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1.0 Abstract
The environmental and social impacts of climate change are disproportionately distributed
worldwide. Many highly impacted regions lack the assets to monitor and generate resource
predictions, and therefore lack high-quality environmental and social data. As a result, it is
difficult to make predictions about the impacts of climate change for these regions using
conventional modeling. Recently, machine learning approaches applied to high-resolution
satellite imagery have been successful in making predictions of a wide range of social and
environmental variables. However, generating these predictions comes with significant barriers,
including high computational, data storage, expertise, and financial resource costs. Reducing
the financial and computational burden of machine learning approaches is essential to
increasing the equity of environmental monitoring processes and outputs. Here, we demonstrate
a pipeline to make predictions on ground-truthed data using the Random Convolutional
Features method through a use case example of predicting crop yields in Zambia. These crop
yield predictions can be used to analyze food security risk in the region. We apply the novel
machine learning approach, MOSAIKS (Rolf et al., 2021), to create tabular features for Zambia
using Landsat 8 and Sentinel 2 satellite imagery. We pair these generated features of Zambia
with ground-truthed crop yield data to build a model that predicts crop yields over time and
increases the spatial resolution of predicted crop yields. We then use this model to fill in a data
gap of crop yield predictions in Zambia during the years 2020 and 2021, when crop yield data
was not collected due to the COVID-19 pandemic. Beyond this use case, these tabular features
of satellite imagery, and the intuitive Microsoft Planetary Computer featurization pipeline we
developed to create them, provide a tool for others around the globe to create features, build
models, and generate predictions of other social and environmental variables.
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2.0 Executive Summary
The environmental and social impacts of climate change are unequally distributed worldwide
(Porter et al. 2014). Future climate patterns are predicted to adversely affect agricultural
productivity across many regions of the globe, posing a threat to large-scale food security, and
yet, sub-national crop production data is sparse in regions of the globe projected to be most
affected by climate change (Hultgren et al., 2022, in prep). Development of a comprehensive
agricultural database on historical crop yields that reflects local climate conditions would be a
major development in the field. This comprehensive database would enable an understanding of
the historical relationship between climate conditions and agricultural output, as well as the
development of forecasts under future climate change.

Recently, machine learning approaches applied to high-resolution satellite imagery have been
successful in making predictions for a wide range of social and environmental variables (e.g.,
Burke et al. 2021, Jean et al. 2016), including agricultural yields (e.g., Quarmby et al., 1993).
However, generating these predictions comes with significant barriers, including high
computational costs, data storage, expertise, and financial resources. Reducing the financial
and computational burdens of satellite imagery with machine learning approaches is essential to
increasing the equity of environmental monitoring processes and outputs.

Here, we demonstrate a pipeline that pairs Random Convolutional Features (Rahimi and Recht,
2008) from two satellite imagery sources with ground-truthed data to make predictions on crop
yields in the country of Zambia. Using crop yield data from 2013-2019, we predict the yields
during the years of 2020 and 2021, when data was unable to be collected due to the COVID-19
pandemic. In addition to generating predictions to fill this data gap, we also increase the spatial
resolution of the crop yield data that was collected. These crop yield predictions can contribute
to analysis on food security risk in the region. Specifically, we apply the novel machine learning
approach, Multi-task Observation using Satellite Imagery & Kitchen Sinks (MOSAIKS; Rolf et al.
2021), which encompasses both featurization and linear prediction. We use the MOSAIKS
system to pair Landsat 8 and Sentinel 2 satellite imagery with machine learning (SIML) methods
to create tabular features encoded with satellite information. Our methods to generate these
features with publicly available satellite imagery are an important contribution to the MOSAIKS
codebase, and can be used by the wider user base to generate features of images across many
locations. Once features were made, we pair them with ground-truthed administrative crop data
to build a supervised machine learning model that increases the spatial resolution of crop yield
predictions and predicts crop yields over time to fill the data gap in Zambian crop yields due to
data collection constraints during the COVID-19 pandemic. We implemented cross-validated
ridge regression across all years of interest to make these crop yield predictions. Previous work
has demonstrated that this unsupervised featurization can match the performance of deep
learning methods across multiple tasks (Rolf et al., 2021). The features, predictions, and code
base generated by application of the MOSAIKS system can be used by a variety of users,
including those interested in analyzing current and future food security risk in Zambia.
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These tabular features created from satellite imagery using MOSAIKS are task agnostic,
meaning they can be used to predict any variable of interest. In future work led by the clients,
the featurized satellite images and predicted crop yields will be integrated into a public-facing
and freely accessible application programming interface (API). We hope that access to the
preprocessed features and the methods to predict any variable of interest will enable
researchers and decision-makers around the globe to generate predictions of a wide variety of
other social and environmental variables.
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3.0 Problem Statement
Climate change is predicted to adversely affect agricultural productivity across the globe, posing
a threat to large-scale food security. Satellite imagery paired with machine learning can be used
to make crop yield predictions for vulnerable regions. However, these satellite and machine
learning methods require a high level of financial and computational resources. Sub-Saharan
Africa is likely to suffer some of the largest impacts from climate change (Hultgren et al. 2022, in
prep., Kurukulasuriya and Mendelsohn 2007). This region depends on local agricultural
production to ensure food security across the continent, but there is currently no efficient way to
generate estimates for historical crop yields and how they correlate with varying environmental
factors. Additionally, the country of Zambia was unable to collect data on crop yields during the
years of 2020 and 2021 due to the COVID-19 pandemic. This presents a critical data gap about
food resources during the pandemic. This lack of data and computational resources in
sub-Saharan Africa can be remedied with a pre-processed, generalized collection of encoded
satellite data that would be stored in open-source archives. This database of features will
enable policy makers, researchers, and all other users to execute diverse analysis and generate
predictions of many domain specific tasks on basic laptops in a reasonable amount of time. In
this use case, we use these features and an optimized model to predict maize yields during the
years 2020 and 2021.

4.0 Specific Objectives
The objectives of this project are as follows:

1. Featurize Satellite Imagery: The primary objective of this project is to encode annual
satellite imagery with random convolutional features over time for Zambia using the
Kitchen Sink method of the MOSAIKS system.

2. Predict Crop Yields: The secondary objective is to pair ground truth administrative crop
yield data for Zambia with featurized data summarized to the administrative boundary
level. We will use this paired data to train a ridge regression model of crop yields on the
features. This model will be applied to Zambia for the years 2020 and 2021 (due to the
inability to collect data from COVID-19 restrictions) to make predictions of crop yields.

3. Pipeline: A pipeline that future users can apply to featurize monthly imagery for multiple
satellites and to use those features to make crop yield predictions. (See future
applications section).

5.0 Summary of Solution Design
The strategy to accomplish this project’s objectives is listed below. A schematic outlining our
approach is also provided in Appendix A.

1. Create a uniform grid of points spaced at even intervals from which to sample for the
featurization step. These points are within the local coordinate reference system with
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units in meters. Each selected point was set to 5 kilometers away from the other points.
For computational efficiency, every nth point was selected and each row was set to
alternate starting points to create a checkerboard. A 1 square kilometer equal-area grid
cell was buffered around each point to serve as evenly-spaced regions to match Landsat
8 and Sentinel 2 satellite imagery in the next step. After the grid cells were created, the
grid was reprojected into the standard geodetic coordinate system, EPSG 4326.

2. Pulled geo-located Landsat 8 and Sentinel 2 satellite data using the Planetary Computer
Spatio-Temporal Asset Catalog (STAC) API into Microsoft’s Planetary Computer Hub,
filtered for cloud cover. The least cloudy image that meets the cloud threshold for any
given month was used. If no imagery was available for a point during a month due to
cloud cover, the point is skipped and later interpolated (the exact method is documented
in the notebook crop_modeling.ipynb). The spatial and temporal criteria were determined
by the amount of flexibility over these dimensions that would provide more meaningful
information to the model than a null value, while adhering to restrictions that allowed us
to glean model performance over these dimensions. See the User Documentation for
more information on this interpolation approach.

3. Compute random convolutional features (Rahimi and Recht, 2008) over all satellite
imagery that matched the 1 kilometer² equal area grid cells. This was executed both on
MPC as well as the Azure server. Random Convolutional Featurization is an
unsupervised machine learning computation with the MOSAIKS system (provided by the
client) on satellite data, which uses a featurization technique to convert the satellite
images into tabular, georeferenced data. We test many iterations of the number of
satellite bands, the number of points featurized, and the time range in the modeling
process.

4. Summarized featurized satellite data to administrative boundary level (districts) to match
spatial resolution of ground-truth crop yield data and merged data frames spatially (over
the latitude and longitude points that serve as the center of the grid cells).

5. Used cross-validated ridge regression on the merged data.
a. We made the informed assumption that each crop year does not impact the next,

because maize is annual and therefore all the yield is harvested by the end of the
growing season in August, and the fields are prepped for the next years’ crop
season each November (Baylis Lab, personal communication, April 11, 2022).

b. In the modeling code, we did not include year as a term in the model because if
you have a year dummy in the model you cannot predict for 2020 and 2021.

c. When we apply the model, rather than when we train and test the model, we do
not use the same dataframe sans the crop data, because then we would be
predicting the features at just the district level, which was only necessary for
model training because that is the level of resolution of the crop data. Instead, we
refer back to the raw features dataframe to predict at higher resolution: at the
feature level. This data frame has more rows, because there are multiple points
in each district and each of those points is present for each year, just as they
were for the summarized features.
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6. Generated predictions for 2020 and 2021 for maize in Zambia at 1 kilometer² grid cell
resolution.

a. Metadata such as the sources of data and uncertainty associated with these
predictions are included in the User Documentation and published alongside the
code to ensure users know the degree of imperfection in these estimates.

b. During model optimization, model performance for training years (all years prior
to 2020) was measured using multiple statistical metrics: validation R², training
R², training R, demeaned R², and demeaned R. Based on these R² metrics, 2
best models were chosen. The best model for overall performance and the best
model for performance over time. Model training was done with ridge regression.
During model optimization, we did not check the test set R² because this would
have prematurely revealed the out-of-bag model performance that predicted into
years for which we do not have ground truth crop data (2020 and 2021).

c. We ran the two selected models on the test set, or the out-of-bag sample to
produce two test R² values. We produced maps at the district level as well as the
feature level for these predictions. We produced maps to show uncertainty over
space to identify certain districts in which the model consistently underpredicted
or overpredicted.

7. A notebook for equal angle gridding over Zambia to provide a pipeline for executing this
broader featurization and modeling pipeline to fit different needs

a. For example, a use case would be producing feature data for the MOSAIKS API
that matches the gridding approach used for their archived data.

8. An alternative notebook for crop area sampling using 10% most cropped grid cells per
district.

6.0 Products and Deliverables
Table 1. Capstone deliverables and applications.

Deliverable Overview (details below) Application

Sentinel 2 & Landsat 8 features at 1 km² grid
cell resolution. The temporal range of all
features from Sentinel 2 is from 2015 to 2021
and the temporal range of all features from
Landsat 8 is from 2013 to 2021. All features
and predictions from both satellites are at
annual temporal resolution.

These feature files are a contribution to the
client’s database of features for the
MOSAIKS API. These features are a novel
contribution as they were derived from public
satellites, rather than a private satellite.
Although these features are equal area and
the existing features in the database are
equal area, the notebooks and documented
workflow to create the features is accessible
to the MOSAIKS API team in order to be
adjusted to match the existing features
database.

Additionally, these features are applied to the
developed model in order to produce
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predictions for the years 2020 and 2021 at
both 1 kilometer² grid cell resolution and
district resolution.

Project documentation, Sentinel and Landsat
featurization documentation, and model
documentation (a separate README for
each repository, as well as code comments
markdown chunks throughout notebooks)

Main GitHub organization README informs
clients and users about the overall goal of the
project, how it was executed, and where to
start in reproducing the product. Guides
clients and users through the Sentinel and
Landsat featurization and Sentinel and
Landsat modeling processes with
explanations for cropMOSAIKS’ default code
decisions and where to change variables to
adjust the featurization or model processes
(such as using different sets of bands, time
ranges, or imputation approaches)

Outline of Landsat featurization code (model
documentation applies to both satellites)

Guides clients and users in featurizing
Landsat imagery and where to change
variables to adjust the features

Notebook for pipeline using equal angle
rather than equal area

Guides clients or users in achieving certain
Future Work and Research Ideas and
creating features to match the equal angle
features that already exist in the MOSAIKS
API

6.1 Client Deliverables
1. Features

a. 1,000 features for Sentinel with red, green, blue, and near infrared bands, for
20,000 points sampled equal angle at the top 10% of crop land for each district
for all months across all of Zambia for 2016-2021

i. NIR increases spectral resolution (adding another band in general), which
in turn increases model accuracy

ii. NIR shares the same spatial resolution (10 meter) as RGB bands
b. 1,000 features for Landsat (bands 1-7), for 20,000 points sampled equal angle at

the top 10% of crop land for each district for all months across all of Zambia for
2016-2021

c. 1,000 features for Sentinel with red, green, blue, and near infrared bands, for
15,000 sampled equal area for all months across all of Zambia for 2016-2021

d. 1,000 features for Landsat (bands 1-7), for 15,000 sampled equal area grid cells
for all months across all of Zambia for 2013-2021

e. Notebook for pipeline for using equal angle to achieve Future Work and
Research Ideas

f. Stored on Taylor for the duration of the capstone project.
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i. After the duration of the project, the client and team members transferred
feature files to a shared Google Drive to retain shared access in
perpetuity. Later on, the client will upload the features to the API or
ensure that they are available upon request to the public with clear
documentation on the API. If full API integration requires a more
comprehensive set of features or adjustments to the features (such as
converting them from equal area to equal angle), this will be completed by
the client or team members after the conclusion of the capstone project.

2. Model
a. Documented exploration of performance across multiple dimensions in

markdown chunks in Modeling notebook and User Documentation:
i. Months of the year included in feature set
ii. Sensors, and their combination (concatenate Landsat 8 and Sentinel 2)

1. Equal area (1 kilometer² grid cell resolution), 15,000 points,
2016-2018

iii. Ability to predict over time versus over space
b. “Final” (i.e., best-performing) model predictions for all featurized grid cells (the

best-performing model for overall performance and the best-performing model for
over time)

i. Scatter plots for training, validation, demeaned, and test sets with R²
metrics

ii. Tabular results for training, validation, and demeaned R² (see Appendix B,
Tables 1A-1B)

iii. Dataframe containing predictions
iv. Maps of predictions at 1 kilometer² grid cell level and district level

(produced in the Modeling repository notebooks)

3. Documentation
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a. Well-documented codebase with a README for the overall GitHub organization,
a README for the Featurization repository, and a README for the Modeling
repository

i. Includes details of key decisions made in the featurization and modeling
processes, such as how to handle clouds, choose various parameters
from a set of options in the notebook, interpret graphs and maps, etc.

b. Executive Summary summarizing the project in this Technical Documentation
document

c. Link to the MOSAIKS API in the GitHub organization README’s

6.2 Academic Deliverables
Six academic deliverables will be produced as part of the Bren capstone requirements:

1. Design and Implementation Plan
2. Data and metadata
3. Faculty Review presentation
4. Technical Documentation Plan
5. Project repository
6. Capstone Project Final Presentation

7.0 Summary of Testing
A variety of tests have been employed in our featurization step and modeling process to ensure
our pipeline has been optimized for maize yield predictions in Zambia. The purpose of testing is
to ensure the accuracy of our results, measure uncertainty in our model, and allow for
open-source, repeatable results. A summary of our testing procedures is outlined below.

7.1 Featurization Testing
Manual exploratory testing and debugging statements were applied throughout the random
convolution featurization process. Manual exploratory tests used include plotting intermediate
visualizations and verifying code chunk outputs. Visualizations help provide code checks to
ensure the code is doing what we intend. Throughout our process we plot visualizations and
code chunk outputs as often as possible and in as many
different ways as possible to be sure the raw, intermediate, and
output parameters are what we expect. For example, we plot
activation maps for individual random convolutional feature
sets. An activation map helps visualize where certain attributes
are found within a defined space and time. In our activation
maps a high activation means a certain attribute was found. We
then plot these activation maps next to visual band (RGB)
satellite imagery to inspect for outliers and to ensure that
images are being featurized correctly. Additional visualizations
created to test accuracy of outputs include plots of the uniform
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subset of the 1 km2 grid of sample points, heatmaps, and 1 km2 grid of Landsat 8 and Sentinel 2
imagery.

Debugging statements are internal self-checks in code to aid testing and troubleshooting errors.
Within our code, we built in error messages to prevent silent errors from becoming bigger
problems. The ‘assert’ statement is also used throughout our code for a similar purpose. An
example of an assert statement used is that we require the number of points ‘If statements’ are
implemented for a similar purpose, to only use images with a certain number of pixels to ensure
that the images we use are full, complete images. In all of our coding steps, we implement peer
code review. Each time an individual merges their branch into the main branch, it undergoes a
code review before it is accepted and merged.

7.2 Modeling

7.2.1. Optimization
Our model has been tested on multiple subsets of satellites, cell size, bands, and months within
the years that correspond to the growing season, to test which months contribute to the most
accurate predictions. The model is optimized to predict over time (year to year) and through
space (district to district). The dataset is split into a training dataset (80%) and a testing dataset
(20%) and then run through the model.

A table of our model optimization metrics is provided in Appendix B: Optimization Spreadsheets
for Zambia.

Cell Size and Number of Features
Model optimization includes the creation of features for Zambia at different spatial scales and
number of features. Optimizing the ideal spatial scale translates to changing the density of the
uniform subset of the spatial grid that which we sample, and training the model iteratively with
this spectrum. With a lower-density uniform sample of the spatial grid, we retrieve fewer images
of Zambia, and therefore lower the spatial resolution. However, lowering this resolution does not
linearly translate to less accurate model performance. The same concept applies to the number
of features used to train the model; choosing fewer features decreases the amount of image
information we feed into the model, but this does not linearly translate to less accurate model
performance. As such, we trained our model at different spatial scales and feature numbers to
determine the threshold at which the accuracy is not significantly decreased and the image
featurization can still be executed in a reasonable amount of time. A reasonable amount is
defined as less than 1.5 hours for featurizing one year of images.

Bands
In addition to the cell size and the number of features, the bands used for both the Sentinel 2
and Landsat 8 satellite image featurization process is a factor in model optimization. Once the
cell size and number of features is determined, the model is stacked with different groups of
bands. These groups include:
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1. Sentinel 2
a. Red, green, and blue (2-3-4)
b. Red, green, blue, and near infra-red (2-3-4-8)

2. Landsat 8
a. Coastal aerosol, blue, green, red, near infra-red, shortwave infra-red 1,

shortwave infra-red 2 (1-2-3-4-5-6-7)

The relative model performance for each band combination option determined the bands used
for the final features that produce our capstone deliverables.

Crop Mask and Weights
The distribution of cropland within Zambia is not uniform. Although maize is grown to some
degree in most or all districts, areas with a high density of crops are located in the central,
eastern, and southern regions of Zambia. To target these areas, we use a 30 meter resolution
global cropland dataset to remove all 1 km² grid cells that do not contain cropland. We take the
remaining 1 km² grid cells and calculate the crop percentage within these cells to use as a
weighted average. This can be used to mask our features to only cropland data for the evenly
sampled points, and it can also be used to do a weighted average when summarizing the points
to the district level. It also used to featurize only the top 10% of cropland for each district.

Time
Within years, the model for maize production is optimized based on the growing season in
Zambia, which spans from November to July. The model performs differently when the input
features are for the entire year, May through October, or April through September. Subsetting
the data and extending the timeline to a few months beyond the end of harvest produced the
most optimal model.

We check the model's ability to predict over time by demeaning our predictions and the
observed crop yields by location. We then calculate an R2 score demeaned by location for the
model.
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7.2.2. Uncertainty
Our featurization procedure and model inputs all contain metrics of uncertainty. Uncertainty
comes from modeled data and estimations in lieu of ground-truthed data. Each decision made in
our pipeline introduces a degree of uncertainty. Here we describe the primary sources of
uncertainty in our pipeline.
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Maize Data
Zambia maize yields are forecast yields in units of metric tonnes of estimated maize production
per hectare of planted cropland. These units are derived from the expected production reported
by the farmers each year in units of metric tonnes, divided by the amount of hectares of
farmland in that district. This data was collected by the Central Statistics Office of Zambia
(2022). These data are forecasted from pre-harvest survey data collected in May preceding the
harvest season (July-August). The forecast model is conducted in Stata, a general purpose
statistical software, and adjusted with post-harvest season survey data. There is an unknown
degree of uncertainty in this forecast data as the model process and parameters are unknown.

Crop Masks
The spatiotemporally consistent cropland mask for Zambia comes from a global dataset
(Potapov et al. 2021). Of the global cropland estimate, Africa accounts for 16% of global
cropland. Uncertainty metrics were calculated using a stratified random sampling approach with
five strata chosen and reported at the 95% confidence interval.

Featurization
Our featurization process is an estimation of satellite imagery into a new feature space. A
primary determinant of valid featurization is minimizing cloud cover percentage in satellite
imagery. Minimizing cloud cover is critical to accurate featurization because the presence of
clouds introduces bias into our model. While near and shortwave infra-red spectral bands can
penetrate cloud to and extent, other bands cannot. In our process we whole-sale eliminate
Landsat images that contain greater than 10% cloud cover.

Model
Estimation of model results is completed through multiple reporting metrics. We use a 5-fold
cross-validated ridge regression on a training dataset to predict on a test dataset. We report the
models’ train, test, and validation R² and Pearson Correlation Coefficient scores on our
datasets. We also report the R² score on our demeaned observations and predictions by
location which provides a metric on how our model performs over time. Once we run our model,
we plot residual maps at the district level. These plots display how accurate our model results
are compared to actual ground-truthed data. We also visualize model predictions for all years
with available ground-truthed crop yields as barplots (Figure 5.) and histograms.
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8.0 User Documentation
Expected User: Client and co-authors. Potential future applications for non-governmental
organizations working in food security as well as agriculture policy-makers in Zambia. Potentially
future MEDS students.

The CropMosaiks GitHub organization will be the primary documentation portal and distribution
hub for our code and metadata documentation. The GitHub organization has a landing page
README that directs users to the two primary repositories, Featurization and Modeling. Each
repository has a detailed README describing the purpose, notebooks, and use instructions for
getting started as well as potential ways to expand and contribute. Within each notebook, there
will be detailed explanations of code embedded in markdown chunks and in comments as well
as how users can adapt the code for other use cases.

In the Featurization repository, the README file explains how users can either extract features
by utilizing the featurization notebooks, or by directing them to the MOSAIKS API. Feature data
created by the cropMOSAIKS team will only be available to our clients through the MEDS server
Taylor under the directory “/capstone/cropmosaiks/data/features/<satellite>.” Further information
on feature creation can be found in the two primary notebooks that take slightly different
approaches to featurization.
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In the Modeling repository, the README file explains the goal of the modeling process, datasets
used, how to get started, and what the notebooks do. It is important to note that this notebook is
best designed for utilizing monthly features for yearly data by pivoting the features wide by
month. This means that 1,000 monthly features become 12,000 yearly features with the month
information appended in each column with the feature number. Because the Zambia growing
season spans the Gregorian new year (November planting, July harvest), we artificially change
the year category such that October, November, and December are included with the following
year.

The maize yield data that has been provided by our clients will not be made publicly available
but the most recent versions will be available on the MEDS server Taylor under the directory
“/capstone/cropmosaiks/data/crops.” Similarly, the administrative boundary data that best
matches the crop yield data (there have been recent district divisions creating more districts
than is seen in the historic crop yield data), also provided by our clients, will not be made
publicly available, but instead will be hosted on the MEDS server Taylor under the directory
“/capstone/cropmosaiks/data/boundaries.”

Additionally, there is a notebook for extracting land cover and land classification for 9 classes at
10 meter resolution. This notebook has a known problem and is not ready for use. Specifically,
the workflow used creates data gaps at the UTM boundary delineations. If this problem is
solved, it could potentially be used to provide weights to features for labels such as trees,
flooded vegetation, crops, built area, bare ground, snow/ice, and rangeland.

9.0 Archive Access
● Generated features will be stored on the Taylor server, which the client Tamma Carleton

has access to.
● Crop data is private and will not be shared per the request of the UC Santa Barbara

Baylis Lab.
● Project code and user documentation will be located on the Github Project Organization.

User documentation is provided for all repositories (Modeling, Featurization, and Crops).

10.0 Future Work and Research Ideas
● Test if the maize yield predictions for Zambia prior to 2020 can be used to detect crop

yield fluctuations due to known climatic anomalies such as drought. If the crop
predictions for these years show significant correlation with precipitation and
temperature, this model can be improved upon and used as a tool for governments,
community leaders, farmers, and food security initiatives to predict future crop yields for
Zambia. This tool was demonstrated by producing predictions for all years used to train
the model as well as 2020 and 2021. The ultimate goal is to provide more foresight
regarding crop yields prior to harvest, so farmers and leaders can adjust crop imports,
exports, and costs.
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● A report presenting a correlational analysis between estimated crop yields and
high-resolution, publicly available climate indicators (i.e., temperature and precipitation).
This differs from the preceding suggestion because this correlational analysis relates to
general temperature and precipitation data, not anomalies. Ideally, this report should be
accessible in all dominant languages of Zambia in order to include local farmers and
leaders who may not be fluent in English.

● Stack additional bands to Sentinel 2 in addition to visible spectrum (2,3,4). Examples
include short wave infrared (12, 8, and 4), and red edge

● Utilizing notebook for 0.01 degree grid cells (an equal angle grid)
● Increasing the cloud cover limit from 10% to 15% or more to retain more images and

therefore more points, increasing n of the training and test sets. This will likely improve
model performance.

● Filtering cloud cover at the level of the resolution you are featurizing (0.01 degree for
equal angle or 1 kilometer² grid cell for equal area) rather than at the image level.

● Maize is an annual crop and as such, time is not a term in our model. We account for
time by grouping features by month and year, which allows us to predict over time. If we
included time (i.e. year) as a term in our model, that would mean a single year’s crop
yields impact another year’s crop yields. For our goal of predicting annual crop yields,
using year as a term in the model is not helpful. However, this would be useful if you are
trying to predict yield for perennial crops such as almonds or avocados.

● Include district as a term in the cross-validated ridge regression model.
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Appendix B: Optimization Spreadsheets for Zambia
Table 1A. Initial Zambia Model Optimization Spreadsheet (Outdated in favor of Table 1B)

satellite bands country num_points features year month crop_mask weighted_avg impute validation_R2 train_R2 train_pearson_R train_n test_n

sentinel 2-3-4 ZMB 4000 1000 2016 all no no simple 0.25 0.66 0.83 57 15

sentinel 2-3-4 ZMB 4000 1000 2017 all no no simple 0.16 0.44 0.69 57 15

sentinel 2-3-4 ZMB 4000 1000 2018 all no no simple 0.44 0.79 0.89 57 15

sentinel 2-3-4 ZMB 4000 1000 2016-2018 all no no simple 0.19 0.43 0.66 172 44

sentinel 2-3-4-8 ZMB 4000 1000 2016 all no no simple 0.15 0.54 0.78 57 15

sentinel 2-3-4-8 ZMB 4000 1000 2017 all no no simple 0.05 0.41 0.7 57 15

sentinel 2-3-4-8 ZMB 4000 1000 2018 all no no simple 0.13 0.71 0.86 57 15

sentinel 2-3-4-8 ZMB 4000 1000 2016-2018 all no no simple 0.31 0.61 0.8 172 44

landsat 1-2-3-4-5-6-7 ZMB 4000 1000 2014 all no no simple 0.01 0.17 0.53 57 15

landsat 1-2-3-4-5-6-7 ZMB 4000 1000 2015 all no no simple 0.03 0.34 0.73 57 15

landsat 1-2-3-4-5-6-7 ZMB 4000 1000 2016 all no no simple -0.08 0.26 0.62 57 15

landsat 1-2-3-4-5-6-7 ZMB 4000 1000 2017 all no no simple 0.04 0.19 0.54 57 15

landsat 1-2-3-4-5-6-7 ZMB 4000 1000 2018 all no no simple 0.12 0.57 0.8 57 15

landsat 1-2-3-4-5-6-7 ZMB 4000 1000 2014-2018 all no no simple 0.39 0.79 0.89 288 72

sentinel 2-3-4 ZMB 15000 1000 2016 all no no simple 0.32 0.54 0.75 57 15

sentinel 2-3-4 ZMB 15000 1000 2017 all no no simple 0.16 0.38 0.65 57 15

sentinel 2-3-4 ZMB 15000 1000 2018 all no no simple 0.46 0.69 0.84 57 15

sentinel 2-3-4 ZMB 15000 1000 2016-2018 all no no simple 0.25 0.65 0.81 172 44

sentinel 2-3-4 ZMB 15000 1000 2016-2018 all yes no simple X X X 172 44

sentinel 2-3-4 ZMB 15000 1000 2016-2018 4-9 no no simple 0.38 0.68 0.82 172 44

sentinel 2-3-4 ZMB 15000 1000 2016-2018 5-9 no no simple 0.34 0.64 0.8 172 44

sentinel 2-3-4 ZMB 15000 1000 2016-2018 4-8 no no simple 0.34 0.6 0.77 172 44

sentinel 2-3-4 ZMB 15000 1000 2016-2018 5-8 no no simple 0.31 0.54 0.74 172 44

sentinel 2-3-4 ZMB 15000 1000 2016-2018 4-10 no no simple 0.38 0.7 0.84 172 44

sentinel 2-3-4-8 ZMB 15000 1000 2016 all no no simple 0.12 0.48 0.72 57 15

sentinel 2-3-4-8 ZMB 15000 1000 2017 all no no simple 0.08 0.4 0.68 57 15
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sentinel 2-3-4-8 ZMB 15000 1000 2018 all no no simple 0.07 0.46 0.72 57 15

sentinel 2-3-4-8 ZMB 15000 1000 2016-2018 all no no simple 0.37 0.72 0.85 172 44

sentinel 2-3-4-8 ZMB 15000 1000 2016-2018 all yes no simple 0.56 0.81 X 172 44

sentinel 2-3-4-9 ZMB 15000 1000 2016-2019 4-9 yes no simple 0.5 0.76 0.87 172 44

sentinel 2-3-4-8 ZMB 15000 1000 2016-2018 4-9 no no simple 0.39 0.65 0.81 172 44

sentinel 2-3-4-8 ZMB 15000 1000 2016-2018 5-9 no no simple 0.5 0.74 0.86 172 44

sentinel 2-3-4-8 ZMB 15000 1000 2016-2018 4-8 no no simple 0.51 0.73 0.85 172 44

sentinel 2-3-4-8 ZMB 15000 1000 2016-2018 5-8 no no simple X X X 172 44

sentinel 2-3-4-8 ZMB 15000 1000 2016-2018 4-10 no no simple X X X 172 44

landsat 1-2-3-4-5-6-7 ZMB 15000 1000 2014 all no no simple 0.02 0.18 0.53 57 15

landsat 1-2-3-4-5-6-7 ZMB 15000 1000 2015 all no no simple 0.04 0.34 0.72 57 15

landsat 1-2-3-4-5-6-7 ZMB 15000 1000 2016 all no no simple 0 0.61 0.82 57 15

landsat 1-2-3-4-5-6-7 ZMB 15000 1000 2017 all no no simple 0.05 0.2 0.55 57 15

landsat 1-2-3-4-5-6-7 ZMB 15000 1000 2018 all no no simple 0.11 0.59 0.8 57 15

landsat 1-2-3-4-5-6-7 ZMB 15000 1000 2014-2018 all no no simple 0.46 0.81 0.9 288 72

landsat 1-2-3-4-5-6-7 ZMB 15000 1000 2014-2018 all yes no manual 0.41 0.61 0.8 288 72

landsat 1-2-3-4-5-6-7 ZMB 15000 1000 2013-2018 4-9 yes no manual 0.57 0.82 0.91 288 72

landsat 1-2-3-4-5-6-7 ZMB 15000 1000 2013-2018 4-9 no no manual 0.57 0.77 0.88 288 72

landsat 1-2-3-4-5-6-7 ZMB 15000 1000 2014-2018 4-9 yes no manual 0.5 0.82 0.91 288 72

landsat 1-2-3-4-5-6-7 ZMB 15000 1000 2014-2018 4-9 no no simple 0.56 0.73 0.86 288 72

landsat 1-2-3-4-5-6-7 ZMB 15000 1000 2014-2018 5-9 no no simple 0.51 0.76 0.88 288 72

landsat 1-2-3-4-5-6-7 ZMB 15000 1000 2014-2018 4-8 no no simple 0.55 0.72 0.85 288 72

landsat 1-2-3-4-5-6-7 ZMB 15000 1000 2014-2018 5-8 no no simple 0.47 0.73 0.85 288 72

landsat 1-2-3-4-5-6-7 ZMB 15000 1000 2014-2018 4-10 no no simple 0.54 0.75 0.87 288 72

sentinel 2-3-4 ZMB 24000 1000 2016 all no no simple 0.35 0.55 0.77 57 15

sentinel 2-3-4 ZMB 24000 1000 2017 all no no simple 0.14 0.37 0.64 57 15

sentinel 2-3-4 ZMB 24000 1000 2018 all no no simple 0.44 0.68 0.84 57 15

sentinel 2-3-4 ZMB 24000 1000 2016-2018 all no no simple 0.27 0.78 0.89 172 44

sentinel 2-3-4 ZMB 42000 1000 2016 all no no simple 0.18 0.63 0.81 57 15

sentinel 2-3-4 ZMB 42000 1000 2017 all no no simple 0.12 0.41 0.67 57 15

sentinel 2-3-4 ZMB 42000 1000 2018 all no no simple 0.46 0.8 0.9 57 15

sentinel 2-3-4 ZMB 42000 1000 2016-2018 all no no simple 0.24 0.44 0.68 172 44
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Table 1B. Final Zambia Model Optimization Spreadsheet
satellite s2_bands l8_bands num_points year month crop_mask weighted_avg rows_initial rows_end train_n test_n val_R2 train_R2 train_r demean_R2 demean_r

sentinel 2-3-4 NA 15000 2016-2018 all no no 44865 39573 120 30 0.55 0.71 0.85 0.28 0.59

sentinel 2-3-4 NA 15000 2016-2018 all yes no 13914 11478 110 28 0.6 0.83 0.91 -0.08 0.53

sentinel 2-3-4 NA 15000 2016-2018 all yes yes 13914 11478 110 28 0.36 0.8 0.9 0.3 0.69

sentinel 2-3-4 NA 15000 2016-2018 4-9 no no 44865 44865 172 44 0.36 0.67 0.82 0.31 0.63

sentinel 2-3-4 NA 15000 2016-2018 4-9 yes no 13914 13914 172 44 0.43 0.69 0.83 0.08 0.54

sentinel 2-3-4 NA 15000 2016-2018 4-9 yes yes 13914 13914 172 44 0.21 0.52 0.72 0.09 0.48

sentinel 2-3-4-8 NA 15000 2016-2018 all no no 44865 38610 115 29 0.52 0.75 0.87 0.19 0.52

sentinel 2-3-4-8 NA 15000 2016-2018 all yes no 13866 10908 103 26 0.45 0.85 0.92 0.26 0.61

sentinel 2-3-4-8 NA 15000 2016-2019 all yes yes 13866 10908 103 26 0.43 0.83 0.91 0.15 0.52

sentinel 2-3-4-8 NA 15000 2016-2018 4-9 no no 44865 44865 172 44 0.39 0.65 0.81 0.19 0.49

sentinel 2-3-4-8 NA 15000 2016-2018 4-9 yes no 13866 13866 172 44 0.5 0.76 0.87 0.08 0.49

sentinel 2-3-4-8 NA 15000 2016-2018 4-9 yes yes 13866 13866 172 44 0.43 0.74 0.86 0.13 0.5

landsat NA 1-2-3-4-5-6-7 15000 2014-2018 all no no 75114 48648 152 38 0.54 0.93 0.96 0.4 0.65

landsat NA 1-2-3-4-5-6-7 15000 2014-2018 all yes no 23220 13882 148 37 0.39 0.92 0.96 0.37 0.64

landsat NA 1-2-3-4-5-6-7 15000 2014-2018 all yes yes 23220 13882 148 37 0.47 0.73 0.86 -0.04 0.37

landsat NA 1-2-3-4-5-6-7 15000 2014-2018 4-9 no no 74971 74609 272 68 0.61 0.85 0.92 0.27 0.61

landsat NA 1-2-3-4-5-6-7 15000 2014-2018 4-9 yes no 23190 22881 272 68 0.48 0.81 0.9 0.1 0.48

landsat NA 1-2-3-4-5-6-7 15000 2014-2018 4-9 yes yes 23190 22881 272 68 0.42 0.72 0.85 -0.06 0.42

landsat NA 1-2-3-4-5-6-7 15000 2013-2018 4-9 no no 89926 89926 345 87 0.56 0.77 0.88 0.13 0.49

landsat NA 1-2-3-4-5-6-7 15000 2013-2018 4-9 yes no 27812 27812 345 87 0.56 0.82 0.91 0.09 0.51

landsat NA 1-2-3-4-5-6-7 15000 2013-2018 4-9 yes yes 27812 27812 345 87 0.46 0.82 0.91 -0.04 0.5

landsat NA 1-2-3-4-5-6-7 15000 2016-2018 all no no 45088 24457 69 18 0.54 0.78 0.89 0.06 0.33

landsat NA 1-2-3-4-5-6-7 15000 2016-2018 all yes no 13934 7088 64 17 0.42 0.74 0.87 -0.3 0.2

landsat NA 1-2-3-4-5-6-7 15000 2016-2018 all yes yes 13934 7088 64 17 0.33 0.93 0.97 0.17 0.56

landsat NA 1-2-3-4-5-6-7 15000 2016-2018 4-9 no no 44960 44478 158 40 0.44 0.75 0.87 0.14 0.57

landsat NA 1-2-3-4-5-6-7 15000 2016-2018 4-9 yes no 13906 13491 158 40 0.1 0.56 0.76 -0.15 0.28

landsat NA 1-2-3-4-5-6-7 15000 2016-2018 4-9 yes yes 13906 13491 158 40 0.17 0.4 0.64 -0.15 0.11

combined 2-3-4 1-2-3-4-5-6-7 15000 2016-2018 all no no 45088 22937 60 15 0.72 0.93 0.97 0.15 0.47

combined 2-3-4 1-2-3-4-5-6-7 15000 2016-2018 all yes no 13934 6546 52 14 0.6 1 1 0.23 0.52

combined 2-3-4 1-2-3-4-5-6-7 15000 2016-2018 all yes yes 13934 6546 52 14 0.6 0.93 0.98 0.11 0.39

combined 2-3-4 1-2-3-4-5-6-7 15000 2016-2018 4-9 no no 44960 44478 158 40 0.58 0.93 0.97 0.11 0.36

combined 2-3-4 1-2-3-4-5-6-7 15000 2016-2018 4-9 yes no 13906 13491 158 40 0.48 0.94 0.97 0.03 0.18
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combined 2-3-4 1-2-3-4-5-6-7 15000 2016-2018 4-9 yes yes 13906 13491 158 40 0.38 0.92 0.97 0.04 0.2

combined 2-3-4-8 1-2-3-4-5-6-7 15000 2016-2018 all no no 45088 21960 55 14 0.7 1 1 0.1 0.33

combined 2-3-4-8 1-2-3-4-5-6-7 15000 2016-2018 all yes no 13934 5999 45 12 0.79 1 1 0.2 0.47

combined 2-3-4-8 1-2-3-4-5-6-7 15000 2016-2018 all yes yes 13934 5999 45 12 0.48 1 1 0.21 0.47

combined 2-3-4-8 1-2-3-4-5-6-7 15000 2016-2018 4-9 no no 44960 44478 158 40 0.57 0.92 0.96 0.13 0.4

combined 2-3-4-8 1-2-3-4-5-6-7 15000 2016-2018 4-9 yes no 13906 13491 158 40 0.47 0.94 0.98 0.05 0.23

combined 2-3-4-8 1-2-3-4-5-6-7 15000 2016-2018 4-9 yes yes 13906 13491 158 40 0.42 0.92 0.97 0.06 0.24
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