge events of the 22 Fillmore Subbasin wells range
from 0.3 centimeters (0.003 meters) to 1,669 centimeters (16.69 meters), with a median of 163
centimeters (1.63 meters). Water-level rise in all recharge events has a right-skewed distribution
(Figure 4.3.2d).



Figure 4.3.2d. Histogram of water-level rise (delta-H) values for all 22 Fillmore Subbasin wells
for all recharge events 2010 to 2023 (bin-width=12). Water-level rise values for individual
recharge events of the 22 Fillmore Subbasin wells range from 0.3 centimeters (0.003 meters) to
1,669 centimeters (16.69 meters), with a median of 163 centimeters (1.63 meters). The
distribution of water-level rise in all recharge events is right-skewed.

Theil-Sen regressions were performed between water-level rise and total daily precipitation for
all 22 wells in the Fillmore Subbasin during the 2010 to 2023 time series. The regression for the
water-level rise (delta-H) and precipitation in all recharge events was plotted (Figure 4.3.2e).
Theil-Sen plots for all wells can be found in Supplemental Materials, Section 3.2.2.



Figure 4.3.2e. Theil-Sen regression plot of the ratio between water-level rise (delta-H) and
precipitation in all recharge events for all 22 wells in the Fillmore Subbasin. Theil-Sen regression
is robust and resists influence from outliers. Thus, the association between the two variables is
not as strong as it would be if a least-squares linear regression was used. The slope of 5.7
represents the median ratio between water-level rise and precipitation, i.e. each centimeter of
precipitation leads to 5.7 centimeters (0.057 meters) of water-level rise (y-intercept=89.223,
p<0.0001). The association is statistically significant. Theil-Sen plots for all wells can be found
in Supplemental Materials, Section 3.2.2.



Figure 4.3.2f. Map of East Grove (blue outline) UCSB shallow groundwater monitoring wells
and all Fillmore Subbasin (black outline) wells, differing by their median Theil-Sen regression
slopes of water-level rise (delta-H) to precipitation for individual recharge events, shown with a
yellow to red gradient. Wells with significant Theil-Sen regressions are indicated with larger
circles than wells without significant regressions. Deeper wells had significantly higher
regression slopes than shallow groundwater monitoring wells, as shown by the clustering of
smaller slopes within East Grove. Wells to the north had higher ratios between water-level rise
and precipitation, ranging to 26 centimeters of water-level rise per 1 centimeter of precipitation.
These high numbers could result from many confounding factors, including well depth, surface
processes, pumping effects, or specific yields of different soil types.

Trend Comparison

The ratio slopes for water-level rise to precipitation events generated in the Thiel-Sen regressions
varied significantly between the East Grove shallow monitoring wells and the 22 wells in the
Fillmore Subbasin (Figure 4.3.2f). The regression output generated a mean ratio slope of 2.26
and 8.86 for the East Grove monitoring wells and the Fillmore Subbasin wells respectively. This



indicates that the Fillmore wells are more responsive to increases in precipitation, where one
centimeter of precipitation leads to an average of 8.86 centimeters of water-level rise at the
Fillmore wells, and leads to an average of 2.26 centimeters of water-level rise at the East Grove
wells. This variation in slopes is likely caused by hydrologic modifications from groundwater
pumping, as much of the Fillmore wells are production wells. Additionally, the 22 Fillmore wells
are located at varied depths (see Section 3.2 in Supplemental Materials for total well depths) and
location around the subbasin, and are not fixed around East Grove (Figure 3.3.1b). The
difference in geology among the Fillmore Wells may also be an influencing factor (see Section
4.1 above for the subbasin’s common lithology characteristics).

Figure 4.3.2f. Theil-Sen regression calculations for East Grove monitoring wells and Fillmore
Subbasin production and monitoring wells. There was a significant Theil-Sen regression for both
groups. The regression indicates that one centimeter of precipitation corresponds with roughly 2
centimeters of water-level rise in the East Grove shallow wells. However, one centimeter of
precipitation corresponds to roughly 8 centimeters of water-level rise at the Fillmore wells.



Figure 4.3.2f. Boxplot comparing Theil-Sen regression values of water-level rise to precipitation
between the East Grove shallow groundwater monitoring wells and the deeper wells in the
Fillmore Subbasin (outside of East Grove). There is a statistically significant difference in
Theil-Sen ratios between the two groups (t-test: t=-5.32, df=22.8, p<0.0001). The mean ratios
were 2.26 and 8.87 for East Grove and Fillmore wells, respectively. Various confounding factors
could lead to this difference, including well depth, lack of specific yield, elevation, and relative
distance from the Santa Clara River.



4.4 Remote Sensing

4.4.1 NDVI

Table 4.4.1. East Grove seasonal median NDVI values for the years 2016 to 2023. Winter values
were the lowest of all the seasons from 2016 to 2023, due to plant senescence. Summer yielded
the highest values, indicating peak productivity due to high vegetative greenness.

2016 2017 2018 2019 2020 2021 2022 2023

Winter 0.25 0.20 0.24 0.21 0.34 0.35 0.37 0.22

Spring 0.46 0.40 0.36 0.45 0.54 0.49 0.47 0.32

Summer 0.37 0.45 0.42 0.57 0.61 0.54 0.56 0.55

Fall 0.25 0.39 0.37 0.53 0.54 0.51 0.50 0.47

Seasonal NDVI values for the years 2016 to 2023 were calculated from the composite images
created in Google Earth Engine (Table 4.4.1). In the summer months of 2017, 2019, 2020, and
2022, NDVI increases from the previous year correlated with increased rainfall during the winter
months (Figure 4.3.1d). Vegetation greenness in the summer increased during the wet years and
decreased during the dry years.

Trends of changes in seasonal NDVI over time were calculated using Theil-Sen regression. This
was plotted with trend lines showing NDVI changes for the fall, winter, spring, and summer
seasons within a 100 m radius buffer for each shallow groundwater monitoring well (Figure
4.4.1a). NDVI values for each season in 2023 were lower than the previous year, which may be
due to reduced vegetation as a result of increased surface flows (Figure 2.4.3a). However, further
analysis of land cover type will be required to determine changes in vegetative cover over time.
Fall trends showed a significant increase in NDVI over the study period (Theil-Sen regression:
slope=2.898e-05, p-value=0.0003). Winter trends also had a significant increase in NDVI
(Theil-Sen regression: slope=1.548e-05, p-value=0.03). Both spring and summer NDVI trends
had a p-value of less than 0.0001, indicating a significant increase (spring Theil-Sen regression:
slope=5.014e-05, p-value<0.0001; summer Theil-Sen regression: slope =7.169e-05,
p-value<0.0001). Across all seasons, vegetative greenness has increased substantially since the
year 2016, indicating potential for improved vegetation health within East Grove.



Figure 4.4.1a. Theil-Sen seasonal trends for each shallow groundwater monitoring demonstrate
a significant increase in median NDVI from 2016 to 2023 for the winter (p-value=0.0342),
summer (p-value<0.0001), spring (p-value<0.0001), and fall (p-value=0.0003) seasons. Summer
showed a strong relationship between increases in shallow groundwater and vegetation
greenness.



Figure 4.4.1b Changes in NDVI within the East Grove study area from summer 2016 and 2023.
Values range from -1 to 1, with negative values indicating a decrease in NDVI and positive
values indicating an increase in NDVI. NDVI values do not impart cover type discrepancies.

NDVI values were highest during summer, indicating that vegetation in East Grove experienced
peak productivity. The median NDVI values in East Grove in the summers of 2016 and 2023 was
0.37 and 0.55, respectively. The difference in median NDVI between summer 2016 and 2023
was 0.18, representing an increase in NDVI during this time period and vegetation greenness.
84% of the area within East Grove demonstrated an improvement in NDVI values (Figure
4.4.1b). 16% of the area within East Grove had a decrease in NDVI, which may be an indicator
of vegetative change due to high precipitation and increased surface water (Figure 4.4.1b).
However, further examination of land cover is required to classify cover type NDVI changes.

4.4.2 NDMI

Table 4.4.2. East Grove seasonal median NDMI values for the years 2016 to 2023. The winter
season had the lowest NDMI values amongst all seasons, except for the year 2016. Summer had
the highest NDMI values across all seasons, with the exception of the year 2016. The winter
NDMI values correspond with plant senescence periods and summer NDMI values, plant
productivity periods.



2016 2017 2018 2019 2020 2021 2022 2023

Winter -0.01 -0.09 -0.04 -0.04 0.07 0.11 0.11 0.14

Spring 0.15 0.07 0.04 0.13 0.22 0.19 0.24 0.21

Summer 0.05 0.15 0.12 0.27 0.31 0.26 0.27 0.27

Fall -0.05 0.09 0.06 0.24 0.27 0.22 0.21 0.23

Seasonal median NDMI values for the years 2016 to 2023 were calculated from the composite
images created in Google Earth Engine (Table 4.4.2). The years 2017, 2019, 2020, 2022, and
2023 showed an increase in NDMI values, corresponding with wet years (Figure 4.3.1d).
Decreases in NDMI during the summer months corresponded to dry years.

Trends of changes in seasonal NDMI over time were calculated using Theil-Sen regression.
These values were plotted with a trend line showing NDMI increasing for the winter, summer,
spring, and fall seasons (Figure 4.4.2a). The overall increase in median NDMI values between
the years 2016 to 2023 indicates improvement in plant water content within the East Grove study
area. All seasons demonstrated a significant increase in NDMI over the study period, with
p-values of less than 0.0001 for each season (fall Theil-Sen regression: slope=4.407e-05,
p-value<0.0001; winter Theil-Sen regression: slope=7.040e-05, p-value<0.0001; spring
Theil-Sen regression: slope=7.384e-05, p-value<0.0001; summer Theil-Sen regression:
slope=8.302e-05, p-value<0.0001) (Figure 4.4.2a).These trends indicate that vegetation within
East Grove became less water-stressed over time.



Figure 4.4.2a Seasonal trends demonstrate a general increase in median NDMI from 2016 to
2023 for the winter (p-value<0.0001), spring (p-value<0.0001), summer (p-value<0.0001), and
fall seasons (p-value<0.0001). All seasons demonstrated a strong relationship between shallow
groundwater levels and NDMI.



Figure 4.4.2b Changes in NDMI within the East Grove study area between summer 2016 and
summer 2023.Values range from -1 to 1, with negative values indicating a decrease in NDMI and
positive value indicating an increase in NDMI. NDMI values do not indicate cover type
discrepancies.

NDMI values were highest during the summer, indicating that plants in East Grove experienced
peak productivity (Table 4.4.2). The median NDMI values in East Grove in the summers of 2016
and 2023 were 0.05 and 0.27, respectively. The difference in median NDMI between summer
2016 and 2023 was 0.22, indicating a substantial increase in plant water content. 96% of the area
within the East Grove study area demonstrated an improvement in NDMI values (Figure 4.4.2b),
while 4% of the area had a decrease in NDMI. The areas that demonstrated a decrease in NDMI
within East Grove could be attributed to changes in vegetation cover, but further analysis of
cover types is required.

4.4.3 Ecohydrology

Time-Series Trends

During the study period, NDVI, NDMI, and depth-to-groundwater experienced upward trends of
differing magnitudes. Depths to groundwater levels shallowed between January 2016 and March
2023 (Theil-Sen regression, y=-0.05x+920.19, p<0.0001). NDVI medians increased during the
same time period (Theil-Sen regression, y=(3.4e-5)x-0.22, p<0.0001), as did NDMI median



values (Theil-Sen regression, y=(6.5e-5)x-1.076, p<0.0001). Figure 3.4.3a displays all monthly
data from all wells for all three variables. Time-series by individual well can be found in 3.3.2A
of Supplemental Materials.

Figure 4.4.3a. Time-series plots of all wells’ monthly data for depth-to-groundwater and two
remote sensing variables: NDVI and NDMI. Theil-Sen regression lines are displayed for each
variable. All variables experienced an upward trend during the study period, with lower values
clustered towards 2016 and 2017 and higher values between 2020 and 2021. Some seasonal
variation can be observed in all data sets, but this variation is most pronounced in the NDVI and
NDMI data. This may be due to variations in plant phenology, which lead to reductions in plant
productivity during winter months. Seasonal variations in groundwater depths may result from
various factors, including surface flow, precipitation, or hydrologic conditions.

Rank Regression Analysis

The Ventura County Watershed Protection District Well #2 was excluded from any individual
analysis because it was rendered unusable by storms in 2019 and has not been monitored since
then.

All Months

Rank regression analyses on monthly data between depth-to-groundwater and both remote
sensing indicators for all wells (NDVI and NDMI) resulted in significant linear relationships
(p-value<0.0001) (Figure 4.4.3b, Figure 4.4.3c). These negative linear relationships indicate that



shallow depths to groundwater are associated with higher values of NDVI and NDMI.
Regression graphs for individual wells can be found in Section 3.3.2B of Supplemental
Materials.

Figure 4.4.3b. Scatter plot of NDVI monthly data points for all shallow groundwater monitoring
wells: one point represents one well’s monthly mean depth-to-groundwater and monthly median
NDVI value for a 50-meter radius around the well. The rank regression line is shown in red
(rank-based estimation: NDVI = -0.000402*depth+0.435, p-value<0.0001). The significant
negative relationship calculated by the rank regression indicates that shallower depths to
groundwater are associated with higher NDVI values, while deeper groundwater depths are
associated with lower NDVI values. Thus, plants may be greener when shallow groundwater is
closer to the surface.



Figure 4.4.3c. Scatter plot of NDMI monthly data points for all shallow groundwater monitoring
wells: one point represents 1 well’s monthly mean depth-to-groundwater and monthly median
NDMI value for a 100-meter radius around the well. The rank regression line is shown in red
(rank-based estimation: NDMI = -0.000482*depth+0.148, p-value<0.0001). The significant
negative relationship calculated by the rank regression indicates that shallower depths to
groundwater are associated with higher NDMI values, while deeper groundwater depths are
associated with lower NDMI values. Thus, plants may have higher water content when shallow
groundwater is closer to the surface.

When rank regression analyses between depth-to-groundwater and the remote sensing indicators
were performed for each individual well, most of them failed to reject the null hypothesis. None
of the individual wells maintained a significant rank-regression relationship between median
monthly NDVI and mean depth-to-groundwater (Table 4.4.3a). Of the 20 individual wells, 7 had
significant rank-regression coefficients between median monthly NDMI and mean
depth-to-groundwater (Table 4.4.3b).

Table 4.4.3a. Slopes and p-values for all individual wells’ rank regression analyses between
depth-to-groundwater and NDVI. No regressions were found to be statistically significant. On an
individual well level, we cannot be confident of the negative relationship observed between
depth-to-groundwater and NDVI values.
Well ID Rank Regression Coefficient p-value



Taylor 1 4.55E-04 0.45

Taylor 2 -3.02E-04 0.41

HRP 1 -1.19E-04 0.55

HRP 2 -6.73E-04 0.12

HRP 3 -1.34E-04 0.57

HRP 4 -1.51E-04 0.27

HRP 5 -6.02E-05 0.88

HRP 6 4.60E-06 0.98

HRP 7 7.78E-05 0.75

HRP 8 -8.90E-06 0.97

HRP 9 -3.39E-05 0.89

VCWPD 1 -3.46E-05 0.91

VCWPD 2 3.73E-04 0.62

VCWPD 3 -1.47E-04 0.67

VCWPD 4 -7.81E-05 0.81

VCWPD 5 6.34E-04 0.29

VCWPD 6 -1.15E-04 0.69

VCWPD 7 1.41E-05 0.97

VCWPD 8 -4.23E-04 0.06

VCWPD 9 9.56E-05 0.74

VCWPD 10 1.07E-04 0.68

Table 4.4.3b. Slopes and p-values for all individual wells’ rank regression analyses between
depth-to-groundwater and NDMI. For most individual wells, we cannot be confident of the
negative relationship observed between depth-to-groundwater and NDMI values for most wells.
However, 7 out of 20 regressions were found to be statistically significant (Hedrick Ranch
Preserve Wells #1-6, Ventura County Watershed Protection District Well #8). Shallower depths
to groundwater were associated with higher NDMI values for these 7 wells.
Well ID Rank Regression Coefficient p-value

Taylor 1 -5.39E-04 0.36

Taylor 2 -5.39E-04 0.13



HRP 1 -5.06E-04 <0.01

HRP 2 -1.11E-03 <0.01

HRP 3 -6.26E-04 <0.01

HRP 4 -2.76E-04 0.01

HRP 5 -5.41E-04 0.04

HRP 6 -4.36E-04 <0.01

HRP 7 -3.09E-04 0.08

HRP 8 -2.83E-04 0.16

HRP 9 -2.93E-04 0.13

VCWPD 1 -2.48E-04 0.45

VCWPD 2 4.17E-04 0.41

VCWPD 3 -2.66E-04 0.44

VCWPD 4 -3.31E-04 0.32

VCWPD 5 1.24E-04 0.86

VCWPD 6 -2.54E-04 0.42

VCWPD 7 -1.45E-04 0.76

VCWPD 8 -5.09E-04 0.01

VCWPD 9 -2.06E-04 0.45

VCWPD 10 -1.52E-04 0.49

The small number of significant relationships and the spread seen in the above scatterplots
indicate that there may not be a strong correlation between depth-to-groundwater and NDVI
variables. In fact, median NDVI and mean depth-to-groundwater have a weak negative
correlation of -0.18 (Spearman’s rho). NDMI and mean depth-to-groundwater have a weak
negative correlation of -0.27 (Spearman’s rho). Table 4.4.3c displays the Spearman’s rank-order
correlation values for each well. All absolute values are less than 0.5, indicating weak
associations between the variables.

Table 4.4.3c. All individual wells’ Spearman’s rank order correlations between
depth-to-groundwater and remote sensing indicators, reported as “rho.” All wells had weak or



very weak negative associations between depth-to-groundwater and NDVI/NDMI. Thus, we
cannot be confident of the rank regressions calculated between these variables.
Well ID NDVI rho NDMI rho

Taylor 1 0.03 -0.14

Taylor 2 -0.03 -0.14

HRP 1 -0.14 -0.37

HRP 2 -0.07 -0.28

HRP 3 -0.06 -0.33

HRP 4 -0.22 -0.44

HRP 5 0.06 -0.14

HRP 6 0.08 -0.23

HRP 7 0.16 -0.09

HRP 8 0.20 -0.04

HRP 9 0.15 -0.04

VCWPD 1 0.05 -0.03

VCWPD 2 0.15 0.19

VCWPD 3 0.01 0.01

VCWPD 4 -0.01 -0.12

VCWPD 5 0.13 0.03

VCWPD 6 0.02 -0.06

VCWPD 7 0.11 0.07

VCWPD 8 -0.12 -0.17

VCWPD 9 0.13 -0.01

VCWPD 10 0.14 0.02

Summer Months

After isolating values from summer months (June, July, August), rank regression analyses on
monthly data between depth-to-groundwater and both remote sensing indicators for all wells
(NDVI and NDMI) resulted in significant negative relationships (p-value<0.0001) (Figure
4.4.3d, Figure 4.4.3e). These results indicate that shallow depths to groundwater are associated



with higher values of NDVI and NDMI in summer. Individual well’s regression graphs can be
found in Section 3.3.2C of Supplemental Materials.

Figure 4.4.3d. Scatter plot of NDVI summer monthly data points for all shallow groundwater
monitoring wells. Rank regression line is shown in red (rank-based estimation: NDVI =
-0.000956*depth+0.59, p-value<0.0001). The significant negative relationship calculated by the
rank regression indicates that shallower depths-to-groundwater are associated with higher NDVI
values, while deeper groundwater depths are associated with lower NDVI values. The slope of
the summer rank regression is more than twice as strong as the slope of the total year rank
regression (9.6*10-4 > 4*10-4). Thus, plants appear to be greener when shallow groundwater is
closer to the surface, especially in summer.



Figure 4.4.3e. Scatter plot of NDMI summer monthly data points for all shallow groundwater
monitoring wells. The rank regression line is shown in red (rank-based estimation: NDMI =
-0.00092*depth+0.265, p-value<0.0001). The significant negative relationship calculated by the
rank regression indicates that shallower depths to groundwater are associated with higher NDMI
values, while deeper groundwater depths are associated with lower NDMI values. The slope of
the summer rank regression is nearly twice as strong as the slope of the total year rank regression
(9.2*10-4 > 4.8*10-4). Thus, plants appear to have higher water content when shallow
groundwater is closer to the surface, especially in summer.

When isolating summer months, many more of the individual wells experienced significant rank
regression relationships between the remote sensing indicators and depth-to-groundwater. All but
2 of the individual wells maintained a significant rank-regression relationship between median
monthly NDVI and mean depth-to-groundwater (Table 4.4.3d), and all but 3 had significant
rank-regression coefficients between median monthly NDMI and mean depth-to-groundwater
(Table 4.4.3e).

Table 4.4.3d. Slopes and p-values for all individual wells’ rank regression analyses between
depth-to-groundwater and NDVI in summer months. 18 out of 20 relationships were found to be
statistically significant. Thus, for all wells except VCWPD 3 and 5, shallower depths to
groundwater were associated with higher NDVI values in summer months.
Well ID Rank Regression Coefficient p-value



Taylor 1 -1.84E-03 <0.01

Taylor 2 -1.20E-03 <0.01

HRP 1 -1.28E-03 <0.01

HRP 2 -1.99E-03 <0.01

HRP 3 -9.95E-04 0.01

HRP 4 -5.50E-04 0.02

HRP 5 -2.56E-03 <0.01

HRP 6 -7.31E-04 0.02

HRP 7 -8.32E-04 0.00

HRP 8 -7.47E-04 0.01

HRP 9 -4.69E-04 0.03

VCWPD 1 -1.05E-03 0.01

VCWPD 3 -1.03E-03 0.09

VCWPD 4 -1.28E-03 <0.01

VCWPD 5 -9.01E-04 0.36

VCWPD 6 -1.07E-03 <0.01

VCWPD 7 -7.69E-04 0.03

VCWPD 8 -9.97E-04 <0.01

VCWPD 9 -8.32E-04 <0.01

VCWPD 10 -6.28E-04 <0.01

Table 4.4.3e. Slopes and p-values for all individual wells’ rank regression analyses between
depth-to-groundwater and NDMI in summer months. 17 out of 20 relationships were found to be
statistically significant. Thus, for all wells except VCWPD 3, 5, and 7, shallower depths to
groundwater were associated with higher NDMI values in summer months.
Well ID Rank Regression Coefficient p-value

Taylor 1 -1.63E-03 0.01

Taylor 2 -1.12E-03 <0.01

HRP 1 -8.31E-04 <0.01

HRP 2 -2.08E-03 <0.01



HRP 3 -8.86E-04 <0.01

HRP 4 -3.64E-04 0.02

HRP 5 -1.41E-03 <0.01

HRP 6 -7.02E-04 <0.01

HRP 7 -7.82E-04 <0.01

HRP 8 -7.47E-04 <0.01

HRP 9 -5.44E-04 <0.01

VCWPD 1 -9.66E-04 <0.01

VCWPD 3 -7.19E-04 0.08

VCWPD 4 -1.13E-03 0.01

VCWPD 5 -1.00E-03 0.13

VCWPD 6 -9.80E-04 <0.01

VCWPD 7 -6.97E-04 0.18

VCWPD 8 -9.55E-04 <0.01

VCWPD 9 -7.42E-04 <0.01

VCWPD 10 -6.55E-04 <0.01

The increased number of significant relationships and the spread seen in the above scatterplots
indicate a stronger correlation between these variables when isolated to summer months. In fact,
median NDVI and mean depth-to-groundwater have a strong negative correlation of -0.71
(Spearman’s rho). NDMI and mean depth-to-groundwater have a strong negative correlation of
-0.78 (Spearman’s rho). Table 4.4.3f displays Spearman’s rank-order correlation values for each
well.

Table 4.4.3f. All individual wells’ Spearman’s rank order correlations between
depth-to-groundwater and remote sensing indicator for summer months only, reported as “rho.”
Mean correlations for NDVI and NDMI are -0.68 and -0.65, respectively. Most wells have
correlations with absolute values greater than or equal to 0.5, indicating a strong correlation
between depth-to-groundwater and NDVI/NDMI for the East Grove shallow groundwater
monitoring wells.
Well ID NDVI rho NDMI rho

Taylor 1 -0.73 -0.47



Taylor 2 -0.80 -0.75

HRP 1 -0.79 -0.86

HRP 2 -0.84 -0.84

HRP 3 -0.77 -0.87

HRP 4 -0.88 -0.90

HRP 5 -0.86 -0.82

HRP 6 -0.61 -0.72

HRP 7 -0.87 -0.88

HRP 8 -0.78 -0.88

HRP 9 -0.56 -0.64

VCWPD 1 -0.60 -0.60

VCWPD 3 0.08 0.03

VCWPD 4 -0.72 -0.70

VCWPD 5 -0.71 -0.50

VCWPD 6 -0.66 -0.53

VCWPD 7 -0.36 -0.01

VCWPD 8 -0.75 -0.66

VCWPD 9 -0.73 -0.66

VCWPD 10 -0.71 -0.72

The negative relationship between depth-to-groundwater and both remote sensing indicators is
much stronger when summer values are isolated. This implies that shallower groundwater is
more strongly correlated with higher values of NDVI and NDMI in summer months when
precipitation is lower.



5. Discussion

5.1 Implications for Surface Water‐Groundwater Interactions

The findings of dominant coarse-grained unconsolidated material throughout this portion of the
Santa Clara River Watershed are consistent with previous understanding of the Fillmore
Subbasin lithology, where few permeable clay layers are found (Stillwater Sciences 2021). With
few connecting clay layers, the groundwater can flow more easily and infiltrate through the
subsurface, as low permeability layers have been known to restrict flow and can disconnect
flows from surface water and groundwater (Rhodes et al. 2017; Brunner et al. 2011). A
permeable subsurface may also allow for the shallow groundwater to be more responsive to
precipitation events, as seen by the water-level rise analyses. Additionally, the dominant
coarse-grained subsurface would have contributed to the system’s upward-oriented vertical
hydraulic gradient, as coarser grain sizes have been found to influence vertical flow direction and
rates (Veras et al. 2016). The upward orientation of the vertical hydraulic gradient indicates the
system's hydraulic potential for groundwater to flow upward, consistent with previous findings
of upward groundwater flow in the Fillmore Subbasin (Stillwater Sciences 2021). The system's
potential for upwelling is crucial, as it gives more confidence in previous assessments of East
Grove being a potential groundwater dependent ecosystem. Through the water-level rise analyses
and calculating the vertical hydraulic gradient, we better understand the interconnected
relationship between groundwater and surface water. Surface water and groundwater are closely
linked, therefore, managing groundwater resources is crucial to avoid potential adverse impacts
to beneficial users and uses of interconnected surface waters such as special-status fish species
and native riparian vegetation. Specifically, management and limits on groundwater extractions
and pumping will be necessary as these activities have been found to impact the connectivity of
surface waters and groundwater and can contribute to a loss of streamflow to aquifers (Jasechko
et al. 2021).

5.2 Implications for Ecosystem Health
We observed peak NDVI and NDMI values during the summer months, which is indicative of
the peak growing season of vegetation in East Grove. Lower values were recorded during the
winter months, which is indicative of reduced vegetative activity. These seasonal fluctuations are
essential for understanding the phenological cycles of plant communities and their response to
changes in shallow groundwater availability. Median vegetative greenness and plant water
content increased in East Grove across all seasons over the period of 2016-2023, as estimated by
remote sensing indicators (NDVI and NDMI, respectively).



At the same time, groundwater levels shallowed in East Grove’s subsurface. In exploring this
data, we found that shallower depths to groundwater over this period are associated with higher
NDVI and NDMI values, indicating that phreatophytes in East Grove may benefit from increased
accessibility to shallow subsurface water. However, the observed improvement in vegetation
health indicators could be attributed to climatic shifts, such as the end of California’s most severe
drought and the appearance of atmospheric rivers in 2019, 2021, and 2023 (CIRA 2024). In our
analysis of the relationship between water-level rise and precipitation, we also found an
association between groundwater levels in East Grove’s shallow subsurface and these climate
events. Therefore, with these results alone, we cannot confirm if the shallowing of groundwater
below East Grove directly benefits the riparian ecosystem. Precipitation may be a confounding
variable between the availability of shallow subsurface flows and plant greenness and water
content. However, this region is known for having wet winters and dry summers (Kibler et al.
2021). To parse out the effect of precipitation on our results, we incorporated season as a variable
in our analysis.

We found that there was substantial seasonality in the relationship between depth-to-groundwater
and our proxies for ecosystem health. Specifically, data points in the summer months (June, July,
and August) had a much stronger negative correlation between depth-to-groundwater and plant
greenness and between depth-to-groundwater and plant water content. Therefore, ecosystem
health in the summer may depend more on shallow groundwater availability than at other times
of the year. The Fillmore Subbasin is in Ventura County, a region that receives less than 0.1
inches of rainfall during summer months (Western Regional Climate Center 2013). Additionally,
surface flows in the Santa Clara River are not constant, and the river is often dry in the summer
months (GSI 2008). Due to the lack of other water sources, East Grove’s phreatophytes
(cottonwood and willow trees) likely rely on subsurface water during the region’s dry summers
(Kibler et al. 2021). Therefore, we are confident that increases in shallow groundwater storage
have a larger impact on plant health in summer months when there are few other water sources.

5.3 Implications for Water Management
Groundwater Sustainability Agencies are mandated under SGMA to address potential
“significant and unreasonable impacts on surface water beneficial uses” that result from
groundwater use in the basin (Sustainable Groundwater Management Act 2014). Groundwater
uses that may cause depletion of interconnected surface waters include excessive groundwater
pumping (California Department of Water Resources February 2024) and the water-intensive
invasive Arundo donax (Stephens and Associates 2021), whose taproot system can outcompete
the shallower rooting depths of surrounding native vegetation (Bywater-Reyes et al. 2022; Kibler
et al. 2021). Subsequently, East Grove has been designated as a “beneficial user” of the Fillmore
basin (Stephens and Associates 2021) due to its high ecological value. Moreover, iparian zones
such as East Grove are recognized as critical habitat for federally listed bird species, such as the
southwestern willow flycatcher (50 CFR § 17 (1995); Stillwater Sciences 2021). The gaining



river reach in East Grove is also known to support critical spawning and rearing habitats for the
federally listed southern steelhead trout (Oncorhynchus mykiss) and the threatened Santa Ana
sucker (Catostomus santaanae) (50 CFR § 223 (2006); 50 CFR § 17 (2000); National Marine
Fisheries Service 2016; Stillwater Sciences 2021; Stoecker and Kelley 2005). These aquatic
species are recognized under both the federal and California Endangered Species Acts in which
managing entities are mandated to maintain the hydrologic integrity of areas that support
threatened and endangered species (16 U.S.C. § 1531-1544, Cal. Fish & G. Code § 2050-2118).
The presence of interconnected surface waters, as regulated under SGMA, and the legal
obligations to protect threatened and endangered species under federal and state laws,
underscores the need for local water agencies to actively assess and mitigate impacts to East
Grove through management interventions.

The Fillmore Piru Groundwater Sustainability Agency is responsible for implementing the
requirements of SGMA for the Fillmore and Piru groundwater subbasins within the Santa Clara
River Valley. As part of their regulatory obligations, the agency submitted a Groundwater
Sustainability Plan to the Department of Water Resources in 2021 (Stephens and Associates
2021). This plan identified the presence of interconnected surface waters in East Grove and
addressed historical documentation of streamflow depletion resulting from surface water
diversions and groundwater pumping in the surrounding basin (Stephens and Associates 2021).
However, the agency did not establish a management plan for depletion of interconnected
surface waters as required by the state’s Groundwater Sustainability Plan regulations (Cal. Code
Regs. Tit. 23, § 355.2). It is recommended that the agency conduct further assessments to
understand the impacts of groundwater extraction on interconnected surface waters in identified
gaining reaches of the river, including East Grove. Additionally, the agency should develop a
management plan to mitigate adverse impacts of streamflow depletion on the beneficial users
and uses in the basin.

The regulatory commitments of the Groundwater Sustainability Agency also extend to making
considerations to the impacts of groundwater pumping on groundwater dependent ecosystems
(Cal. Code Regs. Tit. 23, § 354.16). As such, the agency developed a management plan for an
identified groundwater dependent ecosystem located between the Fillmore and Piru subbasin
borders, known as the Cienega Riparian Ecosystem (Stephens and Associates 2021). This
decision was prompted by a large-scale die-off of riparian vegetation following the 2012 to 2019
California drought (Stephens and Associates 2021; Kibler et al. 2021). While a management plan
exists for the Cienega Riparian Ecosystem, East Grove lacks such a designation (Stephens and
Associates 2021).

To comprehensively assess impacts of groundwater extractions on East Grove and other likely
groundwater-dependent ecosystems, it is recommended that the Fillmore Piru Groundwater
Sustainability Agency monitor depth-to-groundwater level data from a representative shallow



groundwater monitoring network and incorporate this data into their groundwater elevation
sustainable management criteria (Stephens and Associates 2021). According to The Nature
Conservancy’s Groundwater Dependent Ecosystem guidance document (Rohde et al. 2018),
die-back of groundwater dependent vegetation is likely if groundwater levels consistently exceed
30 feet below ground surface. Therefore, new monitoring networks should focus on the 30-foot
subsurface zone and be monitored seasonally to effectively sustain riparian woodlands over time.
Groundwater pumping data is collected semiannually in the subbasin (Stephens and Associates
2021). It is recommended that data collection be conducted on a seasonal basis to better assess
how groundwater pumping at deeper depths may influence shallow aquifer conditions within the
Fillmore Subbasin and consequently impact the health of groundwater-dependent ecosystems
(Stephens and Associates 2021).

5.4 Limitations

5.4.1 Lithology
63 wells were obtained for analysis on lithology; however, only two wells (including the nested
wells) were located within East Grove, due to limited availability or quality. It is important to
note that well-driller descriptions may also vary in detail and accuracy, which could impact
categorization in the simplified lithologic categories and cross-sections. Lithological
cross-sections are constructed from a limited number of observations and at varying depths; we
are limited by the availability of high-quality drilling logs in our area of interest. Direct
observation is often impractical, hence what is occurring between logs must be inferred using
stratigraphical principles. A combination of correlation strategies would be ideal. However,
using time-stratigraphic or biostratigraphic correlation would not be feasible at such shallow
depths. In general, the smaller the distance between any two logs, the stronger the inferred
correlation. Sometimes the distance between logs in cross-sections is hundreds of meters. Just
how widespread layers are in these regions is less clear.

5.4.2 Vertical Hydraulic Gradient
The nested monitoring well utilized for our vertical hydraulic gradient analysis had only nine
water level measurements, recorded during the exceptionally wet year of 2023. Ongoing
evaluations of depth-to-groundwater levels should be considered at this site to obtain a more
comprehensive understanding of the magnitude and direction of groundwater flow at East Grove.

Another constraint is the absence of additional depth-to-groundwater data from wells screened at
various depths. To address this limitation, it is advisable to install colocated wells with different
shallow and deep total well depths within East Grove and other recognized
groundwater-dependent ecosystems along the Santa Clara River, such as the Fillmore Ciénega



riparian zone (Kibler et al. 2021). This implementation will help validate the findings regarding
the upward-oriented vertical hydraulic gradient presented in this study, as well as provide
additional insight into the magnitude and consistency of groundwater upwelling conditions.

5.4.3 Groundwater Fluctuations
This study lacked consistent depth-to-groundwater measurements—whether in the East Grove
shallow groundwater monitoring wells or the Fillmore Subbasin wells accessed via the SGMA
Data Viewer. Thus, the analyses lacked continuous data, meaning there is the possibility of error
in the groundwater fluctuations observed. Even so, the length of the study period and number of
measurements provide confidence in the conclusions made by our analyses.

During the most recent drought, many East Grove shallow groundwater monitoring wells were
observed to have “no water” on some measurement dates. This meant that the
depth-to-groundwater was below the total well depth and could not be recorded. Thus, our
analyses necessarily ignored those data points, which may have led to minor survivor bias in our
results.

The wells accessed on the SGMA Data Viewer—outside of East Grove—were primarily
production wells for irrigation or domestic use. Thus, pumping in these wells may have
influenced the measured groundwater levels. There were no records on well production or
draw-down caused by pumping. Furthermore, errors may have resulted from the tools different
parties used for groundwater level measurements: manual e-tape, electric sounders, or pressure
transducers. Despite possible sources of error, observed fluctuations in depth-to-groundwater
were consistent across the deeper wells, supporting our assumptions.

The precipitation estimates utilized in this study were derived from PRISM, meaning they are
modeled approximations rather than direct measurements of rainfall in or around East Grove
(Daly et al. 2008). Additionally, the ratios of water-level rise to precipitation overlook the impact
of various surface processes on groundwater levels and storage, such as river flows or irrigation
runoff. This limitation arises from the water-table fluctuation method, which we used because we
lacked reliable data on surface flow. Notably, the shallow groundwater monitoring wells are
situated outside of the riverbed, suggesting that the river's perennial surface flows are unlikely to
directly influence observed groundwater fluctuations. The water-table fluctuation method relies
on several key assumptions:

1. The changes in depth-to-groundwater observed in the shallow groundwater time-series
graphs are “natural water-table fluctuations caused by groundwater recharge and
discharge (USGS 2017).”

2. The specific yield of each shallow groundwater monitoring well is “known and constant
(USGS 2017).” (We lacked consistent information on soil types and specific yield, and



thus omitted specific yield from our calculations, necessarily resulting in ratios of
water-level rise to precipitation rather than recharge ratios.)

3. Water-level rise (delta-H) can only be estimated when recharge in tj is greater than
water-level decline (USGS 2017).

These critical assumptions mean that water-table fluctuation analyses are highly approximated.
However, there is a significant association between precipitation and water-level rise in this
system. Therefore, precipitation has an influence on water-level changes in East Grove and the
Fillmore Subbasin.

5.4.4 Remote Sensing
NDVI and NDMI are often used as indicators of vegetation health, but they are not direct
measures of plant productivity or plant water content. They are calculated using reflectance
bands observed by a satellite, and do not account for confounding factors that would be noted in
empirical measurements of plant transpiration or photosynthesis. Thus, any conclusions made
using these values are highly approximated and are not substitutes for empirical data on
ecosystem and plant health (Redowan & Kanan 2012). The NDVI and NDMI estimates used in
all analyses were monthly median values, whether calculated for all of East Grove or within radii
around the East Grove shallow groundwater monitoring wells. Monthly medians do not capture
all variation in the data, and are not continuous measurements of either remote sensing indicator.
Some variation is lost in using these estimates.

Additionally, relationships between groundwater depth and remote sensing indicators are
approximated using monthly median NDVI and NDMI values of a certain radius, and mean
depth-to-groundwater measurements of a given month. Thus, the variables are not matched by
exact date, so the analyses by month are approximated and have room for error. Furthermore,
NDVI values may not accurately reflect the health of the vegetation in East Grove, since it
measures the amount of chlorophyll in vegetation and the overall density of green leaves. NDVI
also does not differentiate between vegetation cover types, which may have varying seasonal
phenological responses. Different vegetation types also have varying responses to moisture
stress, and NDMI does not accurately capture these differences. Thus, land classification is
required for a more accurate analysis of vegetation health.

6. Conclusion
This study aims to assess how changes in groundwater flow and storage within the Santa Clara
River’s Fillmore Subbasin may impact ecosystem health in East Grove—a “likely
groundwater-dependent ecosystem” (Stillwater Sciences 2021). To answer this question, we
undertook four distinct analyses and many technical methods to acquire insight into the complex
relationship between the ecosystem on the surface and the layers of soil, rock, and water beneath.
We found that the region’s geohydrology may encourage the upward movement of groundwater



into the shallow subsurface. Results validated the hypothesis that East Grove is a groundwater
dependent ecosystem, where rising groundwater is present in riparian zones (Eamus et al. 2016).
Assuming that the riparian vegetation in East Grove is dependent on shallow subsurface flows,
we then needed to assess how changing groundwater levels in the aquifer may impact ecosystem
health. Using monitoring well measurements and remote sensing, we found a positive association
between shallow groundwater levels and NDVI/NDMI. This relationship was especially strong
in the region’s dry summers, when phreatophytes may rely more on subsurface water for
transpiration.

The Sustainable Groundwater Management Act requires Groundwater Sustainability Plans to
“consider impacts to groundwater dependent ecosystems,” but does not provide guidelines for
this requirement (Sustainable Groundwater Management Act 2014). Stakeholders and agencies
within the Santa Clara River Watershed are concerned with protecting East Grove as a system
with “high ecological value” (Rohde et al. 2018; Stillwater Sciences 2021). Our results may
provide a potential baseline evaluation of East Grove’s condition that can be used to assess the
impacts of future drought or groundwater extraction. Furthermore, stakeholders in the area can
implement our methodological framework to identify and evaluate other groundwater dependent
ecosystems in the watershed. To strengthen these methods, future efforts should prioritize
integrating data on surface water flows—from conservation releases, natural streamflow, and
irrigation runoff—and verify our findings with on-the-ground assessments of ecosystem health.
Furthermore, managers should incorporate assessments on the direct impact of groundwater
pumping on East Grove. The addition of these data and analyses would help the Fillmore and
Piru Groundwater Sustainability Agency to determine minimum groundwater-level thresholds
for the basin—a requirement for completing the Fillmore Subbasin Groundwater Sustainability
Plan—while also considering the success and survival of the valuable East Grove ecosystem.
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