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Abstract
This project examines how supply side oil and gas regulations impact greenhouse gas

emissions, employment, and the health of communities in California living near oil wells. The
project is especially focused on the implications of Senate Bill 1137 ( SB1137), which would
prohibit the construction of new oil and gas wells within 3,200 feet of schools, hospitals, and
other sensitive receptors. This policy aims to mitigate the adverse effects of oil well pollution,
which disproportionately harms disadvantaged communities throughout the state. The California
public will vote on whether or not to implement SB1137 in a referendum vote in November 2024.
Through the adaptation and extension of an existing workflow, the project statistically evaluates
the environmental, health and labor effects of the 3,200 foot setback policy specified by SB
1137. Machine learning methods are incorporated to enhance the predictive accuracy of oil well
operations and outcomes through 2045. An interactive dashboard is developed to present the
findings in an accessible way to policymakers, advocates, and the public that will be voting on
SB1137. Overall, this project describes the potential of supply side oil and gas regulations to
reduce harmful emissions and health risks at the expense of fewer employment opportunities,
equipping policymakers and the public with data-driven insights to support sustainable
environmental practices.
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1. Executive Summary
About 2.1 million Californians, predominantly from low-income and underrepresented

communities, live within at least one mile of at least one active drilling well (Czolowski et al.
2017). Residents living near oil well activity are exposed to higher levels of air pollutants linked
to asthma, cancer, cardiovascular diseases, preterm birth, and other long-term health effects
(Zhang 2021). Supply side oil regulations, such as setback policies – in which oil and gas
production is prohibited and or restricted, incorporating a given distance – have proven to be an
effective way to reduce oil production and improve health outcomes of communities near
producing wells (Lewis et al. 2018). One such policy is Senate Bill 1137 (SB 1137), passed in
2022 to prohibit new oil and gas wells within 3,200 feet of sensitive receptors, such as schools,
hospitals, and residential communities (SB1137, 2022). Existing wells within this range are also
subject to strict regulation under the bill, and future regulations can expand the impact of this
policy to apply to existing wells (SB1137, 2022). SB 1137 would require existing facilities within
a health protection zone, the area within 3,200 feet of sensitive receptors, to develop leak
detection systems for harmful chemicals, include detailed spill response plans, and compliance
with air district requirements . Moreover, existing facilities would adhere to California’s Air
Resource Board and Water Resource performance standards for their emissions detection
system (SB1137, 2022).

Living near active and idle wells can increase the risk of harmful exposure to particulate
matter concentration. Unsafe levels of PM 2.5 have been correlated with respiratory diseases
and hospitalizations, placing the health of predominantly disadvantaged communities at
elevated risk (Stanford University 2021). The setback mandate would reduce Particulate Matter
PM2.5 exposure for communities in or near active oil drilling areas. An existing model
developed by emLab simulates the emissions, health, and labor outcomes with respect to
setback distances of 1000, 2500, and 5280 feet, but does not include results for the setback
distance of 3200 feet. To gauge the impact of SB 1137, the existing model has been modified by
adding an additional setback scenario to reflect and predict the impact of the Bill. This is all the
more salient given a referendum on the November 2024 ballot to repeal SB 1137.

The project has three main objectives: (1) rerun the existing model while adding an
additional scenario in order to calculate emission, employment, and health outcomes under a
3,200-foot setback scenario; (2) predict the number of new and idle wells in each oil field
through 2045 by updating the entry and exit models from a Poisson specification to a machine
learning approach using a Random Forest specification; and (3) produce a publicly-accessible
online dashboard to make impacts and findings available to the public to inform Californians on
the implications of SB 1137. This project seeks to bridge the gap between the previous work
done by the clients and the need for accessible, public-facing material to inform Californians on
the importance of SB 1137 in light of the upcoming referendum. While the Bill includes both oil
and gas wells, this project focuses strictly on oil production.

The development of the public-facing dashboard is a key component of this project, as it
will provide an interactive platform for users to digest the effects of the 3,200 foot setback at
both the state and county levels through summary statistics, time series plots, and an interactive
well map. The dashboard contains visualizations of the impacts of the 3,200 foot setback
imposed on new wells from the forecasted period of 2020 to 2045 through plots that show
production, worker compensation, and avoided mortality costs associated with an increase in
health outcomes under a 3,200 foot setback scenario and a business-as-usual (BAU) scenario.
These findings provide insights into potential implications of the Bill, with additional analysis
done to understand the potential implications of the 3,200 foot setback on disadvantaged
communities in California. The dashboard can increase awareness and understanding of the
impact of the setback distance associated with SB 1137, which can help voters gain familiarity
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with the Bill’s implications. With a crucial referendum vote on this matter scheduled for
November, which was pushed to a referendum due to lobbying efforts by the oil industry
involving a $20 million campaign to gather signatures to push the Bill to a veto referendum, the
findings of this project have the potential to influence public opinion and the outcome of this vote
to uphold the Bill (CIPA, 2023). This project stands at the intersection of environmental science,
public health, and data science, offering a unique opportunity to influence policy decisions and
public opinion on one of the most pressing issues of our time.

2. Problem Statement
Under minimal change in supply-side policy adjustment, the effects of the oil industry will

further harm Californians, especially underrepresented communities, with the continuation of oil
extraction. Senate Bill 1137 is an important legislation to reduce emissions and pollution from oil
production and protect the health of people living near active oil fields. As the setback distance
increases, the reduction in production, and the subsequent health and environmental benefits,
become more pronounced. Deshmukh et. al finds that in a no-supply-side policy business as
usual scenario, greenhouse gas emissions decline by 53%, whereas a setback policy of one
mile achieves a forecasted 75% reduction by 2045 (Deshmukh et al., 2023). A larger setback
distance prevents more wells from being drilled near sensitive areas, thus limiting the areas
where oil might be extracted. The reduction in oil production due to setbacks directly translates
to a decrease in emissions and subsequently improved health outcomes due to lower PM2.5
exposure.

3. Specific Objectives
The workflow developed by the clients simulates the emissions, health, and labor

implications of setback distances at 1,000 feet, 2,500 feet, and 5,280 feet. In order to
understand the implications of SB 1137, a new scenario has been added to the workflow
representing the 3,200 foot setback distance. Research on the implications of SB 1137 lacks
public-facing material that can inform Californians on the importance of this vote. The goals of
this project are as follows:

1. Updating the existing workflow to calculate the impacts on emissions, employment, and
health of a 3,200-foot setback from 2020 through 2045.

2. Predict the number of new and idle wells in each field from 2020 through 2045 by
updating the entry and exit models from a Poisson specification to a machine learning
approach using a Random Forest specification

3. Produce a publicly accessible interactive online dashboard to display findings and
provide voters with the opportunity to make an informed decision about the referendum
on SB 1137.

4. Solution Design and Results
4.1: Overall strategy
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The project is broken down into three phases: updating the workflow to incorporate the
3,200 foot setback (Phase 1), developing a predictive model using machine learning techniques
to have more accurate projections of well entry and exit (Phase 2), and creating an interactive
web dashboard to display the associated implications of SB 1137 to the general public (Phase
3).

4.2: Data and Metadata
The workflow incorporates many types of data. The Github repository contains the

scripts used to execute the end-to-end workflow. The extraction model incorporates extraction
and scenario factors, sourced from various categories such as well-field location and production
data. It encompasses input, intermediate, and output data across both public and private
subfolders.

Extraction datasets cover various aspects of oil and gas well operations in California,
including geographical information, production, injection data, and cost-related metrics. The
data utilizes structured formats like CSV files and Excel spreadsheets, offering comprehensive
information on well locations, types, and administrative boundaries of oil fields. Historical data
from 1977 to 2019 provides a longitudinal view of well-specific oil and gas production and
injection activities. Data from Rystad details the financial aspects of the industry, including
capital expenditures (CapEx), operational expenditures (OpEx), and oil price historical values
and projections. Production and injection volumes are measured in barrels of oil (bbl) for liquid
hydrocarbons and thousand of cubic feet (Mcf) for natural gas, with water injection volumes
measured in gallons. Economic figures are presented in US dollars for CapEx, OpEx, and
government amounts. Spatial data utilize latitude and longitude coordinates, with areas
measured in square miles. Oil prices are documented in dollars per barrel for both West Texas
intermediate (WTI) and Brent crude, allowing for an evaluation of operational efficiencies,
financial planning, and environmental impacts in the industry. Data used in the health analysis
include CalEnviroScreen 3.0 data, predicted annual GDP (Gross Domestic Product) and
mortality rates by county. The CalEnviroScreen 3.0 variables are thoroughly explained in the
metadata file. Variables of interest include a binary variable indicating whether a given census
tract is disadvantaged or not, its associated pollution burden score, and particulate matter score
which measures annual particulate matter concentrations in the census tract. Moreover, this
subsection of data will also contain datasets with information on population demographics,
health indicators, income levels, and disadvantaged populations. Population projections and
predictions are based on county-level, and grouped by age. The time of reference for this
population prediction spans out to 2057. The age groups dataset assigns a unique variable
code to each age group.The data type is predominantly CSV files. Data used in the labor
analysis are at the county level and are proprietary. However, data can be accessed through a
license with IMPLAN. To construct its underlying data, IMPLAN draws on over 90 sources of
information including the Quarterly Census of Employment and Wages (QCEW) from the
Bureau of Labor Statistics, County Business Patterns from the Census Bureau, and the
Regional Economic Accounts (REA) from the Bureau of Economic Analysis. Its output from the
multiplier relies on inputs based on industry type, and this multiplier can help calculate the
full-time employment calculation.

The README file of the project repository has been expanded from the original version
to document the datasets that have been updated by the addition of the new setback scenario
to the workflow.

4.3: Updating Workflow with New Setback Scenario
The first phase of the project, building off of the work done by emLab, involves rerunning

the end-to-end workflow by restructuring and reading in data, adding in a 3,200 foot setback
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distance layer to go along with the 1,000, 2500, and 5,280 foot buffer distances used in the
original study, and confirming the validity of the results for the new setback distance. Since the
data paths were defined as the paths on local machines for the majority of the scripts, a key part
of building this reproducible workflow is storing and reading in data in a way that makes it easy
for future users to run each of the scripts. This has been achieved by storing the data and
updating their working directory or path to the repository where the data and scripts will be
contained. For internal future work, the data folder can be downloaded and moved into the
project repository for seamless integration.

The next step of Phase 1 involves adding the new setback distance of 3,200 feet into the
workflow. The setback distances are constructed by creating buffers around the sensitive
receptors with the R sf package. Those outputs are used in the workflow and to produce energy,
labor, and health outputs. So far, the 3,200 foot setback outcomes in the figures recreated from
the Nature Energy paper show appropriate results, with production, health, and labor
implications falling between 2,500 feet and 5,280 feet scenarios (Deshmukh et al., 2023).
Furthermore, the testing section looks into the amount of area covered by the 3,200 foot
setback in oil well fields, with the amount of coverage lining up with expectations.

Since most of the code in the original project was completed by 2021, there have been
several package updates since the time the workflow was originally created that required
debugging efforts to connect scripts together to recreate the previous results and incorporate
the new setback scenario. The data.table package is used extensively in the code since the
library is effective at handling large data tables like the ones used in the project. There are five
main updates to the code:

1. Calling dplyr for select() and filter() operations: In several scripts, such as
health_data.R, clean_doc_prod.R, zero_prod.R, income_data.R,
create_entry_econ_variables.R, and load_input_info.R, the dplyr package was called to
perform select() and filter() operations. This update streamlines data manipulation and
improves code readability, and was necessary to avoid using erroneous functions.

2. Converting data frames to data.table objects: In multiple scripts, including
opgee-carb-results.R, predict_existing_production.R, and
fun_extraction_model_targets.R, data frames were converted to data.table objects using
setDT() or as.data.table() functions. This conversion was necessary to perform specific
data manipulation tasks efficiently and fix errors from invalid data.table operations
attempted on data frame objects, especially after melting or merging operations.

3. Handling missing data with na.rm = TRUE: In the ica_multiplier_process.R script and
potentially others, the na.rm = TRUE argument was added to summarize() and sum()
functions to remove missing values. This ensures that missing data is handled
consistently across the code, preventing incorrect results due to NA values.

4. Updating column names and data types: Across several scripts, such as
ica_multiplier_process.R, rystad_processing.R, and load_input_info.R, column names
were updated to reflect the actual names in the input files. Additionally, data types were
modified when reading in data files to ensure compatibility and consistency throughout
the analysis.

5. Replacing deprecated functions: In multiple instances, deprecated functions were
replaced with their updated counterparts. For example, in the social_cost_carbon.R
script, the melt() function from the data.table package was replaced due to its
deprecation. Similarly, in the load_input_info.R script, the read.xslx function was
replaced with readxl or read_excel to read in data files.

Many adjustments and testing was done to the code in order for the end-to-end workflow
to run effectively and recreate the results from the original project. Table 5, located in the
Appendix, contains information on all of the updates made to the scripts to allow the workflow to
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run effectively. Note that while these updates make it unlikely that new package-related issues
will arise, it will be important to consider updates to the data.table and sf packages in particular
as they are two of the main libraries utilized in the workflow. To avoid further package
dependency issues for future users, the environment in which the code for this project has been
updated is stored and can be easily reactivated.

4.4: Recreating Figures and DAC Investigation
Visuals in the original study have been recreated to ensure accuracy and validity of the

results generated from incorporating the 3,200 foot setback distance. Since the project entails
many input, processed (or intermediate) and output data, plots utilizing data from each of the
three stages is presented. The plots created in this document rely on the Poisson models for
well entry and exit, rather than the newly developed Random Forest models. This is expanded
upon in Section 4.5.

Figure 1: Mapping the geographic distribution of active oil fields across census tracts in Central and
Southern California. This map visualizes the disproportionate burden borne by disadvantaged communities
(DACs) from oil production activities in 2019. Oil fields are color-coded based on their production levels, with
darker colors indicating higher production volumes (in millions of barrels). The gray areas represent census
tracts classified as disadvantaged. This figure shows the concentration of oil production within or near these
communities, emphasizing the need for targeted policies to address environmental justice issues and
mitigate adverse health and environmental outcomes in these areas. The inset map provides a broader
context of the area of interest within California.
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The figure above confirms that the oil production data has been successfully loaded into
the Bren Taylor server which the coding was completed on, which is crucial as this dataset is the
primary driver for the entire workflow. Given the size of the datasets, some comprising millions
of rows, this visual verification ensures that no issues arose during the data upload process onto
the Taylor server. Oil production data from the Department of Conservation (DOC) involved
uploading numerous extensive datasets into the server, making it essential to validate that the
data has been read in accurately and is ready for processing. The visual match with the original
study provides assurance that the data ingestion phase has been completed correctly, allowing
the analysis to proceed.

Figure 2: Visualizing forecasts of oil production from 2020 to 2045 under low, reference, and high oil
price scenarios using Poisson well entry and exit models. Each line represents a different combination
of scenarios, including innovation, carbon price, carbon capture, production quota, and excise tax. While
these scenarios are not used directly in this capstone project, the values for excise and carbon tax are used
in plots later on to communicate the benefits of the setbacks. The lines labeled for each setback scenario
demonstrate that increasing the distance of the setback results in lower production levels for each of the oil
price scenarios.

The image above confirms the validity of the new results as the values align with what
the client generated in the original study. Also, the production values for the non-3,200 foot
setbacks fall in line with what is expected based on its location in the setback distribution. The
visual shows the impact that the setback has on future production: a larger setback decreases
oil production over time.
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To assess the validity of the results of the recreated workflow, figures from the Nature
Energy study done by the clients are recreated to check the accuracy of the existing setback
scenarios as well as the new 3,200 foot distance.

Figure 3: Projected trajectories of California’s oil production and related greenhouse gas emissions
under various policy scenarios. This figure compares the annual oil production and GHG emissions in
California under a business-as-usual (BAU) scenario and three different policy approaches: setbacks for
new wells (3,200 foot distance), an excise tax on oil production, and a carbon tax on emissions from oil
extraction. Panel (a) shows the annual oil production, in millions of barrels) from 2020 to 2045, visualizing
the effects of each policy compared to a BAU scenario. The solid green line represents the amount of oil
production under the setback imposed on new wells. The dotted lines represent the associated production
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under carbon and excise taxes to achieve a similar 65% GHG reduction as the 2,500 foot setback. These
lines show that a setback policy that achieves the same GHG reduction produces the least oil out of the
three policies. Panel (b) displays the corresponding annual greenhouse gas emissions, in million metric tons
of CO2 equivalent. Panel (c) presents the cumulative greenhouse gas emissions reduction targets for 2045,
indicating the effectiveness of each policy in achieving various reduction percentages relative to 2019 levels.
The dotted lines in panels (a) and (b) represent the projected oil production levels under policy scenarios
where the greenhouse gas emission reductions achieved are equivalent to those expected from
implementing a 2,500-foot setback regulation, but instead achieved through the use of carbon taxes or
excise taxes on oil production.The orange and red dots in panel (c) correspond to the excise tax and carbon
tax associated with the equivalent GHG emission reduction of 1,000 and 2,500 foot setbacks. The two points
furthest right represent the DAC share of benefits under a 90% GHG reduction scenario under carbon and
excise taxes.

The curves and points in the figure above align precisely with the results from the Nature
Energy study, confirming the accuracy of the generated outputs. Notably, the new 3,200-foot
setback scenario, illustrated by the second furthest grey dot from the right in panel (c),
demonstrates a significant reduction in cumulative greenhouse gas emissions. This addition
enriches the analysis by offering insights into the impact of increased setback distances
compared to the existing scenarios, emphasizing its effectiveness in achieving substantial GHG
reductions by 2045.
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Figure 4: Evaluating the effectiveness of California’s oil-production policies in terms of health,
economic, and environmental outcomes. This figure compares the projected impacts of three different
policy approaches – setbacks for new wells (with the 3,200 foot setback distance included), an excise tax on
oil production, and a carbon tax on emissions from oil extraction – against a business-as-usual (BAU)
scenario. The Poisson model for well entry and exit is used in this plot, as the new well estimates from 2020
to 2023 are more closely aligned with this model than the random forest estimates. The upper row (a-c)
showcase the total benefits accrued between 2020 and 2045, including the prevention of premature death
(a), the reduction in worker compensation (b), and the avoidance of climate-related damages measured
using the social cost of carbon (c). The bottom row (d-f) shows the same benefits normalized by the total
reduction in GHG emissions achieved from 2020 to 2045. The orange and red dots correspond to the excise
tax and carbon tax associated with the equivalent GHG emission reduction of the 1,000 and 2,500 foot
setback distances. The two points furthest right represent the DAC share of benefits under a 90% GHG
reduction scenario under carbon and excise taxes. This comparison shows that the setback policy has a
greater impact on avoided mortality and avoided climate damage than the tax-based policies. All monetary
values are reported as net present values in 2019 US dollars, calculated using a discount rate of 3%.

The figure above is a key figure in regards to confirming the validity of the recreated
results, and understanding the impact of the 3,200 foot setback scenario. The figures that have
been recreated from the Nature Energy paper implement the setback starting in 2020 as this
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was how the setback was implemented in the original project done by the clients. This figure
above is created in the figure3.R script. The 3,200 foot setback points reflect the total impacts of
the policy on new wells from 2020 to 2045. The npv_dt dataframe from this script calculates the
total values for each of the categories in the plot: health, labor, and climate. From 2020 to 2045,
the model estimates that a 3,200 foot setback imposed on new wells would avoid
$662,142,900 in mortality costs, avoid $966,669,540 in climate damage, and create
$2,741,446,700 in forgone wages in total across California. Note that all of these figures are
measured in 2019 USD net present value. These values represent the points of 3,200 foot
setback on new wells in the plots in the top row. The bottom row represents the net present
value of each category per avoided megaton of carbon dioxide emitted, with the net present
value being in 2019 value terms. For each megaton of CO2 emissions avoided, the 3,200 foot
setback on new wells is estimated to provide $28,278,249 in avoided mortality costs and
$41,284,858 in avoided climate damage, while resulting in $117,079,394 in forgone wages.
These outputs are associated with a 67.15% reduction in greenhouse gas emissions in 2045
compared to 2019 levels.

The health benefits (subplot (a) in Figure 4) exhibit a significant increase with higher
GHG reduction targets, particularly for the setback policy, which outperforms the carbon and
excise taxes of equivalent GHG levels in regards to health benefits. The same level of GHG
reduction achieved through excise and carbon taxes does not translate into equally substantial
health benefits in terms of avoided mortality as benefits that arise from the setback policies. This
discrepancy can be attributed to the distinct ways these policies target emission sources and
their broader public health impacts. While excise and carbon taxes focus on reducing overall
emissions, setback policies specifically limit the number of wells near residential areas.
Consequently, this leads to reduced well production and lower PM2.5 levels in these critical
regions, thereby yielding greater health benefit since production is lowered in places with her
population density.
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Figure 5: Comparing the distribution of health benefits across disadvantaged communities under
different oil production policies. The scatter plot shows the relationship between the stringency of
greenhouse gas reduction targets for 2045 and the share of avoided mortality benefits taken on by
disadvantaged communities under three policy scenarios: carbon tax, excise tax, and a 3,200 foot setback
on new wells. The setback policy consistently results in higher DAC share of avoided mortality compared to
the other two policies. For example, the 3,200 foot setback scenario, represented by the third gray dot from
the left, demonstrates a notably higher DAC share of avoided mortality compared to the tax policies at a
similar emissions reduction level. As the setback distance increases and the GHG reduction target becomes
more strict, the DAC share of avoided mortality under the setback policy gradually decreases, converging
towards the shares observed under the tax policies. The orange and red dots correspond to the excise tax
and carbon tax associated with the equivalent GHG emission reduction of 1,00 and 2,500 foot setback
distances, showing that the disadvantaged community share of the benefits under equivalent tax scenarios
are not as significant as under the setback scenarios. The two points furthest right represent the DAC share
of benefits under a 90% GHG reduction scenario under carbon and excise taxes. This plot shows the
potential for setback policies to disproportionately benefit DACs in regards to health outcomes, especially at
moderate setback distances and emissions reduction targets.

The figure above illustrates the role of setback policies in providing health benefits to
disadvantaged communities (DACs). It shows that the 3,200-foot setback on new wells
consistently results in higher DAC shares of avoided mortality compared to carbon and excise
tax policies that achieve equivalent GHG reductions. This result suggests that physical
restrictions on oil well proximities can directly improve health outcomes for vulnerable
populations by reducing exposure to harmful pollutants. While the relative advantage of setback
policies diminishes as greenhouse gas reduction targets become more stringent, the plot
highlights the importance of integrating setback policies with broader emissions reduction
strategies to ensure that environmental regulations benefit the most vulnerable communities
effectively. This balanced approach can promote both immediate health improvements and
long-term environmental justice.
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The differences between setback policies and tax policies are important to note in their
approach and impact. Setback policies target specific regions near sensitive areas, forcing
producers to avoid certain areas. This in turn protects communities living near active oil fields.
Setback policies benefit DACs, which are often situated close to oil production sites, more
significantly from reduced exposure to harmful pollutants. In contrast, tax policies, whether
carbon or excise, do not impose geographical constraints. Instead, they allow producers to
decide where to limit production, which may not necessarily reduce the disproportionate impacts
on DACs. This flexibility can result in uneven benefits, as producers might prioritize reductions in
less populated or less vulnerable areas to minimize their tax liabilities. Furthermore, the setback
policy's targeted nature means it can effectively address the localized environmental justice
issues that DACs face. Since a higher proportion of DACs are located near oil wells,
implementing setbacks directly improves health outcomes by reducing pollutant exposure in
these specific communities. Conversely, while tax policies can drive overall emissions
reductions, their indirect approach may fail to address the concentrated health risks experienced
by DACs. Thus, the setback policy is more adept at mitigating the disproportionate impacts
imposed on these vulnerable communities, highlighting the need for combining both spatial and
economic strategies in environmental regulation to achieve comprehensive and equitable health
benefits.
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Figure 6: Disadvantaged community share of lost worker compensation under different policy
scenarios. This plot shows the share of lost worker compensation experienced by disadvantaged
communities (DACs) under different policy scenarios aimed at achieving 2045 greenhouse gas emission
reduction targets. The y-axis represents the share of lost worker compensation for DACs, and the x-axis
indicates the stringency of the 2045 GHG emissions targets. DACs experience a consistently lower share of
lost worker compensation under setback policies compared to excise and carbon taxes. Notably, the third
gray point from the left represents the new 3,200 foot setback distance, where the share of lost worker
compensation for DACs is lower than under other policies. DACs benefit from a lower share of economic
impacts under setback policies.

Figure 7: Understanding the relative change in PM2.5 exposure across oil-producing counties in
California from 2020 to 2045 under a 3,200 foot setback policy. The scatter plot shows that counties with
a higher proportion of disadvantaged communities tend to experience greater reductions in PM2.5 exposure,
suggesting that the setback policy has the potential to provide significant air quality benefits to vulnerable
populations. The bubbles represent the impacted population in each county, or the cumulative population of
all census tracts in the county with oil production. The visualization shows the additional improvements in
PM2.5 reduction under the 3,200 foot setback compared to a no setback scenario. For example, Los
Angeles County, the largest point on the plot, would see an 11% greater reduction in PM2.5 exposure in
2045 under the 3,200 foot setback compared to no setback. Roughly 40% of Los Angeles county is
classified as disadvantaged, and these communities would see significant reduction in PM2.5 exposure with
the implementation of a 3,200 foot setback starting in 2020.

The visualizations in Figures 5, 6, and 7 underscore the potential for setback policies to
address environmental justice concerns by disproportionately benefitting disadvantaged
communities. Figure 5 demonstrates that setback policies consistently result in a higher share of
avoided mortality benefits for DACs compared to carbon and excise taxes with equivalent GHG
reduction outcomes. This suggests that the targeted spatial restrictions imposed by setbacks
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are more effective at reducing health risks in vulnerable communities living near active drilling
sites. Further, Figure 6 shows that DACs also experience a lower share of lost worker
compensation under setback policies compared to tax-based approaches. This implies that the
economic impacts of setbacks are less concentrated in disadvantaged communities, potentially
mitigating concerns about job losses in already vulnerable communities. Figure 7 further
reinforces the environmental justice benefits of setbacks by showing that counties with a higher
proportion of DACs tend to experience greater reductions in PM2.5 exposure under the 3,200
foot setback scenario.

In summary, these results highlight the importance of considering the distributional
impacts of environmental policies and the potential for setbacks to mitigate the disproportionate
health burdens faced by disadvantaged populations, while also reducing economic disruption in
these communities. By prioritizing the well-being of communities most affected by oil production,
setback policies such as SB 1137 can contribute to a more equitable transition towards
sustainable energy practices

Figure 8: Visualizing the reduction in oil production under a 3,200 foot setback policy. The figure
illustrates the projected impact of a 3,200 foot setback policy on California’s oil production compared to a
business-as-usual (BAU) scenario. The setback line demonstrates the policy’s increasing effectiveness over
time due to its cumulative effect on reducing the number of new wells drilled each year. As fewer new wells
are added annually under the setback scenario, the overall oil production decreases more significantly with
each passing year compared to the BAU scenario. This compounding effect highlights the long-term benefits
of implementing a setback policy, as the reduction in new well drilling will lead to a decrease in oil production
over the course of the forecasted period of 2020 to 2045. By visualizing these trajectories, policymakers and
stakeholders can better understand the potential of setback policies to reduce oil production.
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Figure 9: Visualizing the economic impact of a 3,200 foot setback policy on total worker
compensation. This figure compares the projected total compensation under a 3,200 foot setback policy
and a business-as-usual (BAU) scenario for the oil industry in California. The setback line shows the policy’s
growing influence on reducing total compensation over time, as the cumulative effect of fewer new wells
drilled each year leads to a decrease in overall industry compensation compared to the BAU scenario. This
visualization shows the long-term economic implications of implementing a setback policy on the oil industry
workforce.

4.5: Machine Learning Implementation
The second phase of the project is to model well entry and exit projections using

machine learning methods. In the original study, well entry and exit were estimated using
Poisson models. Poisson models are a type of generalized linear model that are commonly
used to model count data, where the response variable represents the number of occurrences
of an event within a fixed interval of time or space. The Poisson distribution assumes that the
mean and variance of the count data are equal, and the models relate the mean of the response
variable to a linear combination of predictor variables through a logarithmic link function.
Poisson models are well-suited for modeling rare events, such as the entry or exit of oil wells in
a given time period, and can handle overdispersion in the data. However, Poisson models may
be a weaker choice for modeling well entry and exit projections due to their simplifying
assumptions. Poisson models assume that events occur independently of each other and at a
constant rate over time, which may not hold true for oil well entries and exits. Additionally,
Poisson models do not account for the potential presence of zero-inflation, where there are
more zero counts than expected under the Poisson distribution. These limitations may lead to
biased or inaccurate predictions of well entry and exit. The purpose of the updated models is to
provide more detailed and powerful predictions of the total number of new wells entering and
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exiting oil fields in the future. Brent price, capital expenditures, operational expenditures, and
depletion rate by field are the features used in the Poisson models to estimate the number of
total wells based on the change in entry or exit year over year. Existing literature in energy
economics suggests that oil producers have several options at their disposal, including the
option to delay investment and the option to abandon a producing field. The decision for
producers to extract oil is ultimately decided by the profitability of the opportunity, which is
influenced by factors such as oil price, capital expenditures, and operational expenditures
(Abadie et al. 2017).

Figure 10: Comparing the predictive power of each of the models versus the actual number of well
entries. This figure shows the predictions of total new wells by Random Forest and Poisson models
compared to the actual historical data from 1977 to 2019. The Random Forest model, which was trained
with 500 trees and 4 randomly selected features at each split (mtry = 4), captures larger shifts and trends
than the Poisson model, which is more conservative and does not fluctuate as much as the Random Forest.
The ensemble nature of the Random Forest model allows it to capture complex nonlinear relationships
between the predictor variables and the response, making it a powerful tool for modeling well entries. The
Poisson model provides more conservative estimates, reflecting its tendency to predict fewer new wells
overall, and often underestimated the peaks seen in the true data. This comparison highlights the strengths
and limitations of each modeling approach in capturing the dynamics of well entries over time.

Random Forest regression is a powerful machine learning technique that offers several
advantages over traditional statistical models like Poisson regression in modeling well entry and
exit projections. Tree-based models like Random Forest can capture complex, nonlinear
relationships between input features and the target variable, allowing them to uncover
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interactions in the data that might have been missed by the Poisson model. This is evident in
Figure 10, where the Random Forest predictions capture larger shifts in the number of new
wells from 1991 to 1995. Historical estimations of the number of new wells have proven to be
more accurate than the original Poisson model when testing on historical well entry based on
the Brent price, weighted means of capex and opex, depletion rate, and field code. Well exit
models are trained on the same features, except capital expenditures is removed from the
feature list as the amounts are not forecasted to change much, if at all, from 2020 to 2045. The
doc_field_code, or the oil field code, is added to the Random Forest model to improve its
predictive power. Note that the Brent price has been manually inserted for the training of these
models, as the data given was in real dollar values instead of adjusted present value. This
change to adjusting the historical Brent prices into present dollar terms allows for the model to
not be negatively impacted by misunderstanding the impact of oil price on well entry. The
architecture of the Random Forest model used in this study is intentionally kept simple to avoid
overfitting and maintain flexibility. The purpose is not to create a model that is too sensitive to
the training data, as the forecasted data are only estimates. A more complex model might overfit
to the noise in the training data, leading to poor generalization performance on unseen data. By
using a simpler model with 500 trees and 4 randomly selected features at each split, the
Random Forest model strikes a balance between capturing important patterns in the data and
avoiding overfitting. This approach results in a more flexible model that can adapt to new data
without being overly influenced by the idiosyncrasies of the training set.

It's important to acknowledge the potential limitations of the Random Forest used for
predicting well entry and exit projections. One significant concern is the reliability of the
forecasted feature data, particularly the oil price and operational expenditures, from 2020 to
2045. These variables are highly susceptible to fluctuations caused by various external factors,
such as geopolitical tensions, global macroeconomic conditions, and unforeseen events like
natural disasters or pandemics. These kinds of unexpected changes in the input features can
impact the models' performance and lead to inaccurate projections. Another potential limitation
arises from the discrepancy between the training data and the out-of-bag data. The models are
trained on historical data from 1977 to 2019, while the projections are made for the period from
2020 to 2045. An underlying assumption in the Random Forest model is that the relationships
between the input features and the target variable remain relatively consistent over time.
However, this assumption may not hold true, as the dynamics of the oil industry can evolve in
unexpected or unforeseen ways. To enhance the robustness and reliability of the well entry and
exit projection models, it is important to update the models as new data becomes available.
Regular model validation and recalibration can help identify any deviations from the expected
patterns and allow for timely adjustments.

In the workflow, the Random Forest models are injected into the
fun_extraction_model_targets.R script to update the entry and exit predictions, particularly in the
func_yearly_production function. The code has been updated so that the user now selects
which model to use (either Random Forest or Poisson) in the 00_extraction_steps.R script,
allowing for flexibility in model choice based on the user's preferences or the specific
requirements of the analysis. The predictions from the selected model for each year are then
joined into the model workflow, and the amount of producing wells in each field is multiplied by
the average production per well in the forecasted years to calculate the total production in future
years. This approach is consistent with the existing framework, which forecasts field production
by the average production per well multiplied by the number of active wells in the field.
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Figure 11: New well model comparison for forecasted period. This plot compares the predictive power of
the Poisson and Random Forest models under two policy scenarios: no setback and a 3,200 foot setback on
new wells. The Random Forest model predicts fewer new wells after 2026 compared to the Poisson model,
suggesting that it may be more sensitive to changes in the input features over time. The impact of the 3,200
foot setback is slightly larger on the Random Forest model, as evidenced by the wider gap between the two
scenarios compared to the Poisson model. The overall trends in both models show a decrease in new wells
over time, with the setback scenario resulting in a lower number of new wells compared to the no setback
scenario.

23



Figure 12: Exit well model comparison for forecasted period. This plot compares the predictive power of
the Poisson and Random Forest models under two policy scenarios: no setback and a 3,200 foot setback on
new wells. The Random Forest model predicts more exit wells compared to the Poisson model, suggesting
that it may be more sensitive to changes in the input features over time.
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Figure 13: Total production model comparison for forecasted period. This plot compares the predictive
power of the Poisson and Random Forest models under two policy scenarios: no setback and a 3,200 foot
setback on new wells. The production for the Random Forest model is slightly lower after about 2028
because it predicts fewer new wells starting around this time, and also more well exits over the entire
forecasted period. This suggests that the Random Forest model may be more sensitive to changes in the
input features over time, capturing the combined effect of reduced new well development and increased well
abandonment on total production. The Poisson model, on the other hand, shows a more gradual decline in
production, likely due to its more conservative estimates of new well entries and exits. The impact of the
3,200 foot setback is more pronounced in the Random Forest model, as the gap between the two scenarios
is larger compared to the Poisson model.

The comparison of the Poisson and Random Forest models for forecasting new well
entries, well exits, and total production provides valuable insights into the potential impacts of
the 3,200 foot setback policy on the oil industry. The Random Forest model predicts a larger
impact of the setback policy, suggesting that it may be more sensitive to changes in the input
features. In terms of new well entries, the Random Forest model predicts fewer new wells after
2026 compared to the Poisson model, indicating a more significant decline in well development.
Similarly, the Random Forest model forecasts more well exits throughout the entire period,
which, combined with the reduced new well entries, leads to a slightly lower total production
after 2028. In contrast, the Poisson model provides more conservative estimates and shows a
more gradual decline in new well entries, well exits, and total production. These differences
highlight the importance of considering multiple modeling approaches to assess the potential
impacts of the setback policy, as each model may capture different aspects of the complex
dynamics at play in the oil industry.

The plots created in the other sections of this document rely on the Poisson models for
well entry and exit. Further work on these models can focus on improving the understanding of
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well entry and exit by integrating new data and incorporating government policies on well
licenses into future models. Bayesian modeling presents a promising approach to achieve this
goal. Unlike traditional machine learning methods, Bayesian models allow for the incorporation
of prior knowledge and historical data into the modeling process. By using this information,
Bayesian models can update thor predictions based on observed data, which results in more
accurate estimates. In the context of well entry and exit, historical data on well licenses,
production levels, and regulatory changes can be used to inform the priors of the Bayesian
models. As new data becomes available, the models can adapt and refine their predictions,
providing stakeholders with reliable insights for decision making. Bayesian models also offer the
advantage of quantifying uncertainty in the predictions. By generating probability distributions
over the model parameters and outputs, Bayesian models can capture the inherent variability
and uncertainty associated with well entry and exit dynamics.

4.6: Delaying Setback to 2025
Since the data on oil production goes up to 2019, implementing the setback does not

directly relate to understanding the implications of SB 1137 as the effects of the bill will be
realized, if it is passed, starting January 1, 2025. A code chunk is added to load_input_info_fc.R
to introduce setbacks starting for a specified intervention year, which is set to 2025 in this case,
instead of applying the setbacks from the beginning of the simulation period (2020). First, the
update generates a dataframe with all combinations of setback scenarios, field codes, and
years from 2020 to 2045. The data is then separated into pre-intervention and post-intervention
periods. For the pre-intervention period, the “no_setback” scenario is applied, while for the
post-intervention period, the original setback scenarios are used. Finally, the pre-intervention
and post-intervention data are combined to create an updated setback dataframe that reflects
the introduction of setbacks starting from the specified intervention year. This allows for a more
realistic representation of the Senate Bill and its impact on the projections of oil production.
More information on this can be found in Section 7.3.

4.7: Interactive Dashboard
The final phase of the project involves leveraging the results of the first two phases to

create a public-facing dashboard. This dashboard contains information including the locations of
wells, buffer areas around sensitive receptors like schools, hospitals, and disadvantaged
communities impacted by the significance of Senate Bill 1137. Additional contents of the
dashboard will include a brief background on the effects of oil extraction on health, the
difference between active and inactive wells, and the purpose behind the dashboard. There are
four pages in the interactive dashboard named: Oil Well Explorer, About this App, Statewide
Impacts of SB 1137, and Research Methods. Our client requested that information about active
and non-active wells be the first page displaying hard hitting information. Although the
Wells_All.shp contained five different type of well statuses, for the purpose of simplicity the wells
classified as "Plugged","Idle","Canceled","Unknown","PluggedOnly", and "Abeyance" were
grouped to be classified as Non-Active.

The generated a reactive Leaflet map that takes in two inputs: county and well type.
After the user selects both inputs, the map on the right will update, displaying desired results.
Well locations are aggregated when zoomed out, but users have the option to click on the
cluster in order to view the disaggregated distribution. On this map, the dashboard uses
Leaflet’s World Street Map so that users are able to easily identify locations wells can be in in
order to make internal connections as to where these oil wells may reside in relation to the user.
This map also includes a layer in cornflower blue displaying a generated 3,200 foot buffer
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around sensitive areas so that users are able to assess the dangerous proximity that oil wells
are to them, and so that users can conclude that if SB 1137 were to be implemented, no further
oil wells could be drilled anywhere in the cornflower blue area. At the top, the Oil Well Explorer
page hosts a brief description of SB 1137 so that users who may not be familiar with SB 1137
are able to attain an understanding of its implications.The results of the additional 3,200 foot
setback scenario are incorporated in a pop-up message. When the user clicks on a desired
county, a pop-up message ‘County Facts’ appears. It contains the name of the county the user
clicked on, percent reduction in PM 2.5 relative to a business as usual reduction, percentage of
disadvantaged census tracts, as well as population.The county_health_results.csv dataset is
used to calculate the percentage of disadvantaged census tracts in each county, using a column
called dac_share. The average of both percentage of disadvantaged census tracts and
population were calculated using values from 2019 to 2023. To calculate the percentage of PM
2.5 reduction with SB 1137 implemented, the added column to our input data sets implemented
the following formula :

. The reason behind using the relative𝑝𝑒𝑟𝑐𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 =  𝑆𝐵1137
𝑝𝑚2.5

−  𝐵𝐴𝑈
𝑝𝑚2.5

 / 𝐵𝐴𝑈
𝑝𝑚2.5

difference was to ensure the user could better interpret the results.
Content on the About This App page will contain further information about motivation

behind the project and analysis, background information about environmental racism and a brief
history on oil wells in California, and relevant information about SB 1137 so that users can gain
a full understanding of the Bill and its importance, along with being able to visualize its
importance.

Outputs from the updated setback model, including data and visualizations on health,
emission, and labor implications of the Senate Bill, serve to inform people on the costs and
benefits of the implementation of the bill. Senate Bill 1137 proposes a setback that is expected
to provide health benefits, especially for disadvantaged census tracts. These disadvantaged
areas currently experience particulate matter (PM) 2.5 levels that are two times higher
compared to non-disadvantaged tracts. Moreover, it is critical that the findings associated with
the impacts and implementation of SB 1137 are accessible to voting Californians amid voting
season in November. The findings associated with the additional setback scenario will be found
on the Statewide Impacts of SB 1137 page. Here, visualizations comparing projections of
avoided mortality costs, labor impacts, and emissions will be readily available for the public eye.
Along with the visualizations will include a short summary describing the graphs, as well as what
key takeaways the user can form.

A key goal of the dashboard is to emphasize how SB 1137 contributes to reducing
emissions in these disadvantaged communities. Users who have an interest in understanding
the societal implication of this bill will be able to interact with the dashboard to obtain quick,
important information based on the user’s location on how they are likely to be impacted by the
effects of the bill. The dashboard has been and will continue to be designed in a way that allows
for people of all backgrounds to easily digest the impact of the Senate Bill on their community
and state at large. There will be information on the Bill and an interactive map where users can
investigate well locations and visualize the results of the new setback policy. ‘The Statewide
Impacts of SB 1137’ page contains short and concise information on the top, summarizing the
main takeaways from the analysis performed by the freshCAir team. There exists three key
visuals on this page, two include the disadvantaged communities’ share of avoided mortality, as
well as the disadvantaged communities’ share of lost worker compensation associated with the
implementation of SB 1137. The first visual demonstrates that the setback policy brings in better
health benefits than the excise tax and carbon tax. The key takeaway with this visual is that the
setback policy (represented with a gray dot) can protect disadvantaged communities from
further environmental harm. The second point graph shows the share of lost worker
compensation experienced by disadvantaged communities under different policy scenarios:
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carbon tax, excise tax, and setback. The x-axis represents the stringency of the 2045
greenhouse gas emissions targets. This graph shows that, with the 3,200 foot setback in place
(gray dot), the share of lost worker compensation is lower for disadvantaged than under the
other two policies. This means that disadvantaged communities benefit from facing a lower
share of economic impacts under the setback policy. Lastly, the last visualization is a line graph
showing the projection of oil production in California with SB 1137 in place and with no setback
policy in place. Over time, it is predicted that the policy’s effectiveness will increase over time
due to the fact that the effect of reducing the number of new wells being drilled each year will
become more apparent with time. The gap between the two lines becomes notable at 2025, and
continues to widen over time. To understand the methods and selection that came into play, the
user can shift over to the last page to learn more about the freshCAir team’s approach to
predicting these values.

The final page of the interactive dashboard, Research Methods, contains a breakdown
of the different approaches made in assessing the impact of SB 1137. This page is added per
request of our faculty advisor in order to maintain all technicalities in one area if the user is
interested in gaining a deeper understanding of the decisions and approaches made. The
Research Methods page contains a breakdown of the impacts associated with the regulatory
policy that prohibits new well locations 3,200 feet away from sensitive receptors. It also includes
a description of the types of data that were used to conduct analyses, as well as the reasoning
behind using different predictive models. The Machine Learning Development subsection
breaks down important predictor variables used for the model, the type of machine learning
model used, and the tuning metrics used to improve the random forest model. In the Model
Training subsection, there is also a brief description of what the target variable is, as well as the
metrics used to assess the performance of the model. Three visuals representing new well
predictions, oil well production prediction, and a comparison of new well models from 1977 to
2019. The first graph is a historical graph showing the number of new wells ranging from 1977
to 2019, along with two other line graphs representing the different type of predictive model
used. The green line represents the random forest model, and the orange line represents
Poisson model the client crafted. The main takeaway with this visualizaiton is that the random
forest model more closely resembles the actual number of new wells throughout this historical
period. The second visualization that shows the number of forecasted new wells from 2020 to
2045. There are a total of four lines on this graph, with two representing the Poisson model and
the other two representing random forest. There are two types of lines on this graph, the dashed
line representing the 3,200 foot setback. Considering the number of new wells impacted by the
setback implementation, the dashed line being below the full line is consistent. The last graph,
representing forecasted oil production, also shows two different models with two different
setback policies: 3,200 feet and no setback. The y-axis is the total amount of oil produciton in
millions of barrels. The gap between each set of lines in the random forest model is larger
compared to the Poisson model, and this graph suggests that the random forest model may be
sensitive to changes in the different types of inputs over time.

The repository of the Github repository will be publicly available as the data itself was
included in the .gitignore file. In terms of reproducibility, this repository will facilitate that, with the
exception of the well locations. Moreover, the freshCAir team will also release the repository for
the interactive dashboard which will mark the specific point in time in which we submitted the
repository for the Master of Environmental Data Science Capstone.
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Figure 14: Current layout of Shiny dashboard landing page selecting active wells in Kern County with
clusterMarkers representing the aggregated number of active oil wells in Kern County. This map also
displays the distinction between what an active and not-active oil well is, as well as California Public Utilities
Commission’s definition of disadvantaged communities in California. The second cluster of active oil wells
shows the area coverage that cluster has. The top right corner displays an explanation of the cornflower
blue layer on the map so users can visualize the distribution of sensitive areas in California, on a statewide
and county-wide basis.
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Figure 15: Popup message displaying county-level and county-specific details including population
and percentage of potential PM 2.5 reduction. This feature does not require two pickerInputs to work, as
the user can click on an area on the map and a pop-up message would show up on the user’s screen. This
feature works for all counties in California.
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Figure 16: Disaggregated cluster of active oil well locations in Kern County. The highlighted cluster,
represented by a triangle, shows the disaggregation of the cluserMarker on the Leaflet map. These clusters
are eventually broken down into red points shown in the map above. On the left, additional information on
PM 2.5 can be found so that users are able to better understand the metrics behind yearly PM 2.5 exposure.

5. Products and Deliverables
5.1: Interactive Dashboard

The interactive dashboard will be hosted on the client’s website, in hopes that it will be
publicly distributed for Californians to access. The two main goals that motivated the
development of the dashboard were education and communication. With the Oil Well Explorer
page, Californians will be able to personalize the information being displayed in hopes that they
are now informed about the issue at hand. The statewide impacts page will also help guide the
user through further implications of the Bill, with digestible information and visualizations at
hand.

The repository for the interactive dashboard will be submitted to the client for future
modification and edits.This is in effort to facilitate our clients’ communication and outreach
related to SB 1137. The Github organization for the interactive dashboard, freshcair-capstone,
will host all materials used for building the dashboard. Instructions on upkeep and potential
additions will be included in the repository. Contents of the dashboard will include background
information on the effects of oil well activity as well as the purpose behind developing a public
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facing dashboard. Moreover, each tab on the dashboard will include different findings pertaining
to freshCAir’s Capstone Project. Maintenance will be made possible as the freshCAir team will
incorporate a reproducible workflow for other users to replicate the dashboard. The interactive
dashboard is currently being developed, and per request of the client, the freshCAir team will
also ensure that verbiage used in the Summary and/or About pages are representative of the
Nature Energy article and Policy Brief. The landing page of the interactive dashboard will
contain a well locator map, in which all maps, categorized as active and inactive, will be
displayed on a map with county borders. This map will also include average yearly particulate
matter concentration, percentage of disadvantaged census tracts, and population. Moreover, the
landing page will have most of the visuals so that most relevant information to SB 1137 will be
first seen.

5.2: Updated Repository
The forked repository README has been updated by adding more descriptions to the

scripts for future users, including information about the updates made and metadata
documentation. The new README provides a thorough overview of the project, including its
purpose, objectives, methodology, and expected outcomes. It outlines the data sources utilized,
the preprocessing steps undertaken, and the machine learning models employed. Additionally, it
furnishes clear instructions for installation, setup, and execution of the codebase, facilitating
reproducibility and collaboration. The link to the GitHub Organization housing the Shiny
dashboard repository can be found here.

5.3: Data Structure
For this project, the capstone project directory is located on the Taylor server. By setting

the working directory to their local directory, future developers can ensure that the scripts
access the necessary data files relative to the project’s root directory. This update simplifies
running the data processing scripts for future users.

The data structure within the data-str folder has two main components: public and
private. The public data, initially received from clients, follows the Zenodo archive's format.
Private data, also received from clients, cannot be shared publicly due to confidentiality.
Therefore, the private data structure is designed to protect sensitive information, organizing the
folders based on the level of detail in the columns.

To accommodate both public and private data structures, the current scripts adjust file
paths and update them to facilitate easy interpretation of the model for future users. Originally,
most data paths referenced the Zenodo archive, likely serving as a centralized location for data
storage and access in the original project. To improve the workflow and make the project more
user-friendly, future users will set their working directory at the top of each script once the data
folder has been uploaded to the archive. A visualization of the detailed data structure is included
in the Appendix.

6. Testing
6.1: Overview

The main components of testing in this project entail making sure that the data
generated in the scripts leading up to the final extraction model are correct. There are 21 data
sets used in the final extraction model (00_extraction_steps.R), with most of the data being
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loaded in from the load_input_info.R script. To ensure accurate results, the inputs into the model
are compared to the intermediate subfolder from Zenodo since all of this data is publicly
available. Data inputted into these scripts has been tested and outputs confirmed through
inspection. The comparedf function from the arsenal package is implemented to compare the
data generated in the new workflow with what is in Zenodo from the original run-through.

6.2: Setback Coverages
To ensure validity of results, the regenerated output data is compared to the data

inputted into the final extraction model (intermediate data) from the original study. The business
as usual scenarios are compared to determine if the outputs are identical. The production
forecast results match exactly with those generated by the clients, given that the comparedf()
function from the arsenal package displays that there are no differences across each of the
datasets after thorough inspection.

The summary table below displays the square mileage of oil fields that are covered
under each setback scenario.

no_setback setback_1000 setback_2500 setback_3200 setback_5280
<dbl> <dbl> <dbl> <dbl> <dbl>

1 0 276. 593. 708. 976

The setback buffer coverage shows that the amount of oil fields covered by the 3,200 foot
setback is about 20% larger than the 2,500 foot setback, which seems reasonable considering
that many of the sensitive receptor buffer areas overlap. As a result, not the entirety of the
setback region is included in the total area covered for most of the receptors, since these
receptors tend to be joined close together especially in urban areas such as Los Angeles.

Figure 17: Relative total square mileage of oil fields covered under each setback scenario. This plot
shows the relationship between setback distance and the amount of oil field covered in square miles. The
plot shows a fairly strong positive linear relationship between setback distance and average coverage of oil
fields. The linear trend implies that the relationship between setback distance and oil field coverage remains
consistent, facilitating informed decision making and policy analysis.
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Figure 18: Relative coverage of each oil well field under different setback scenarios. This plot presents
a comparison of the relative coverage of oil fields in California under different setback scenarios, with the y-axis
representing the relative coverage and the x-axis displaying the different setback distances. The plot shows that as
the setback distance increases, the relative coverage of oil fields also increases. The key takeaway from the plot is
that the mean coverage for the 3,200 foot setback distance is slightly greater than the 2,500 foot setback and less
than 5,280 foot setback, showing that the results for the new setback distance of 3,200 are in the appropriate range.

Note that the recreated figures also serve as tests of validity of the new setback scenario
results.

6.3: Machine Learning Model Testing
To test the random forest predictions for the number of new wells by year, data is split

into training and testing sets. The root mean squared error (RMSE) is a commonly used metric
for evaluating model performance, including random forests. RMSE measures the average
magnitude of the errors between the predicted and actual values, with lower values indicating
better model performance. It is calculated by taking the square root of the mean of the squared
differences between the predicted and actual values. RMSE is particularly useful because it
penalizes larger errors more heavily than smaller ones, making it sensitive to outliers and
providing a clear indication of the model's predictive accuracy. The RMSE for the Random
Forest model is 13.956 and Poisson is 32.442. The improved accuracy of the predictions from
the Random Forest model on the historical data can also be observed visually in Figure 10.
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Figure 19: Historical and forecasted mean capital expenditure and operational expenditure with
standard deviation buffer. This plot shows the historical and forecasted capital expenditures (Capex) and
operational expenditures (Opex) per unit from 1980 to 2045. Historical data is represented by solid lines,
while forecasted data is indicated by dashed lines, with shaded areas representing the standard deviation.
Notably, Opex peaked around the 2008-2015 period, reflecting significant operational costs during these
years. This plot provides insight into the random forest model's projections for higher numbers of new wells.
The model may be projecting these higher numbers due to the historical correlation of high new well counts
with periods of elevated costs, potentially influenced by multicollinearity among the variables. This suggests
that the model may be capturing the complex relationships between expenditures and well counts in its
forecasts. The random forest model is likely to disregard data prior to 2008 since the operational
expenditures in the forecasted period have no overlap with the period from 1977-2008.

While the RMSE values indicate that the Random Forest and Gradient Boosted models
perform better than the Poisson model on the historical data, it is important to consider the
underlying factors influencing these estimates. The Random Forest model’s strong accuracy
may be attributed to its ability to capture nonlinear relationships between the features of the
model. However, this complexity also introduces potential issues like multicollinearity, where the
interdependence of variables may lead to overfitting. The forecasted feature data, or out-of-bag
data, differs from the historical period due to higher operational expenditure, as seen in the
figure above, and depletion rates, even with oil prices adjusted to present dollar values. This
discrepancy highlights the need for further work to enhance the robustness and reliability of
these machine learning models.

6.4: Interactive Web Dashboard Testing
Since the dashboard does not have user inputs, rather selections, there is no testing that

needs to be conducted for the dashboard.
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7. User Documentation
7.1 Overview of Repository Structure and Organization

The README file in the forked project repository contains important information on what
each script does. The README, like it is set up now, will list the scripts in order of how they
should be run to recreate the results from start to finish. Since all of the data leading up to the
final model has been generated and stored in the data-str folder, individual scripts may be run in
any desired order.

7.2 Computing Environment
To ensure reproducible practices and facilitate future interactions with the updated

workflow, the computing environment has been documented, recording all packages and their
respective versions. The session information has been saved in a sessioninfo.txt file, which
details the exact R version and package configurations used when the project was completed.
To activate the environment used for this project, first verify that you have the same R version
installed as noted in sessioninfo.txt. Next, use the package details in sessioninfo.txt to install the
required packages and their specific versions. This can be done manually or with the help of
tools like remotes for precise version control. By following these steps, the computing
environment used for the project can be accurately restored, ensuring that the workflow runs
smoothly without issues caused by package updates. Code is included in the Appendix for how
to run sessioninfo.txt.

To avoid permanently setting these package versions and to create a reproducible
environment, users can set up a renv, or a virtual environment, in R Studio before setting the
session info packages. Here's how to create and activate a renv for this project:

1. Install the renv package if not already installed:
install.packages("renv")

2. Load the renv package:
library(renv)

3. Initialize a new renv environment in your project directory:
renv::init()

4. Activate the renv environment:
renv::activate()

5. Install the packages specified in the sessioninfo.txt file:
renv::restore()

By following these steps, a new renv environment will be created specifically for this
project, ensuring that the required packages and their versions are installed and activated within
the virtual environment. This approach allows for reproducibility while keeping the
project-specific dependencies separate from the global R environment. While this approach
ensures reproducibility, it's important to note that packages might become outdated over time.
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Future users may need to manually update or add packages to keep the environment current.
The sessioninfo.txt file provides a reliable reference for the project's dependencies, making the
environment portable and reproducible, thereby simplifying future updates and collaborations.

7.3 Important Code Updates
The most important update that users must make for the scripts to run is changing the

working directory to the user’s designated directory. The code for this project was completed on
the Taylor server, and the working directory is set for each script using the setwd() function.
Users must update the path inside this function to their new directory location. This update must
be added for all scripts, as the Taylor server required the directory to be set for each script to
access data used in the project. The tables below highlight the important scripts which users
may investigate to digest the injections that have been made into the code to generate the
3,200 foot setback scenario.

There is an important update in the load_input_info.R script that users must be aware of.
The user will select the well entry and exit model for the final extraction model, with the options
of Poisson or Random Forest . The user may enter 1 or 2 depending on which model they
would like to use for that run. Another key update is imposing a delay on when well setbacks
begin. Users can set an intervention_year for which the setbacks will begin, and the code will
pick up if a year has been set and institute the setback starting that year. The business-as-usual
scenarios will be run for years leading up to the intervention year, if one is set. The user simply
has to define the variable in the script before the if statement which starts on line 233 of
load_input_info.R.

7.4 Future Work
The "extraction_2024-06-05_rf" subfolder contains the model run for the Random Forest

approach, while the "extraction_2024-05-13" subfolder contains the Poisson run. These
subfolders serve as a starting point for comparing the performance of the two modeling
approaches and identifying areas for improvement. Since the figures in this project were created
using the Poisson results, implementing the Random Forest results could potentially improve
the estimates of future oil production. Note that the 5,280 foot setback GHG reduction
equivalent for excise and carbon taxes was not generated in the project due to unforeseen
issues with the scenarios generated and stored in the outputs of the final extraction model.
Since this project did not entail calculating the 3,200 foot setback equivalent GHG reduction of
excise and carbon taxes, this issue should be investigated when calculating the equivalent GHG
reduction for the new setback distance.

As new data becomes available it can be integrated into the models to improve their
predictive power. By incorporating this data, the models can adapt to the evolving industry
landscape and provide more accurate estimates of well entry and exit. Future work can also
focus on incorporating government policies on well licenses into the models. By considering the
impact of regulatory changes and policy interventions, the models can provide more
comprehensive insights into the factors influencing well entry and exit decisions.

Bayesian modeling presents a promising approach to leverage new data and incorporate
prior knowledge into the modeling process. The historical data from 1977 to 2019, used to train
the Random Forest models implemented in this project, can serve as the prior knowledge in the
Bayesian model. As new data is collected, the Bayesian model can update its posterior
distributions, resulting in more refined predictions. In practice, this can be implemented by
specifying prior distributions for the model parameters based on the historical data and the
current Random Forest model's performance. To implement Bayesian modeling in R, several
packages can be utilized, such as rstan for Bayesian inference, brms for a high-level interface
for Bayesian regression models, and loo for model comparison and selection. By utilizing the
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strengths of Bayesian modeling, integrating new data oil production, and incorporating
government policies, the well entry and exit models can be continuously updated and improved
to give more accurate and actionable models and results.

7.3 Important Workflow Scripts
Figure 5 in the Appendix shows a diagram of the key scripts that are impacted by

injecting the 3,200 foot setback scenario. The table below includes a description of these scripts
that precede the final extraction model.

Table 1. Key Setback Scripts
Script Description of Scripts Importnt Outputs

well_setback_sp_prep.R Processes spatial data from the FracTracker Setback
dataset to analyze and visualize sensitive receptors (e.g.,
dwellings, playgrounds, healthcare facilities) around oil and
gas extraction sites in California. It involves reading and
transforming spatial layers from a Geographic Database
(GDB), applying buffers to identify setback areas, simplifying
complex geometries for efficiency, and ultimately creating
and saving spatial buffers around sensitive sites, which are
then visualized using various mapping libraries in R.

buffer_3200ft.shp:
Create a new
shapefile of 3200 foot
buffer around sensitive
receptors.

gen_well_setback_status
.R

Processes well and field data to determine their proximity to
sensitive receptors based on predefined setback distances
(1000ft, 2500ft, 3200ft, and 5280ft) around oil and gas
extraction sites in California. It involves reading spatial buffer
data and then calculating which wells and fields fall within
these buffers, ultimately generating attributes for each well
and field regarding their inclusion within the setbacks, and
visualizing these relationships through maps.

coverage_map.html:
create a MapView
image to display
3,200ft buffer around
sensitive receptors

county-setback.R Calculates and visualizes the percentage of each county in
California covered by oil and gas setback zones of different
distances (1,000ft, 2,500ft, 3,200ft, and 5,280ft) from oil and
gas wells. It uses spatial data manipulation to intersect
county and field boundaries with setback buffer zones,
computes the area covered by each setback within counties,
and saves the results for further analysis.

county_level_setback_
coverage.csv: includes
ratio of county area
covered by 3,200 foot
buffer

predict_existing_producti
on.R

Predicts future oil production from existing wells that have
not exited production up to the year 2045. It merges well
production data with decline parameters and peak
production information, adjusts for wells within setback
areas, calculates production per well considering both active
and non-setback wells, and finally aggregates and saves the
adjusted production data for analysis, accounting for various
scenarios including setbacks and plugged wells.

pred_prod_no_exit_20
20-2045_field_start_y
ear_revised.csv:
provide the predictive
number of wells in the
3,200 foot scenario.

7.4 Output Data and Figures Scripts

The following table below details important scripts used to generate output data and data
used to create figures in the project. This table will be helpful for new future users of the project,
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and especially for injecting the data generated using the Random Forest well entry and exit
models into the figures.

Table 2. Figure Scripts
Script Description of Scripts Outputs

fig_outputs.R Refines and extracts the scripts to generate outputs for creating
figures for the manuscript. This includes various emission targets,
social cost of carbon, carbon price scenarios, census tract data,
oil extraction information, and disadvantaged communities.

dac_bau_health_labor_a
ll_oil.csv,
dac_health_labor_all_oil.
csv,
health_ct_results.csv:
data relate to health

labor_county_results.csv
: data relate to labor

state_levels_all_oil.csv,
npv_x_metric_all_oil.csv:
data relate to census
and oil extraction

field_characteristi
cs.R

Collects essential data to develop the plot and map,
encompassing census tract information, disadvantaged
communities, oil production, as well as setback scenarios at both
field and county levels.

field_characteristics.csv ,
county_characteristics.c
sv

figure1.R Processes and transforms various datasets related to oil
production fields, census tracts, and county-level data. Generates
a series of maps and plots to visually represent the distribution
and impacts of oil production across different regions, focusing on
aspects like disadvantaged communities, oil production volumes,
PM2.5 pollution, and worker compensation, culminating in an
assembled figure that integrates these visualizations for
presentation.

fig1a.csv, fig1b.csv,
fig1d.csv: necessary
data to print out images.

figure1a.png,
figure1b.png: printed
image files with new
wells

figure2.R Focuses on analyzing and visualizing data related to oil
production and greenhouse gas (GHG) emissions under various
policy interventions and scenarios in California. It first sets up the
necessary R environment, loads data, and preprocesses it by
filtering and adjusting based on specific criteria like policy
interventions and oil price scenarios. Then, it creates a series of
plots to visually represent the impact of different policies on oil
production and GHG emissions over time, culminating in a
combined figure that includes plots for reference, low, and high oil
price scenarios along with their corresponding GHG emissions
and cumulative effects, all formatted for clear and informative
presentation.

fig2ab.csv, fig2c.csv:
necessary data to print
out images.

figure2-high.png,
figure2-low.png,
figure2-ref-case.png:
printed image files with
new wells.

figure3.R Based on the health, labor and climate impact data across the
different setback distances, carbon tax and excise tax, this
analysis filters out avoided mortality, total lost worker
compensation and climate damaged value by the net present
value (NPV). Six series of plots generated to compare the total
value of different scenarios relative to BAU in order to achieve
various 2045 GHG emissions targets(%2045 vs 2019), depending
on the high, reference, and low oil price.

fig3a-f.csv: necessary
data to print out images.
Figure3-high.png,
figure3-low.png,
figure3-sb-all.png,
figure3-sb-new.png:
printed image files with
new wells.
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7.5 New Scripts

The table below details the new scripts that have been created in this project. While not
essential for future users, they provide insight into some of the work done to generate plots and
data from this document. The testing.R script is especially important, as the recreated data
which was used in the final extraction model was validated in this script by comparing the
recreated data with the data generated by the clients in the original project.

Table 3: new-scripts Folder Contents
Script Description

eda.R Performs exploratory analysis and visualization on oil production data. Processes and
analyzes data on well activity, production volumes, and geographic distribution of wells
across counties and census tracts. Examines the coverage of different setback scenarios
and creates interactive maps to visualize the distribution of wells and their characteristics.

fr_viz.R Used to create figures for the faculty review presentation.

ml-analysis.R Trains random forest models to predict the number of new and exit wells based on oil
price, capital expenditures, operational expenditures, and depletion rate. Generates
visualizations to compare the performance of the random forest models with historical
data and the Poisson model. Explores the historical and forecasted trends in capex, opex
and oil prices

output-review.R Generates plots and summary statistics to compare the effects of different setback
scenarios. Wrangles census tract, county, and state-level data.

pred-dev.R Code used in the development of the new and exit well predictive models. Note that the
models are implemented in the load_input_info_fc.R script.

rel-coverage.R Calculates the total area covered by each setback scenario, summarizes the relative
coverage statistics, and creates plots to show the relationship between setback distance
and coverage. Fits a linear model to the setback distance and coverage data, plotting the
best-fit line and displaying the equation. These plots are used in the Testing section of this
document.

testing.Rmd This code performs data comparisons and checks across numerous datasets related to oil
and gas production, emissions, policy scenarios, and environmental justice metrics. It
uses the comparedf function from the arsenal package to verify consistency in
dimensions, variable names, row counts, and attributes between different versions or
sources of data frames to confirm the validity of the data being used for the final model.
Data generated by the clients is compared to the new data to ensure consistency in the
new outputs. The datasets being checked include crude oil production, greenhouse gas
emissions from oil fields, carbon pricing and excise tax scenarios, emission reduction
targets, county-level health incidence rates, industrial emissions, disadvantaged
community shares, and projected impacts of policy interventions on production,
emissions, and health outcomes.

7.6 Intermediate Data
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Table 4 describes the data used in the final extraction model. This table can assist future
users of the project by deepening their understanding of what kinds of information is used in the
model.

Table 4: Intermediate Data Overview
Data Column name Purpose

scenario_id_list_targets.cs
v

scen_id: create scenario name by
combining all policy scenarios
BAU_scen: a binary whether the scenario is
business-as-usual (no policies activated)
setback_scenario: includes 1000ft, 2500ft,
3200 ft, 5280ft setback scenarios
setback_existing: 1 if the setback is
imposed on existing wells, 0 if not

Contains essential information on
various energy scenarios for oil price,
setback distance, carbon price, ccs
technologies including various impact
of these factors on emissions. Only
the main columns are utilized.

setback_coverage_R.csv NAME: county name,
area_sq_mi, area_acre, orig_area_m2:
overall area with different units
setback_scenario: includes 1000ft, 2500ft,
3200 ft, 5280ft setback scenarios
rel_coverage: the coverage of the oil field
under the specific setback
n_wells: number of well in this area

Contains information about oil and
gas fields. This data was used to
analyze the impact of different
setback distances on the coverage
and production of oil resources in
each field.

coverage_map_files/ N/A Contains spatial files of 1000, 2500,
3200, and 5280 foot setback
coverages.

crude_prod_x_field_revise
d.csv

doc_field_code: specific code for extraction
field
doc_fieldname: name of the extraction field
year: entire full year of oil extraction
total_bbls: total extract barrel per oil for
entire year

Contains information on crude oil
production by field and year for
historical trend analysis.

entry_df_final_revised.csv doc_field_code, doc_fieldname, year

doc_prod, capex, capex_bbl_rp,
capex_per_bbl_reserves,
capex_per_bbl_nom, opex, opex_bbl_rp,
opex_per_bbl_nom,
m_cumsum_div_my_prod,
m_cumsum_div_max_res, capex_imputed,
wm_capex_imputed, opex_imputed,
wm_opex_imputed,
wm_cumsum_div_my_prod,
wm_cumsum_div_max_res,
wm_cumsum_eer_prod_bbl, brent,

new_prod, n_new_wells, top_field

Contains information on oil fields and
is used for in-depth analysis of the
economic performance and
operational characteristics of oil fields
over time. It is showing the main three
categories here, including basic
information, oil price, and new wells
information.

field_capex_opex_forecast
_revised.csv

doc_field_code, year,

m_opex_imputed, m_capex_imputed,
wm_opex_imputed, wm_capex_imputed

Used to project future costs
associated with oil production
operations, including field-level capital
expenditures (CapEx) and field-level
operational costs(OpEx)
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field-year_peak-production
_yearly.csv

doc_field_code, doc_fieldname, start_year,

Peak_prod_year: the year of highest oil
production for an oil field
peak_tot_prod: peak annual total oil
production by field
no_wells: number of wells in each field
peak_avg_well_prod: average of oil
production per each wells and field
peak_well_prod_rate: peak production rate
by oil field

Contains information about the peak
production year for each oil field.
Used to analyze the performance and
decline characteristics of oil fields
based on their highest peak
production levels.

forecasted_decline_param
eters_2020_2045.csv

doc_field_code, doc_fieldname, year,

q_i: peak production rates
D: decline rates, by calculating the percent
change in production rate within from the
previous year’s decline rate
b: hyperbolic decline exponents, using a
non-linear least squares (NLS) regression,
int_year: the number of years since the start
of production,
d: exponential decline rates

Contains forecasted decline
parameters for oil fields from 2020 to
2045, aiding in projecting future oil
production.

ghg_emissions_x_field_20
18-2045.csv

doc_field_code, doc_fieldname, year

steam_field: steam injection in oil extraction
process for binary indicator

upstream_kgCO2e_bbl: upstream GHG
emissions, including exploration, drilling,
and crude production, intensity in kilograms
of CO2 equivalent per barrel of oil produced

Contains information about
greenhouse gas (GHG) emissions for
oil fields from 2018 to 2045,
facilitating analysis of the carbon
footprint of oil production across
different fields and to project future
GHG emissions based on production
forecasts.

pred_prod_no_exit_2020-
2045_field_start_year_revi
sed.csv

doc_field_code, doc_fieldname,

start_year: starting year of production for
each field,
no_wells: the number of wells in the field,

year: year of the production forecast
adj_no_wells: adjusted number of wells
based on the setback scenario,
production_bbl: forecasted production
volume in barrels

Contains predicted oil production
volumes for fields from 2020 to 2045,
considering different setback
scenarios and assuming no field exits.
This dataset is used to analyze the
impact of different setback regulations
on future oil production at the field
level.

emission_reduction_90.cs
v

emission_reduction: 90 percent reduction
scenario,
ghg_emission_MtCO2e: GHG emissions in
million metric tons of CO2 equivalent
(MtCO2e)

Provides the corresponding GHG
emissions in million metric tons of
CO2 equivalent (MtCO2e) for 90%
reduction scenario.

excise_tax_non_target_sc
ens.csv

year: forecasting year from 2020 to 2058,
tax_rate: a fraction of the oil price,
excise_tax_scenario: showing either no tax
or 5 percent,
units: tax rate

Contains information about excise tax
rates for non-target scenarios from
2020 to 2058. This dataset is used to
analyze the impact of different excise
tax scenarios on oil production and
revenues.
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inmap_processed_srm/sr
m_XX_fieldYY.csv

GEOID: column represents the unique
identifier for each county,
total chemical amount (NH3, NOX, PM2.5,
SOX, VOC), average weighted chemical
amount: "totalXX" and "totalXX_aw"
columns represent the chemical
concentrations and area-weighted chemical
concentrations resulting from emissions
related to the oil field's operations.

Contains information about the impact
of 26 areas in California. Used to
assess the spatial distribution of air
quality impacts from the oil field
across different counties in California.

7.6 Guidelines for Dashboard Users
Currently, the main mapping page includes two pickerInputs: county name and well type.

The user will first select from a list of California counties and then choose which well type they
would like to show on the map, either active or inactive. There are currently three layers to the
map: point geometries of well locations throughout California, California county polygons, and a
3200 foot buffer around almost every select sensitive area. The goal is to have county-level
information as a pop-up message, ideally for it to show up when the user’s mouse is hovered
over the county polygon.

The other pages, including the page that will display the statewide results of the
implementation of the 3,200 foot setback on health, production, and labor outcomes, of the
interactive dashboard are still underway. Definitions and useful information about PM 2.5,
distinction between active and inactive oil wells, and what is considered a disadvantaged
census tract are included on the dashboard.

8. Archive Access
The existing model, along with the revised code and file paths, will be saved on GitHub

for anyone to access the scripts. Two data structure types exist for future developers: data and
data-str. The data folder replicates the structure shared by clients, with the processed subfolder
under the data folder serves as a catch-all for data generated throughout the project to
regenerate the existing models. The data-str folder, with the full structure outlined in the
Appendix, has been updated for easy injection by future developers.

There are two tracks for archiving data: one for Bren affiliates and another for clients. For
Bren affiliates, both the intermediate and output public data from the data-str folder will be
archived using Dryad. For clients, both the data and data-str folders, containing all necessary
data, have been delivered.
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Appendix:

A. Tables and Figures

Table 5: Code Updates
Script Additions

health_data.R Called dplyr for select() function; updates to how missing data is handled to
ensure consistency in results

source_receptor_matrix.R Added checks if the CRS of the shapefiles and the data to be intersected are
different and if so transforms CRS’s to match, calling purrr for map() function

srm_extraction_population.R Called janitor package to clean column names

ica_multiplier_process.R Column names in the ICA files are updated to reflect the actual column names
in the input file; data joined using a left join instead of an inner join; na.rm =
TRUE argument is used in some summarize()and sum() functions to remove
missing values; some changes in the arguments and column names in the
pivot_wider()

stocks_flows.R N/A

create_ccs_scenarios.R N/A

social_cost_carbon.R After melting the scc_df data.table, it is converted back to a data.table object

clean_doc_prod.R Replacing readtext package with dplyr; call dplyr for select() statements

process-monthly-prod.R N/A

process-monthly-inj.R N/A

opgee-carb-results.R dt_res data.table is converted using dcast.data.table instead of dcast; dt_res is
explicitly set as a data.table object

rystad_processing.R Updates to data cleaning based on column names; call dplyr in many cases to
specify operation

zero_prod.R Called dplyr for select() and filter() operations

income_data.R Called dplyr for select() operations; addition of a code block to list available
variables using listCensusMetadata()

ccs_parameterization.R N/A

well_setback_sp_prep.R sr_dwellings and sr_s objects are filtered for valid geometries using
st_is_valid() and st_make_valid(); added code block for testing the conversion
of data frames to spatial data frames which is commented out; created
setback buffer for 3,200 foot distance scenario

gen_well_setback_status.R Added and processed 3,200 foot setback distance scenario; field coverage
calculations are performed using as_tibble() instead of as.tibble()
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economically_recoverable_resou
rces.R

N/A

create_entry_econ_variables.R Called dplyr for select() operations

init_yr_prod.R N/A

match_fields_assets.R Called raster for unique() function in several cases; called dplyr for several
select() functions

create_entry_input.R Converted the month_year and start_date columns in init_yr_prod to Date
format

crude_prod_x_field.R N/A

field_county_producton.R N/A

field_emission_factors_2015.R N/A

county-setback.R Added new code chunk to calculate the county coverage for the 3,200ft buffer
scenario; updated the rbind() function to include the new
county_coverage_df_3200 data frame when combining the setbacks

well_exits.R N/A

prep_data_field_year.R N/A

field-vintage-exit-rule.R N/A

field-vintage-exit.R N/A

historic-extraction-emissions.R N/A

prep_data_field_vintage.R N/A

decline_parameters_field_start_y
ear.R

Updated doc_field_code to be numeric for res_all and peak_prod to ensure
join compatibility

predict_existing_production.R Added a section to handle doc_field_code as numeric for all data frames;
updated the left_join of wells and setbacks to define the relationship as
many-to-many; modified n_wells_area calculation to use
length(unique(paste(api_ten_digit, start_year))) instead of n() due to package
issues; updated group_by() and summarise() functions to use dplyr prefix;
converted data frames to data.table objects in order to perform operations

analyze-parameters.R N/A

extraction_fields.R N/A

injection-type-by-field.R N/A

forecast_ghg_emission_factors.R Called dplyr to operate on several functions by adding it as a prefix; updated
the file paths in the list.files() function to use the res_path variable and
full.names = T
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emissions-target-90.R N/A

prep-excise-non-target.R N/A

load_input_info.R Added several libraries; used readxl or read_excel function instead of
read.xslx; updated several column names and types when read in data files;
converted some data frames to data.tables using setDT(); added lines to
convert doc_field_code to numeric and then back to character in several
places; removed the sprintf() function that pads field codes with leading zeros
since it converted doc_field_code into a numeric when it is supposed to be a
character; implemented Random Forest model

scenario-list-targets.R N/A

00_extraction_steps.R Added model toggle variable

fun_extraction_model_targets.R Added lines for testing purposes; updated the logic for handling different target
policies; added checks using if/else statements to ensure required columns
exist in various data tables before performing operations; replaced some data
manipulation operations with dplyr functions, like pivot_wider() instead of
dcast(); added code to remove duplicates from prod_existing_vintage_z and
handle missing fields in zero_prod_quota_old; replaced some data.table
syntax with equivalent dplyr syntax, like rename() instead of setnames();
converted data frames into data.table objects when necessary, usually after
melting or merging to uphold object type

review_target_out.R N/A

compile_extraction_outputs_full.
R

N/A

compile_subset_csvs.R Added testing to ensure all scenarios are read in properly
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Figure 20: Visualizing the scripts that process the 3,200 foot setback scenario data.
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B. Code

# Read the session information from the file

session_info <- readLines("sessioninfo.txt")

# Install the remotes package if not already installed

if (!require(remotes)) install.packages("remotes")

# Function to install a specific version of a package

install_specific_version <- function(package, version) {

remotes::install_version(package, version = version)

}

# Extract package names and versions from sessioninfo.txt and install them

for (line in session_info) {

if (startsWith(line, "package")) {

package_info <- unlist(strsplit(line, " "))

package_name <- gsub("'|'", "", package_info[2])

package_version <- gsub("'|'", "", package_info[4])

install_specific_version(package_name, package_version)

}

}
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